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1. Introduction

The sets of all natural number, complex number, n dimensional column vectors and m × n complex
matrices will be denoted by N, C, Cn and Cm×n, respectively. The identity matrix in Cn×n and the null
matrix in Cm×n are denoted by In and O. For A ∈ Cm×n, let A∗, r(A), R(A) and N(A) stand for the
conjugate transpose, the rank, the range and the null space of A, respectively. For A ∈ Cn×n, the index
of A, denoted by ind(A), is the smallest nonnegative integer k, such that r(Ak) = r(Ak+1). The symbol
Cn×n

k stands for the set of all n × n complex matrices with index k. The symbol PL,M stands for a
projector onto L alongM, when a direct sum of subspaces L andM is equal to Cm, and PL presents
the orthogonal projector onto L along L⊥, where L⊥ is the orthogonal complement subspace of L.

The definitions of several helpful generalized inverses are stated now. A matrix X ∈ Cn×m that
satisfies XAX = X is called an outer inverse of A ∈ Cm×n and denoted by A(2). Let A ∈ Cm×n be of rank
r, let T be a subspace of Cn of dimension s ≤ r and let S be a subspace of Cm of dimension m− s. There
exists a unique outer inverse X of A, such that R(X) = T and N(X) = S if and only if AT ⊕ S = Cm.
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In this case, X is called an outer inverse with prescribed rang and null space and denoted by A(2)
T ,S

. For
main properties please see [1, 5, 6, 25–27].

The Moore-Penrose inverse of A ∈ Cm×n is the unique matrix A† ∈ Cn×m [1,6,16], such that AA†A =
A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A.

The Drazin inverse of A ∈ Cn×n
k is the unique matrix AD [1, 6, 7] satisfying ADAAD = AD, AAD =

ADA, ADAk+1 = Ak. In a particular case that ind(A) = 1, the Drazin inverse becomes the group inverse
AD = A#.

The core-EP inverse of A ∈ Cn×n
k denoted by A †O, is defined in [17] as the unique matrix X ∈ Cn×n,

which satisfies XAX = X and R(X) = R(X∗) = R(Ak).
The core-EP inverse was recently investigated in numerous studies. Several characterizations and

representations for the core-EP inverse were studied in [24, 31]. In [12], iterative method and splitting
method for finding core-EP inverse were presented. The limit representations were given in [29, 30]
for core-EP inverse. The core-EP inverse was extended for elements of ring in [9, 14], and for tensors
in [18]. In [8], the core-EP inverse was generalized to rectangular matrices.

In 2020, the generalized Moore-Penrose inverse (gMP inverse) was introduced by Stojanović and
Mosić [22]. More precisely, the gMP inverse of A ∈ Cn×n

k , defined as A⊗ = (A †OA)†A †O, is the unique
solution to the matrix system

XAX = X, AX = A(A †OA)†A †O, XA = (A †OA)†A †OA.

Especially, if ind(A) = 1, A⊗ becomes A†. Thus, the gMP inverse extends the notion of the Moore-
Penrose inverse. Some characterizations, representations and applications of the gMP inverse were
proposed in [3, 22].

Inspired by recent research about core-EP inverse, our aim is to present new representations and
computational procedures of the gMP inverse. The major contributions of the article can be highlighted
as follows:

1). Some representations for the gMP inverse are given based on the Moore-Penrose inverse, group
inverse, Bott-Duffin inverse and certain projections.

2). Limit and integral representations of the gMP inverse are given.
3). A necessary and sufficient condition for continuity of the gMP inverse is verified.
4). Two splitting methods for computing the gMP inverse are presented.
5). The successive matrix squaring (SMS) algorithm for finding the gMP inverse is proposed.
The paper is organized as follows. In Section 2, some representations of the gMP inverse are

presented, continuity of the gMP inverse, as well as maximal classes of matrices, such that the
general formula of the gMP inverse is satisfied. Splitting methods for computing the gMP inverse
are considered in Section 3. Section 4 gives the SMS algorithm for finding the gMP inverse.

2. Representations of the gMP inverse

The Lemma 2.1 can be got by [3, Lemma 2.2].

Lemma 2.1. [3] Let A ∈ Cn×n
k . Then

(a) A⊗ = A(2)
R(A∗Ak),N((Ak)∗);

(b) AA⊗ = PR(AA∗Ak),N((Ak)∗);
(c) A⊗A = PR(A∗Ak).
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In [15], the authors gave representations of the weak core inverse by applying the Urquhart
formula [1]. Inspired by that, we will apply the Urquhart formula to give the expression of the
gMP inverse.

Theorem 2.2. Let A ∈ Cn×n
k . Then

A⊗ = ((Ak)∗A)†(Ak)∗. (2.1)

Proof. It is easy to verify r((Ak)∗) = r(A∗Ak) = r((Ak)∗AA∗Ak). According to Lemma 2.1 (a) A⊗ =
A(2)
R(A∗Ak),N((Ak)∗) and the Urquhart formula [1],

A⊗ = A∗Ak((Ak)∗AA∗Ak)†(Ak)∗ = ((Ak)∗A)†(Ak)∗,

where the the second identity is obtained by B† = B∗(BB∗)†. □

Remark 2.3. For each nonnegative integer l ≥ k, the expression (2.1) substituting l for k is still valid.

Lemma 2.4. Let A ∈ Cn×n
k . Then A⊗ = A(2)

R(A∗Ak(Ak)∗),N(A∗Ak(Ak)∗).

Proof. It follows from ind(A) = k that r((Ak)∗) = r(A∗Ak) = r(A∗Ak(Ak)∗). Since R(A∗Ak(Ak)∗) ⊆
R(A∗Ak) and N((Ak)∗) ⊆ N(A∗Ak(Ak)∗), then R(A∗Ak) = R(A∗Ak(Ak)∗) and N((Ak)∗) = N(A∗Ak(Ak)∗).
The rest follows by Lemma 2.1 (a). □

Using Lemma 2.4 and the representation of A(2)
T ,S

inverse from [25, Theorem 2.1], we get new
representations for the gMP inverse.

Theorem 2.5. Let A ∈ Cn×n
k . Then

A⊗ = A∗Ak(Ak)∗(AA∗Ak(Ak)∗)# = (A∗Ak(Ak)∗A)#A∗Ak(Ak)∗.

Mary [13] introduced the inverse along an element, the Lemma 2.4 shows that the gMP is the inverse
along A∗Ak(Ak)∗. Thus, the Theorem 2.5 also can be got by [13, Theorem 7].

The core-EP decomposition of a square matrix was given in [24] and the corresponding formula of
the gMP inverse was verified in [22].

Lemma 2.6. [22, 24] Let A ∈ Cn×n
k and r(Ak) = t. Then A is expressed by

A = U
[

T S
O N

]
U∗, (2.2)

where N is nilpotent with index k, T is t × t invertible matrix, U ∈ Cn×n is unitary. In addition,

A⊗ = U
[

T ∗(TT ∗ + S S ∗)−1 O
S ∗(TT ∗ + S S ∗)−1 O

]
U∗. (2.3)

Bott and Duffin [2] defined the Bott-Duffin inverse of A ∈ Cn×n by A(−1)
L
= PL(APL + In − PL)−1

when APL + In − PL is nonsingular, where L is a subspace of Cn. In [28], the authors showed the weak
group inverse by a special Bott-Duffin inverse. Inspired by that, we use a special Bott-Duffin inverse
of APR(A∗Ak)A∗ to express the gMP inverse of A.
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Theorem 2.7. Let A ∈ Cn×n
k . Then

A⊗ = PR(A∗Ak)A∗(APR(A∗Ak)A∗)
(−1)
R(Ak)

= PR(A∗Ak)A∗PR(Ak)(APR(A∗Ak)A∗PR(Ak) + In − PR(Ak))−1.

Proof. Assume that A is given by (2.2) and L = T k(T k)∗ + T̃ (T̃ )∗, T̃ =
k−1∑
j=0

T jS Nk−1− j.

By (2.2), we get Ak = U
[

T k T̃
O O

]
U∗, then PR(Ak) = Ak(Ak)† = U

[
It O
O O

]
U∗ and

A∗Ak = U
[

T ∗T k T ∗T̃
S ∗T k S ∗T̃

]
U∗. (2.4)

Applying [5, Ch.3 Corollary 2.3] to (2.4), we get

(A∗Ak)† = U
[

(T k)∗L−1(TT ∗ + S S ∗)−1T (T k)∗L−1(TT ∗ + S S ∗)−1S
(T̃ )∗L−1(TT ∗ + S S ∗)−1T (T̃ )∗L−1(TT ∗ + S S ∗)−1S

]
U∗,

which yields

PR(A∗Ak) = U
[

T ∗(TT ∗ + S S ∗)−1T T ∗(TT ∗ + S S ∗)−1S
S ∗(TT ∗ + S S ∗)−1T S ∗(TT ∗ + S S ∗)−1S

]
U∗.

Let M = PR(A∗Ak)A∗PR(Ak)(APR(A∗Ak)A∗PR(Ak) + In − PR(Ak))−1. A straightforward calculation gives that

M = U
[

T ∗ O
S ∗ O

]
U∗U

[
TT ∗ + S S ∗ O

NS ∗ In−t

]−1

U∗

= U
[

T ∗ O
S ∗ O

] [
(TT ∗ + S S ∗)−1 O

−NS ∗(TT ∗ + S S ∗)−1 In−t

]
U∗

= U
[

T ∗(TT ∗ + S S ∗)−1 O
S ∗(TT ∗ + S S ∗)−1 O

]
U∗

= A⊗.

□

Example 2.8. Let

A =


2 0 0
−a 0 −1
−a 0 0


with ind(A) = 2, where a is a real number. By (2.1), the gMP inverse of A is given by

A⊗ = ((A2)∗A)†(A2)∗ =


12a2+32

9a4+49a2+64
−3a3−8a

9a4+49a2+64
−6a3−16a

9a4+49a2+64
0 0 0
4a

9a4+49a2+64
−a2

9a4+49a2+64
−2a2

9a4+49a2+64

 .
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By calculation, we get that

(A∗A2)† =


3a2+8

9a4+49a2+64 0 a
9a4+49a2+64

0 0 0
0 0 0

 ,

PR(A∗A2)A∗PR(A2) =


12a2+32
5a2+16

−3a3−8a
5a2+16

−6a3−16a
5a2+16

0 0 0
4a

5a2+16
−a2

5a2+16
−2a2

5a2+16

 ,

(APR(A∗A2)A∗PR(A2) + I3 − PR(A2))−1 =


9a4+25a2+16
9a4+49a2+64

6a3+12a
9a4+49a2+64

12a3+24a
9a4+49a2+64

12a3+32a
9a4+49a2+64

6a4+41a2+64
9a4+49a2+64

−6a4−16a2

9a4+49a2+64
12a3+24a

9a4+49a2+64
−3a4−6a2

9a4+49a2+64
3a4+37a2+64
9a4+49a2+64

 .
Then it can be verified that PR(A∗A2)A∗(APR(A∗A2)A∗)

(−1)
R(A2) = A⊗.

The following theorem provides new formulae for the gMP inverse A⊗ based on projections X =
PN((Ak)∗A) and Y = PN((Ak)∗),R(AA∗Ak).

Theorem 2.9. Let A ∈ Cn×n
k , X = PN((Ak)∗A) and Y = PN((Ak)∗),R(AA∗Ak). Then for any a, b ∈ C \ {0},

we have

A⊗ = (A∗Ak(Ak)∗A + aX)−1A∗Ak(Ak)∗(In − Y)
= (In − X)A∗Ak(Ak)∗(AA∗Ak(Ak)∗ + bY)−1.

Proof. By Lemma 2.1, it is not difficult to conclude that

(A∗Ak(Ak)∗A + aX)A⊗ = A∗Ak(Ak)∗(In − Y).

Now we only need to show the invertibility of A∗Ak(Ak)∗A + aX. Let (A∗Ak(Ak)∗A + aX)ξ = 0 for
some ξ ∈ Cn. Then A∗Ak(Ak)∗Aξ = −aXξ. By Lemma 2.1, we have

A∗Ak(Ak)∗Aξ = −aXξ ∈ R(A∗Ak(Ak)∗A) ∩ R(X) = R(A∗Ak) ∩ R(A∗Ak)⊥ = {0},

which gives A∗Ak(Ak)∗Aξ = −aXξ = 0. Hence,

ξ ∈ N(A∗Ak(Ak)∗A) ∩ N(X) = N((Ak)∗A) ∩ R(A∗Ak) = {0}.

Thus, ξ = 0 and A∗Ak(Ak)∗A + aX is invertible.
Analogously, it can be verified that AA∗Ak(Ak)∗ + bY is nonsingular and A⊗ = (In −

X)A∗Ak(Ak)∗(AA∗Ak(Ak)∗ + bY)−1. □

Example 2.10. In order to illustrate the representations of Theorem 2.9, let

A =


1 0 0
−i 0 i
1 0 0


AIMS Mathematics Volume 8, Issue 10, 23442–23458.
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with ind(A) = 2, a = −1
5 and b = 2i, where i stands for the imaginary unit. According to (2.1), exact

calculation in Mathematica gives

A⊗ = ((A2)∗A)†(A2)∗ =


1
2 0 1

2
0 0 0
0 0 0

 .
Simple calculation gives

X = PN((A2)∗A) =


0 0 0
0 1 0
0 0 1

 , Y = PN((A2)∗),R(AA∗A2) =


1
2 0 −1

2
1
2 i 1 1

2 i
−1

2 0 1
2

 ,
A∗A2(A2)∗ =


2 0 2
0 0 0
0 0 0

 , (A∗A2(A2)∗A −
1
5

X)−1 =


1
4 0 0
0 −5 0
0 0 −5

 ,
(AA∗A2(A2)∗ + 2iY)−1 =


1
8 −

1
4 i 0 1

8 +
1
4 i

1
4 −

1
8 i −1

2 i 1
4 −

1
8 i

1
8 +

1
4 i 0 1

8 −
1
4 i

 .
Further, it can be verified that Theorem 2.9 is valid in this example.

Inspired by limit and integral expressions of some generalized inverses given in [3, 10, 15, 19, 26,
28–30]. we consider limit and integral representations of the gMP inverse.

Theorem 2.11. Let A ∈ Cn×n
k . Then

(a) A⊗ = lim
λ→0

A∗Ak(λIn + (Ak)∗AA∗Ak)−1(Ak)∗;

(b) A⊗ = lim
λ→0

(λIn + A∗Ak(Ak)∗A)−1A∗Ak(Ak)∗.

Proof. (a). According to [19], recall that

B† = lim
λ→0

B∗(λIn + BB∗)−1
. (2.5)

The result (a) follows by (2.1) and (2.5).
(b). Using Lemma 2.4 and [29, Theorem 2.1], we have

A⊗ = lim
λ→0

(λIn + A∗Ak(Ak)∗A)−1A∗Ak(Ak)∗.

□

Example 2.12. We use the same matrix A as in Example 2.8. Simple calculation gives

A∗A2(λI3 + (A2)∗AA∗A2)−1(A2)∗

=


12a2+32

9a4+49a2+λ+64
−3a3−8a

9a4+49a2+λ+64
−6a3−16a

9a4+49a2+λ+64
0 0 0
4a

9a4+49a2+λ+64
−a2

9a4+49a2+λ+64
−2a2

9a4+49a2+λ+64

 .
After simplification, it follows that lim

λ→0
A∗A2(λI3 + (A2)∗AA∗A2)−1(A2)∗ = A⊗.
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Now, we present several integral representations for the gMP inverse.

Theorem 2.13. Let A ∈ Cn×n
k . Then

(a) A⊗ =
∫ ∞

0
A∗Ak exp(−(Ak)∗AA∗Aku)(Ak)∗ du;

(b) If D ∈ Cn×n satisfies R(D) = R(A∗Ak) and N(D) = N((Ak)∗), then

A⊗ =
∫ ∞

0
exp(−D(DAD)∗DAu)D(DAD)∗D du.

Proof. (a). By [10], it is well-know that

B† =
∫ ∞

0
B∗ exp(−BB∗u) du. (2.6)

Applying (2.1) and (2.6), we obtain

A⊗ = ((Ak)∗A)†(Ak)∗ =
∫ ∞

0
A∗Ak exp(−(Ak)∗AA∗Aku)(Ak)∗ du.

(b). Using [26, Theorem 2.2], we conclude that (b) is satisfied. □

Some representations for generalized inverse A(2)
T ,S

of matrices were given in [4]. For the gMP
inverse we have the following results.

Theorem 2.14. Let A ∈ Cn×n
k , a, b, c, d ∈ C \ {0}. Assume that F and E∗ are full column rank matrices,

which satisfy R(A∗Ak) = R(F) and N((Ak)∗) = N(E). Then

A⊗ = b(aPR(A∗Ak)⊥ + bFEA)−1FE (2.7)
= dFE(cPN((Ak)∗) + dAFE)−1. (2.8)

Proof. We first show that aPR(A∗Ak)⊥ + bFEA is nonsingular, let (aPR(A∗Ak)⊥ + bFEA)x = 0 for some x ∈
Cn. Then aPR(A∗Ak)⊥ x = −bFEAx, we have −FEAx ∈ R(FEA) ⊆ R(F) = R(A∗Ak) and aPR(A∗Ak)⊥ x ∈
R(A∗Ak)⊥, i.e.,

aPR(A∗Ak)⊥ x = −bFEAx ∈ R(A∗Ak)⊥ ∩ R(A∗Ak) = {0}.

Hence PR(A∗Ak)⊥ x = 0 and FEAx = 0. It follows that x ∈ R(A∗Ak). Since F is full column rank matrix,
we get EAx = 0, which gives

x ∈ N(EA) = R(A∗E∗)⊥ = R(A∗Ak)⊥.

Hence x ∈ R(A∗Ak) ∩ R(A∗Ak)⊥ = {0}, so x = 0 and aPR(A∗Ak)⊥ + bFEA is nonsingular. By Lemma 2.1,
we obtain PR(A∗Ak)⊥A⊗ = O and EAA⊗ = E, which imply (2.7).

Similarly, (2.8) can be verified. □

As we know, A⊗ is an outer inverse of A with rang R(A∗Ak) and null space N((Ak)∗). The results of
Theorems 2.2 and 2.4 in [4] are applicable to the gMP inverse.

AIMS Mathematics Volume 8, Issue 10, 23442–23458.
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Corollary 2.15. Let A ∈ Cn×n
k . Let B and C∗ be of full column rank matrices and satisfy

N((Ak)∗) = R(B), R(A∗Ak) = N(C).

Let EB = In − BB†, FC = In −C†C. Then,[
A⊗

O

]
=

[
A∗EBA C∗

C O

]−1 [
A∗EB

O

]
,

[
A⊗ O

]
=
[

FCA∗ O
] [ AFCA∗ B

B∗ O

]−1

.

Corollary 2.16. Let A ∈ Cn×n
k .

(a) Let E and C be of full row rank matrices and satisfy N((Ak)∗) = N(E), R(A∗Ak) = N(C). Then

A⊗ =
[

EA
C

]−1 [
E
O

]
; (2.9)

(b) Let F and B be of full column rank matrices and satisfy N((Ak)∗) = R(B), R(A∗Ak) = R(F).
Then

A⊗ =
[

F O
] [

AF B
]−1
. (2.10)

Example 2.17. Let

A =


2 0 1 1
0 2 0 0
0 0 0 3
0 0 0 0


with ind(A) = 2. Using (2.1), the gMP inverse of A is given by

A⊗ = ((A2)∗A)†(A2)∗ =


1
3 0 0 0
0 1

2 0 0
1
6 0 0 0
1
6 0 0 0

 . (2.11)

Let

B =


0 0
0 0
1 0
0 1

 , F =


2 0
0 1
1 0
1 0

 , C =
[

1 0 −2 0
0 0 −1 1

]
, E =

[
1 0 0 0
0 1 0 0

]
.

In order to verify the representations (2.7) and (2.8), let a = 1
3 , b = 3 + i, c = −3i and d = −2. Simple

calculation gives

(
1
3

PR(A∗A2)⊥ + (3 + i)FEA)−1 =


31
30 −

1
90 i 0 −59

60 −
1

180 i −59
60 −

1
180 i

0 3
20 −

1
20 i 0 0

−59
60 −

1
180 i 0 301

120 −
1

360 i − 59
120 −

1
360 i

−59
60 −

1
180 i 0 − 59

120 −
1

360 i 301
120 −

1
360 i

 ,
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(−3iPN((A2)∗) − 2AFE)−1 =


− 1

12 0 0 0
0 −1

4 0 0
−1

6 i 0 1
3 i 0

0 0 0 1
3 i

 .
Further calculation gives (3+i)(1

3 PR(A∗A2)⊥+(3+i)FEA)−1FE = A⊗ and −2FE(−3iPN((A2)∗)−2AFE)−1 =

A⊗.
In order to verify the representations (2.9) and (2.10), it is necessary to compute

[
EA
C

]−1

=


1
3 0 1

3 −1
3

0 1
2 0 0

1
6 0 −1

3 −
1
6

1
6 0 −1

3
5
6

 ,
[

AF B
]−1
=


1
6 0 0 0
0 1

2 0 0
−1

2 0 1 0
0 0 0 1

 .

Further,
[

EA
C

]−1 [
E
O

]
= A⊗ and

[
F O

] [
AF B

]−1
= A⊗.

For maximal classes of operators and matrices for which the representations of the gMP inverse are
valid, see [3, 22]. Now, we present the maximal classes of matrix X such that X(Ak)∗ coincides with
the gMP inverse of A.

Theorem 2.18. Let A ∈ Cn×n
k be given by (2.2) and r(Ak) = t. The following are equivalent:

(a) A⊗ = X(Ak)∗;
(b) X(Ak)∗A = PR(A∗Ak);
(c) X = ((Ak)∗A)† + Y − YPR((Ak)∗A), where Y ∈ Cn×n is arbitrary;
(d) X is given by

X = U
[

Y1 + (T ∗△−1 − Y1(T k)∗ − Y2(T̃ )∗)L−1T k Y2 + (T ∗△−1 − Y1(T k)∗ − Y2(T̃ )∗)L−1T̃
Y3 + (S ∗△−1 − Y3(T k)∗ − Y4(T̃ )∗)L−1T k Y4 + (S ∗△−1 − Y3(T k)∗ − Y4(T̃ )∗)L−1T̃

]
U∗,

where △ = TT ∗+S S ∗, L = T k(T k)∗+T̃ (T̃ )∗, T̃ =
k−1∑
j=0

T jS Nk−1− j and Y1 ∈ C
t×t, Y2 ∈ C

t×(n−t), Y3 ∈ C
(n−t)×t,

Y4 ∈ C
(n−t)×(n−t) are arbitrary.

Proof. (a)⇒ (b). It follows from (2.1) that X(Ak)∗A = PR(A∗Ak).
(b) ⇒ (c). Obviously, ((Ak)∗A)† satisfies the equation X(Ak)∗A = PR(A∗Ak). Applying [1, Ch.2

Theorem 1] to the above equation, we get the general solution X = ((Ak)∗A)† + Y − YPR((Ak)∗A), where
Y ∈ Cn×n is arbitrary.

(c)⇒ (d). Using (2.2), we have

(Ak)∗A = U
[

(T k)∗T (T k)∗S
(T̃ )∗T (T̃ )∗S

]
U∗. (2.12)

Applying [5, Ch.3 Corollary 2.3] to (2.12), we get

((Ak)∗A)† = U
[

T ∗△−1L−1T k T ∗△−1L−1T̃
S ∗△−1L−1T k S ∗△−1L−1T̃

]
U∗, (2.13)
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where △ = TT ∗ + S S ∗, L = T k(T k)∗ + T̃ (T̃ )∗, T̃ =
k−1∑
j=0

T jS Nk−1− j. Next,

Y = U
[

Y1 Y2

Y3 Y4

]
U∗,

where Y1 ∈ C
t×t, Y2 ∈ C

t×(n−t), Y3 ∈ C
(n−t)×t and Y4 ∈ C

(n−t)×(n−t) are arbitrary. By direct calculation, we
get that

X = U
[

Y1 + (T ∗△−1 − Y1(T k)∗ − Y2(T̃ )∗)L−1T k Y2 + (T ∗△−1 − Y1(T k)∗ − Y2(T̃ )∗)L−1T̃
Y3 + (S ∗△−1 − Y3(T k)∗ − Y4(T̃ )∗)L−1T k Y4 + (S ∗△−1 − Y3(T k)∗ − Y4(T̃ )∗)L−1T̃

]
U∗,

where △ = TT ∗ + S S ∗, L = T k(T k)∗ + T̃ (T̃ )∗, T̃ =
k−1∑
j=0

T jS Nk−1− j and Y1, Y2, Y3, Y4 are arbitrary.

(d)⇒ (a). By computation, we get X(Ak)∗ = A⊗ as in (2.3). □

Remark 2.19. Let A ∈ Cn×n
k be given by (2.2). Using (2.13), further calculations confirm

((Ak)∗A)†(Ak)∗ = A⊗ as in (2.3), which gives another proof of Theorem 2.2.

Using the continuity of the Moore-Penrose inverse given in [21], we develop a necessary and
sufficient condition for the continuity of the gMP inverse.

Lemma 2.20. [21] Let A ∈ Cm×n and Ap ∈ C
m×n, p ∈ N. If Ap → A as p → ∞, then A†p → A† as

p→ ∞ iff there is p0 ∈ N such that r(Ap) = r(A) for p ≥ p0.

Theorem 2.21. Let A ∈ Cn×n and Ap ∈ C
n×n, p ∈ N be a sequence satisfying Ap → A as p →

∞. Then A⊗p → A⊗ as p → ∞ iff there is p0 ∈ N such that r(Al
p) = r(Al) for p ≥ p0 and l =

max{ind(A), ind(Ap), ind(Ap+1), . . .}.

Proof. Suppose that there is p0 ∈ N such that r(Al
p) = r(Al), for p ≥ p0 and l =

max{ind(A), ind(Ap), ind(Ap+1), . . .}. Then

r((Al
p)∗Ap) = r((Al

p)∗) = r(Al
p) = r(Al) = r((Al)∗A),

for p ≥ p0. By Lemma 2.20 and (Al
p)∗Ap → (Al)∗A, it follows that ((Al

p)∗Ap)† → ((Al)∗A)†. Therefore,
using (Al

p)∗ → (Al)∗ and Theorem 2.2,

A⊗p = ((Al
p)∗Ap)†(Al

p)∗ → ((Al)∗A)†(Al)∗ = A⊗.

Conversely, from A⊗p → A⊗ and Ap → A, we have A⊗p Ap → A⊗A. Applying [23, Lemma 9.2.2]
for projectors A⊗p Ap and A⊗A, there exists p0 ∈ N such that r(A⊗p Ap) = r(A⊗A), for p ≥ p0. Let l =
max{ind(A), ind(Ap), ind(Ap+1), . . .}. Applying Lemma 2.1, we have R(A⊗A) = R(A∗Aind(A)) = R(A∗Al)
and R(A⊗p Ap) = R(A∗pAind(Ap)

p ) = R(A∗pAl
p), which yield

r(Al) = r(A∗Al) = r(A⊗A) = r(A⊗p Ap) = r(A∗pAl
p) = r(Al

p),

for p ≥ p0. □
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3. Splitting methods for computing the gMP inverse

Many characterizations of several generalized inverses were investigated in terms of splitting
methods [11, 12, 15, 27]. Corresponding splitting methods for finding the gMP inverse are verified
in this section.

Theorem 3.1. Let A ∈ Cn×n
k . Suppose that (Ak)∗AA∗Ak = H −K,N(Ak) = N(H) and R((Ak)∗) = R(H).

Then
(a) H# exists;
(b) In − H#K is invertible;
(c) A⊗ = A∗Ak(In − H#K)−1H#(Ak)∗.

Proof. (a). Notice that ind(H) = 1 by Cn = R(H) ⊕ N(H) = R((Ak)∗) ⊕ N(Ak).
(b). In order to check that In − H#K is nonsingular, let (In − H#K)x = 0 for some x ∈ Cn. Then

x = H#Kx ∈ R(H#) = R(H) = R((Ak)∗) = R((Ak)∗A)

and

x = H#Kx = H#(H − (Ak)∗AA∗Ak)x = H#Hx − H#(Ak)∗AA∗Akx = x − H#(Ak)∗AA∗Akx.

Hence, we get H#(Ak)∗AA∗Akx = 0, which gives

(Ak)∗AA∗Akx ∈ N(H#) = N(H) = N(A∗Ak) = N(((Ak)∗A)∗) = N(((Ak)∗A)†),

i.e., ((Ak)∗A)†(Ak)∗AA∗Akx = A∗Akx = 0. Thus,

x ∈ R((Ak)∗A) ∩ N(A∗Ak) = R((Ak)∗A) ∩ R((Ak)∗A)⊥ = {0}.

Therefore, In − H#K is invertible.
(c). Since

R(H) = R((Ak)∗A) = R(((Ak)∗AA∗Ak)∗) = R(((Ak)∗AA∗Ak)†),

we get
H#H((Ak)∗AA∗Ak)† = PR(H),N(H)((Ak)∗AA∗Ak)† = ((Ak)∗AA∗Ak)†. (3.1)

Since
N((Ak)∗A((Ak)∗A)†) = N(((Ak)∗A)∗) = N(A∗Ak) = N(H) = N(H#),

we have
H#(Ak)∗A((Ak)∗A)† = H#. (3.2)

The equalities K = H − (Ak)∗AA∗Ak, (3.1) and (3.2) give

(In − H#K)((Ak)∗AA∗Ak)†

= ((Ak)∗AA∗Ak)† − H#H((Ak)∗AA∗Ak)† + H#(Ak)∗AA∗Ak((Ak)∗AA∗Ak)†

= H#(Ak)∗AA∗Ak((Ak)∗AA∗Ak)†

= H#(Ak)∗A((Ak)∗A)† = H#.
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Hence, (In − H#K)−1H# = ((Ak)∗AA∗Ak)†. Therefore, by Theorem 2.2, we have

A∗Ak(In − H#K)−1H#(Ak)∗ = A∗Ak((Ak)∗AA∗Ak)†(Ak)∗ = A⊗.

□

Example 3.2. Let A and A⊗ as in Example 2.17. To verify Theorem 3.1, let

H =


4 0 2 5
0 1 0 0
2 0 1 5

2
5 0 5

2
25
4

 .
Further calculation gives that the matrices

H# = H(H3)†H =


64

2025 0 32
2025

16
405

0 1 0 0
32

2025 0 16
2025

8
405

16
405 0 8

405
4

81

 , A∗A2 =


8 0 4 10
0 4 0 0
4 0 2 5
4 0 2 5

 ,

K =


−92 0 −46 −115

0 −63 0 0
−46 0 −23 −115

2
−115 0 −115

2 −575
4

 , (I4 − H#K)−1 =


89
135 0 − 23

135 −23
54

0 1
64 0 0

− 23
135 0 247

270 − 23
108

−23
54 0 − 23

108
101
216

 .
Final verification of Theorem 3.1 confirms that the expression A∗A2(I4−H#K)−1H#(A2)∗ coincides with
A⊗ given in (2.11).

By Lemma 2.4, we know that A⊗ is an outer inverse of A with rang R(A∗Ak(Ak)∗) and null space
N(A∗Ak(Ak)∗). Let G = A∗Ak(Ak)∗. The following result follows from Corollary 2.4 given in [11].

Corollary 3.3. Let A ∈ Cn×n
k . Suppose that A∗Ak(Ak)∗A = H − K, N((Ak)∗A) = N(H) and R(A∗Ak) =

R(H). Then
(a) H# exists;
(b) In − H#K is invertible;
(c) A⊗ = (In − H#K)−1H#A∗Ak(Ak)∗.

Example 3.4. Consider A and A⊗ as in Example 2.17. Let

H =


2 0 1 1
0 1 0 0
1 0 1

2
1
2

1 0 1
2

1
2

 .
We calculate the matrices

K =


−178 0 −89 −89

0 −63 0 0
−89 0 −89

2 −89
2

−89 0 −89
2 −89

2

 , (I4 − H#K)−1 =


46

135 0 − 89
270 −

89
270

0 1
64 0 0

− 89
270 0 451

540 − 89
540

− 89
270 0 − 89

540
451
540

 .
Further verification gives (I4 − H#K)−1H#A∗A2(A2)∗ = A⊗.
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4. SMS algorithm for finding the gMP inverse

In this section, we modify successive matrix squaring algorithm from [20] and define an efficient
algorithm for computing the gMP inverse.

By Theorem 2.2 and B∗ = B∗BB†, we have A∗Ak(Ak)∗AA⊗ = A∗Ak(Ak)∗A((Ak)∗A)†(Ak)∗ = A∗Ak(Ak)∗

which implies

A⊗ = A⊗ − β(A∗Ak(Ak)∗AA⊗ − A∗Ak(Ak)∗) = (In − βA∗Ak(Ak)∗A)A⊗ + βA∗Ak(Ak)∗.

Let
Q = βA∗Ak(Ak)∗, P = In − βA∗Ak(Ak)∗A, β > 0.

The iterative scheme for computing the gMP inverse A⊗ will be given by [20]

X1 = Q = βA∗Ak(Ak)∗, Xm+1 = PXm + Q, m ∈ N.

Considering

T =
[

P Q
O In

]
, T m =

 Pm
m−1∑
i=0

PiQ

O In

 ,
we have Xm is top right block of T m, i.e., Xm =

m−1∑
i=0

PiQ. Notice that

Tm = T 2m
=

 P2m 2m−1∑
i=0

PiQ

O In

 .
Applying [20], we obtain the next result. The norm used in Theorem 4.1 is an arbitrary matrix norm.

Theorem 4.1. Let A ∈ Cn×n
k and ϵ > 0. The sequence of approximations

X2m =

2m−1∑
i=0

(In − βA∗Ak(Ak)∗A)iβA∗Ak(Ak)∗,

determined by SMS algorithm

T0 = T, Ti+1 = T 2
i , i = 0, 1, ...,m − 1,

converges in the matrix norm ∥ · ∥ to the gMP inverse A⊗, if β is a fixed real number such that

max
1≤i≤s
| 1 − βλi |< 1,

where r(AA∗Ak(Ak)∗) = s, λi(i = 1, 2, ..., s) are the nonzero eigenvalues of AA∗Ak(Ak)∗ and

ρ(In − βAA∗Ak(Ak)∗) ≤ ∥In − βAA∗Ak(Ak)∗∥ ≤ ρ(In − βAA∗Ak(Ak)∗) + ϵ,

where ρ(In − βAA∗Ak(Ak)∗) is the spectral radius of In − βAA∗Ak(Ak)∗.
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Example 4.2. In this example, we reuse the following matrix from [20]:

A =



1 −1 0 0 0 0
−1 1 0 0 0 0
−1 −1 1 −1 0 0
−1 −1 −1 1 0 0
−1 −1 −1 0 2 −1
−1 −1 0 −1 −1 2


.

Simple verification gives ind(A) = 2. According to (2.1), exact calculation in Mathematica gives

A⊗ = ((A2)∗A)†(A2)∗ =



1
4 −1

4 0 0 −1
6 −1

6
−1

4
1
4 0 0 −1

6 −1
6

0 0 1
4 −1

4 − 1
12 −

1
12

0 0 −1
4

1
4 − 1

12 −
1

12
0 0 1

12 − 1
12

1
4 − 1

12
0 0 − 1

12
1
12 − 1

12
1
4


.

The eigenvalues of AA∗A2(A2)∗ are nonnegative and contained in the set {12, 40.1, 64, 1163.9}, which
ensures the applicability of successive matrix squaring algorithm. Using the rule (2.22) from [20], we
get β = 1.7716 × 10−5. According to Theorem 4.1 , the matrices Q and P are given as follows:

Q = βA∗A2(A2)∗, P = I6 − βA∗A2(A2)∗A, β = 1.7716 × 10−5.

Notice that A⊗ can be approximated by the upper right block of the 16th approximation (T 2)16 of the
SMS method, which is given by

(T 2)16 =



0.1667 0.1667 −0.1667 −0.1667 0.1667 0.1667
0.1667 0.1667 −0.1667 −0.1667 0.1667 0.1667
−0.1667 −0.1667 0.4167 0.4167 0.0833 0.0833
−0.1667 −0.1667 0.4167 0.4167 0.0833 0.0833

0.1667 0.1667 0.0833 0.0833 0.4167 0.4167
0.1667 0.1667 0.0833 0.0833 0.4167 0.4167

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0.2500 −0.2500 −0.0000 0.0000 −0.1667 −0.1667
−0.2500 0.2500 −0.0000 0.0000 −0.1667 −0.1667

0.0000 −0.0000 0.2500 −0.2500 −0.0833 −0.0833
0.0000 −0.0000 −0.2500 0.2500 −0.0833 −0.0833
−0.0000 0.0000 0.0833 −0.0833 0.2500 −0.0833
−0.0000 0.0000 −0.0833 0.0833 −0.0833 0.2500

1.0000 0 0 0 0 0
0 1.0000 0 0 0 0
0 0 1.0000 0 0 0
0 0 0 1.0000 0 0
0 0 0 0 1.0000 0
0 0 0 0 0 1.0000


,
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which gives

A⊗ ≈ X =



0.2500 −0.2500 −0.0000 0.0000 −0.1667 −0.1667
−0.2500 0.2500 −0.0000 0.0000 −0.1667 −0.1667
0.0000 −0.0000 0.2500 −0.2500 −0.0833 −0.0833
0.0000 −0.0000 −0.2500 0.2500 −0.0833 −0.0833
−0.0000 0.0000 0.0833 −0.0833 0.2500 −0.0833
−0.0000 0.0000 −0.0833 0.0833 −0.0833 0.2500


.

Also, the SMS method yields r(A⊗) = 4 and ∥A⊗ − X∥ = 1.5127 × 10−12 is the norm of the error matrix.

5. Conclusions

Our main goal is to present representations and computations of the gMP inverse. Limit and integral
representations, as well as representations using the Moore-Penrose inverse, Bott-Duffin inverse and
projectors are given for the gMP inverse. Continuity of the gMP inverse is studied. Splitting methods
and the SMS algorithm for calculating the gMP inverse are obtained. Some numerical examples are
provided to illustrate the results obtained.

We believe that investigation related to the gMP inverse will attract attention, and we describe
perspectives for further research:

(1). Considering the gMP inverse of tensors.
(2). Extending the gMP inverse to rectangular matrices and rings.
(3). Studying relation of the gMP inverse and some partial order.
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