Research article Special Issues

Computing quaternion matrix pseudoinverse with zeroing neural networks

  • Received: 19 May 2023 Revised: 28 June 2023 Accepted: 11 July 2023 Published: 19 July 2023
  • MSC : 15A24, 65F20, 68T05

  • In recent years, it has become essential to compute the time-varying quaternion (TVQ) matrix Moore-Penrose inverse (MP-inverse or pseudoinverse) to solve time-varying issues in a range of disciplines, including engineering, physics and computer science. This study examines the problem of computing the TVQ matrix MP-inverse using the zeroing neural network (ZNN) approach, which is nowadays considered a cutting edge technique. As a consequence, three new ZNN models are introduced for computing the TVQ matrix MP-inverse in the literature for the first time. Particularly, one model directly employs the TVQ input matrix in the quaternion domain, while the other two models, respectively, use its complex and real representations. In four numerical simulations and a real-world application involving robotic motion tracking, the models exhibit excellent performance.

    Citation: Vladislav N. Kovalnogov, Ruslan V. Fedorov, Denis A. Demidov, Malyoshina A. Malyoshina, Theodore E. Simos, Spyridon D. Mourtas, Vasilios N. Katsikis. Computing quaternion matrix pseudoinverse with zeroing neural networks[J]. AIMS Mathematics, 2023, 8(10): 22875-22895. doi: 10.3934/math.20231164

    Related Papers:

  • In recent years, it has become essential to compute the time-varying quaternion (TVQ) matrix Moore-Penrose inverse (MP-inverse or pseudoinverse) to solve time-varying issues in a range of disciplines, including engineering, physics and computer science. This study examines the problem of computing the TVQ matrix MP-inverse using the zeroing neural network (ZNN) approach, which is nowadays considered a cutting edge technique. As a consequence, three new ZNN models are introduced for computing the TVQ matrix MP-inverse in the literature for the first time. Particularly, one model directly employs the TVQ input matrix in the quaternion domain, while the other two models, respectively, use its complex and real representations. In four numerical simulations and a real-world application involving robotic motion tracking, the models exhibit excellent performance.



    加载中


    [1] A. Ben-Israel, T. N. E. Greville, Generalized Inverses: Theory and Applications, 2nd edition, CMS Books in Mathematics, Springer, New York, NY, 2003.
    [2] G. Wang, Y. Wei, S. Qiao, P. Lin, Y. Chen, Generalized inverses: Theory and computations, vol. 53, Springer: Singapore, 2018.
    [3] S. Zhang, Y. Dong, Y. Ouyang, Z. Yin, K. Peng, Adaptive neural control for robotic manipulators with output constraints and uncertainties, IEEE T. Neur. Net. Lear., 29 (2018), 5554–5564.
    [4] Y. Shi, W. Zhao, S. Li, B. Li, X. Sun, Novel discrete-time recurrent neural network for robot manipulator: A direct discretization technical route, IEEE T. Neur. Net. Lear., 34 (2023), 2781–2790.
    [5] Y. Shi, J. Wang, S. Li, B. Li, X. Sun, Tracking control of cable-driven planar robot based on discrete-time recurrent neural network with immediate discretization method, IEEE T. Ind. Inform., 19 (2023), 7414–7423.
    [6] Y. Yuan, Z. Wang, L. Guo, Event-triggered strategy design for discrete-time nonlinear quadratic games with disturbance compensations: The noncooperative case, IEEE T. Syst. Man, Cy-S., 48 (2018), 1885–1896.
    [7] S. D. Mourtas, V. N. Katsikis, C. Kasimis, Feedback control systems stabilization using a bio-inspired neural network, EAI Endorsed Trans. AI Robotics, 1 (2022), 1–13.
    [8] X. Yang, H. He, Self-learning robust optimal control for continuous-time nonlinear systems with mismatched disturbances, Neural Network, 99 (2018), 19–30. https://doi.org/10.1016/j.neunet.2017.11.022 doi: 10.1016/j.neunet.2017.11.022
    [9] S. D. Mourtas, A weights direct determination neuronet for time-series with applications in the industrial indices of the federal reserve bank of St. Louis, J. Forecasting, 14 (2022), 1512–1524.
    [10] S. Li, J. He, Y. Li, M. U. Rafique, Distributed recurrent neural networks for cooperative control of manipulators: A game-theoretic perspective, IEEE T. Neur. Net. Lear., 28 (2017), 415–426. https://doi.org/10.1177/0959683617729447 doi: 10.1177/0959683617729447
    [11] M. Joldeş, J. M. Muller, Algorithms for manipulating quaternions in floating-point arithmetic, In: 2020 IEEE 27th Symposium on Computer Arithmetic (ARITH), IEEE, 2020, 48–55.
    [12] A. Szynal-Liana, I. Włoch, Generalized commutative quaternions of the Fibonacci type, Boletín de la Sociedad Matemática Mexicana, 28 (2022), 1.
    [13] D. Pavllo, C. Feichtenhofer, M. Auli, D. Grangier, Modeling human motion with quaternion-based neural networks, Int. J. Comput. Vision, 128 (2020), 855–872. https://doi.org/10.1007/s11263-019-01207-y doi: 10.1007/s11263-019-01207-y
    [14] E. Özgür, Y. Mezouar, Kinematic modeling and control of a robot arm using unit dual quaternions, Robot. Auton. Syst., 77 (2016), 66–73. https://doi.org/10.1016/j.robot.2015.12.005 doi: 10.1016/j.robot.2015.12.005
    [15] G. Du, Y. Liang, B. Gao, S. A. Otaibi, D. Li, A cognitive joint angle compensation system based on self-feedback fuzzy neural network with incremental learning, IEEE T. Ind. Inform., 17 (2021), 2928–2937.
    [16] A. M. S. Goodyear, P. Singla, D. B. Spencer, Analytical state transition matrix for dual-quaternions for spacecraft pose estimation, In: AAS/AIAA Astrodynamics Specialist Conference, 2019, Univelt Inc., 2020,393–411.
    [17] S. Giardino, Quaternionic quantum mechanics in real Hilbert space, J. Geom. Phys., 158 (2020), 103956. https://doi.org/10.1016/j.geomphys.2020.103956 doi: 10.1016/j.geomphys.2020.103956
    [18] M. E. Kansu, Quaternionic representation of electromagnetism for material media, Int. J. Geom. Methods M., 16 (2019), 1950105. https://doi.org/10.1142/S0219887819501056 doi: 10.1142/S0219887819501056
    [19] Z. H. Weng, Field equations in the complex quaternion spaces, Adv. Math. Phys., 2014.
    [20] R. Ghiloni, V. Moretti, A. Perotti, Continuous slice functional calculus in quaternionic Hilbert spaces, Rev. Math. Phys., 25 (2013), 1350006. https://doi.org/10.1142/S0129055X13500062 doi: 10.1142/S0129055X13500062
    [21] I. I. Kyrchei, D. Mosić, P. S. Stanimirović, MPCEP-*CEPMP-solutions of some restricted quaternion matrix equations, Adv. Appl. Clifford Al., 32 (2022), 22, Id/No 16.
    [22] L. Huang, Q. W. Wang, Y. Zhang, The Moore-Penrose inverses of matrices over quaternion polynomial rings, Linear Algebra Appl., 475 (2015), 45–61. https://doi.org/10.1016/j.laa.2015.02.033 doi: 10.1016/j.laa.2015.02.033
    [23] L. Xiao, S. Liu, X. Wang, Y. He, L. Jia, Y. Xu, Zeroing neural networks for dynamic quaternion-valued matrix inversion, IEEE T. Ind. Inform., 18 (2022), 1562–1571.
    [24] L. Xiao, W. Huang, X. Li, F. Sun, Q. Liao, L. Jia, et al., ZNNs with a varying-parameter design formula for dynamic Sylvester quaternion matrix equation, IEEE T. Neur. Net. Lear., 1–11.
    [25] L. Xiao, P. Cao, W. Song, L. Luo, W. Tang, A fixed-time noise-tolerance ZNN model for time-variant inequality-constrained quaternion matrix least-squares problem, IEEE T. Neur. Net. Lear., 1–10.
    [26] L. Xiao, Y. Zhang, W. Huang, L. Jia, X. Gao, A dynamic parameter noise-tolerant zeroing neural network for time-varying quaternion matrix equation with applications, IEEE T. Neur. Net. Lear., 1–10.
    [27] N. Tan, P. Yu, F. Ni, New varying-parameter recursive neural networks for model-free kinematic control of redundant manipulators with limited measurements, IEEE T. Instrum. Meas., 71 (2022), 1–14.
    [28] R. Abbassi, H. Jerbi, M. Kchaou, T. E. Simos, S. D. Mourtas, V. N. Katsikis, Towards higher-order zeroing neural networks for calculating quaternion matrix inverse with application to robotic motion tracking, Mathematics, 11 (2023), 2756.
    [29] V. N. Kovalnogov, R. V. Fedorov, D. A. Demidov, M. A. Malyoshina, T. E. Simos, V. N. Katsikis, et al., Zeroing neural networks for computing quaternion linear matrix equation with application to color restoration of images, AIMS Math., 8 (2023), 14321–14339. https://doi.org/10.3934/math.2023733 doi: 10.3934/math.2023733
    [30] Y. Zhang, S. S. Ge, Design and analysis of a general recurrent neural network model for time-varying matrix inversion, IEEE T. Neural Networ., 16 (2005), 1477–1490.
    [31] Y. Chai, H. Li, D. Qiao, S. Qin, J. Feng, A neural network for Moore-Penrose inverse of time-varying complex-valued matrices, Int. J. Comput. Intell. Syst., 13 (2020), 663–671.
    [32] Z. Sun, F. Li, L. Jin, T. Shi, K. Liu, Noise-tolerant neural algorithm for online solving time-varying full-rank matrix Moore-Penrose inverse problems: A control-theoretic approach, Neurocomputing, 413 (2020), 158–172. https://doi.org/10.1016/j.neucom.2020.06.050 doi: 10.1016/j.neucom.2020.06.050
    [33] W. Wu, B. Zheng, Improved recurrent neural networks for solving Moore-Penrose inverse of real-time full-rank matrix, Neurocomputing, 418 (2020), 221–231. https://doi.org/10.1016/j.neucom.2020.08.026 doi: 10.1016/j.neucom.2020.08.026
    [34] Y. Zhang, Y. Yang, N. Tan, B. Cai, Zhang neural network solving for time-varying full-rank matrix Moore-Penrose inverse, Computing, 92 (2011), 97–121. https://doi.org/10.1007/s00607-010-0133-9 doi: 10.1007/s00607-010-0133-9
    [35] S. Qiao, X. Z. Wang, Y. Wei, Two finite-time convergent Zhang neural network models for time-varying complex matrix Drazin inverse, Linear Algebra Appl., 542 (2018), 101–117.
    [36] S. Qiao, Y. Wei, X. Zhang, Computing time-varying ML-weighted pseudoinverse by the Zhang neural networks, Numer. Func. Anal. Opt., 41 (2020), 1672–1693.
    [37] X. Wang, P. S. Stanimirovic, Y. Wei, Complex ZFs for computing time-varying complex outer inverses, Neurocomputing, 275 (2018), 983–1001. https://doi.org/10.1016/j.neucom.2017.09.034 doi: 10.1016/j.neucom.2017.09.034
    [38] T. E. Simos, V. N. Katsikis, S. D. Mourtas, P. S. Stanimirović, D. Gerontitis, A higher-order zeroing neural network for pseudoinversion of an arbitrary time-varying matrix with applications to mobile object localization, Inform. Sciences, 600 (2022), 226–238. https://doi.org/10.1016/j.ins.2022.03.094 doi: 10.1016/j.ins.2022.03.094
    [39] M. Zhou, J. Chen, P. S. Stanimirovic, V. N. Katsikis, H. Ma, Complex varying-parameter Zhang neural networks for computing core and core-EP inverse, Neural Process. Lett., 51 (2020), 1299–1329.
    [40] J. Liu, H. Cai, C. Jiang, X. Han, Z. Zhang, An interval inverse method based on high dimensional model representation and affine arithmetic, Appl. Math. Model., 63 (2018), 732–743. https://doi.org/10.1016/j.apm.2018.07.009 doi: 10.1016/j.apm.2018.07.009
    [41] S. D. Mourtas, V. N. Katsikis, Exploiting the Black-Litterman framework through error-correction neural networks, Neurocomputing, 498 (2022), 43–58. https://doi.org/10.1016/j.neucom.2022.05.036 doi: 10.1016/j.neucom.2022.05.036
    [42] V. N. Kovalnogov, R. V. Fedorov, D. A. Generalov, A. V. Chukalin, V. N. Katsikis, S. D. Mourtas, et al., Portfolio insurance through error-correction neural networks, Mathematics, 10 (2022), 3335.
    [43] S. D. Mourtas, C. Kasimis, Exploiting mean-variance portfolio optimization problems through zeroing neural networks, Mathematics, 10 (2022), 3079. https://doi.org/10.3390/math10173079 doi: 10.3390/math10173079
    [44] Y. Shi, L. Jin, S. Li, J. Li, J. Qiang, D. Gerontitis, Novel discrete-time recurrent neural networks handling discrete-form time-variant multi-augmented Sylvester matrix problems and manipulator application, IEEE T. Neur. Net. Lear., 33 (2022), 587–599.
    [45] L. Xiao, B. Liao, S. Li, Z. Zhang, L. Ding, L. Jin, Design and analysis of FTZNN applied to the real-time solution of a nonstationary Lyapunov equation and tracking control of a wheeled mobile manipulator, IEEE T. Ind. Inform., 14 (2018), 98–105.
    [46] W. Jiang, C. L. Lin, V. N. Katsikis, S. D. Mourtas, P. S. Stanimirović, T. E. Simos, Zeroing neural network approaches based on direct and indirect methods for solving the Yang–Baxter-like matrix equation, Mathematics, 10 (2022), 1950.
    [47] V. N. Katsikis, S. D. Mourtas, P. S. Stanimirović, Y. Zhang, Continuous-time varying complex QR decomposition via zeroing neural dynamics, Neural Processing Letters.
    [48] P. S. Stanimirović, V. N. Katsikis, S. Li, Higher-order ZNN dynamics, Neural Process. Lett., 1–25.
    [49] V. N. Katsikis, P. S. Stanimirović, S. D. Mourtas, L. Xiao, D. Karabasević, D. Stanujkić, Zeroing neural network with fuzzy parameter for computing pseudoinverse of arbitrary matrix, IEEE T. Fuzzy Syst., 30 (2022), 3426–3435.
    [50] M. Kornilova, V. Kovalnogov, R. Fedorov, M. Zamaleev, V. N. Katsikis, S. D. Mourtas, et al., Zeroing neural network for pseudoinversion of an arbitrary time-varying matrix based on singular value decomposition, Mathematics, 10 (2022), 1208. https://www.mdpi.com/2227-7390/10/8/1208.
    [51] L. Jin, S. Li, L. Xiao, R. Lu, B. Liao, Cooperative motion generation in a distributed network of redundant robot manipulators with noises, IEEE T. Syst. Man Cy-S., 48 (2018), 1715–1724.
    [52] F. Zhang, Quaternions and matrices of quaternions, Linear Algebra Appl., 251 (1997), 21–57.
    [53] J. Groß, G. Trenkler, S. O. Troschke, Quaternions: Further contributions to a matrix oriented approach, Linear Algebra Appl., 326 (2001), 205–213.
    [54] R. W. Farebrother, J. Groß, S. O. Troschke, Matrix representation of quaternions, Linear Algebra Appl., 362 (2003), 251–255.
    [55] J. Dai, P. Tan, X. Yang, L. Xiao, L. Jia, Y. He, A fuzzy adaptive zeroing neural network with superior finite-time convergence for solving time-variant linear matrix equations, Knowl-Based Syst., 242 (2022), 108405. https://doi.org/10.1016/j.knosys.2022.108405 doi: 10.1016/j.knosys.2022.108405
    [56] L. Xiao, H. Tan, J. Dai, L. Jia, W. Tang, High-order error function designs to compute time-varying linear matrix equations, Inform. Sciences, 576 (2021), 173–186. https://doi.org/10.1016/j.ins.2021.06.038 doi: 10.1016/j.ins.2021.06.038
    [57] N. Zhong, Q. Huang, S. Yang, F. Ouyang, Z. Zhang, A varying-parameter recurrent neural network combined with penalty function for solving constrained multi-criteria optimization scheme for redundant robot manipulators, IEEE Access, 9 (2021), 50810–50818. https://doi.org/10.1109/ACCESS.2021.3068731 doi: 10.1109/ACCESS.2021.3068731
    [58] Y. Zhang, L. Jin, Robot Manipulator Redundancy Resolution, John Wiley & Sons: Hoboken, NJ, USA, 2017.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1307) PDF downloads(95) Cited by(4)

Article outline

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog