The aim of this paper is to provide new representations and computations of the generalized Moore-Penrose inverse. Based on the Moore-Penrose inverse, group inverse, Bott-Duffin inverse and certain projections, some representations for the generalized Moore-Penrose inverse are given. An equivalent condition for the continuity of the generalized Moore-Penrose inverse is proposed. Splitting methods and successive matrix squaring algorithm for computing the generalized Moore-Penrose inverse are presented.
Citation: Kezheng Zuo, Yang Chen, Li Yuan. Further representations and computations of the generalized Moore-Penrose inverse[J]. AIMS Mathematics, 2023, 8(10): 23442-23458. doi: 10.3934/math.20231191
The aim of this paper is to provide new representations and computations of the generalized Moore-Penrose inverse. Based on the Moore-Penrose inverse, group inverse, Bott-Duffin inverse and certain projections, some representations for the generalized Moore-Penrose inverse are given. An equivalent condition for the continuity of the generalized Moore-Penrose inverse is proposed. Splitting methods and successive matrix squaring algorithm for computing the generalized Moore-Penrose inverse are presented.
[1] | A. Ben-Israel, T. Greville, Generalized Inverses: Theory and Applications, New York: Springer, 2003. |
[2] | R. Bott, R. J. Duffin, On the algebra of networks, Trans. Amer. Math. Soc., 74 (1953), 99–109. |
[3] | Y. Chen, K. Z. Zuo, Z. M. Fu, New characterizations of the generalized Moore-Penrose inverse of matrices, AIMS Math., 7 (2022), 4359–4375. http://dx.doi.org/10.3934/math.2022242 doi: 10.3934/math.2022242 |
[4] | Y. L. Chen, Expressions and determinantal formulas for the generalized inverse $A^{(2)}_{\mathcal{T}, \mathcal{S}}$ and their applications, J. Natural Sci. Nanjing Normal University, 16 (1993), 3–16. |
[5] | Y. L. Chen, The Theory and Method of Generakized Inverse Matrix, in Chinese, Nangjing: Nanjing Normal University press, 2005. |
[6] | D. S. Cvetković-Ilić, Y. M. Wei, Algebraic Properties of Generalized Inverses, Singapore: Springer, 2017. |
[7] | M. P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer. Math. Mon., 65 (1958), 506–514. |
[8] | D. Ferreyra, F. Levis, N. Thome, Revisiting the core-EP inverse and its extension to rectangular matrices, Quaest. Math., 41 (2018), 265–281. https://doi.org/10.2989/16073606.2017.1377779 doi: 10.2989/16073606.2017.1377779 |
[9] | Y. F. Gao, J. L. Chen, Pseudo core inverses in rings with involution, Commun. Algebra, 46 (2018), 38–50. https://doi.org/10.1080/00927872.2016.1260729 doi: 10.1080/00927872.2016.1260729 |
[10] | C. W. Groetsch, Generalized inverses of linear operators: representation and approximation, Monographs Textbooks Pure Appl. Math., 37 (1977). |
[11] | X. J. Liu, S. W. Huang, Proper splitting for the generalized inverse $A^{(2)}_{\mathcal{T}, \mathcal{S}}$ and its application on Banach spaces, Abstr. Appl. Anal., 2012 (2012), 1–9. |
[12] | H. F. Ma, P. S. Stanimirović, Characterizations, approximation and perturbations of the core-EP inverse, Appl. Math. Comput., 359 (2019), 404–417. https://doi.org/10.1016/j.amc.2019.04.071 doi: 10.1016/j.amc.2019.04.071 |
[13] | X. Mary, On generalized inverse and Green relations, Linear Algebra Appl., 434 (2011), 1836–1844. https://doi.org/10.1016/j.laa.2010.11.045 doi: 10.1016/j.laa.2010.11.045 |
[14] | D. Mosić, Core-EP inverse in rings with involution, Publ. Math. Debrecen., 96 (2020), 427–443. |
[15] | D. Mosić, P. S. Stanimirović, Expressions and properties of weak core inverse, Appl. Math. Comput., 415 (2022). https://doi.org/10.1016/j.amc.2021.126704 |
[16] | R. Penrose, A generalized inverse for matrices, Math. Proc. Camb. Philos. Soc., 51 (1955), 406–413. |
[17] | K. M. Prasad, K. S. Mohana, Core-EP inverse, Linear Multilinear Algebra, 62 (2014), 792–802. https://doi.org/10.1080/03081087.2013.791690 |
[18] | J. K. Sahoo, R. Behera, P. S. Stanimirović, V. N. Katsikis, H. F. Ma, Core and core-EP inverses of tensors, Comput. Appl. Math., 39 (2020). https://doi.org/10.1007/s40314-019-0983-5 |
[19] | P. S. Stanimirović, Limit representations of generalized inverses and related methods, Appl. Math. Comput., 103 (1999), 51–68. https://doi.org/10.1016/S0096-3003(98)10048-6 doi: 10.1016/S0096-3003(98)10048-6 |
[20] | P. S. Stanimirović, D. S. Cvetković-Ilíc, Successive matrix squaring algorithm for computing outer inverses, Appl. Math. Comput., 203 (2008), 19–29. https://doi.org/10.1016/j.amc.2008.04.037 doi: 10.1016/j.amc.2008.04.037 |
[21] | G. W. Stewart, On the continuity of the generalized inverse, SIAM J. Appl. Math., 17 (1969), 33–45. https://doi.org/10.1137/0117004 doi: 10.1137/0117004 |
[22] | K. S. Stojanović, D. Mosić, Generalization of the Moore-Penrose inverse, RACSAM, 114 (2020). https://doi.org/10.1007/s13398-020-00928-x |
[23] | G. R. Wang, Y. M. Wei, S. Z. Qiao, Generalized Inverses: Theory and Computations, Beijing: Springer, 2018. |
[24] | H. X. Wang, Core-EP decomposition and its applications, Linear Algebra Appl., 508 (2016), 289–300. https://doi.org/10.1016/j.laa.2016.08.008 doi: 10.1016/j.laa.2016.08.008 |
[25] | Y. M. Wei, A characterization and representation of the generalized inverse $A^{(2)}_{\mathcal{T}, \mathcal{S}}$ and its applications, Linear Algebra Appl., 280 (1998), 87–96. https://doi.org/10.1016/S0024-3795(98)00008-1 doi: 10.1016/S0024-3795(98)00008-1 |
[26] | Y. M. Wei, D. S. Djordjević, On integral representation of the generalized inverse $A^{(2)}_{\mathcal{T}, \mathcal{S}}$, Appl. Math. Comput., 142 (2003), 189–194. https://doi.org/10.1016/S0096-3003(02)00296-5 doi: 10.1016/S0096-3003(02)00296-5 |
[27] | Y. M. Wei, H. B. Wu, $(\mathcal{T}, \mathcal{S})$ splitting methods for computing the generalized inverse $A^{(2)}_{\mathcal{T}, \mathcal{S}}$ and rectangular systems, Int. J. Comput. Math., 77 (2001), 401–424. https://doi.org/10.1080/00207160108805075 doi: 10.1080/00207160108805075 |
[28] | H. Yan, H. X. Wang, K. Z. Zuo, Y. Chen, Further characterizations of the weak group inverse of matrices and the weak group matrix, AIMS Math., 6 (2021), 9322–9341. http://dx.doi.org/10.3934/math.2021542 doi: 10.3934/math.2021542 |
[29] | Y. X. Yuan, K. Z. Zuo, Compute $ \lim \limits_{\lambda \to 0}X(\lambda I_{p}+ YAX)^{-1}Y $ by the product singular value decomposition, Linear Multilinear Algebra, 64 (2016), 269–278. https://doi.org/10.1080/03081087.2015.1034641 doi: 10.1080/03081087.2015.1034641 |
[30] | M. M. Zhou, J. L. Chen, T. T. Li, D. G. Wang, Three limit representations of the core-EP inverse, Filomat, 32 (2018), 5887–5894. |
[31] | K. Z. Zuo, Y. J. Cheng, The new revisitation of core EP inverse of matrices, Filomat, 33 (2019), 3061–3072. https://doi.org/10.2298/FIL1910061Z doi: 10.2298/FIL1910061Z |