This paper investigates some well-known inequalities for $ q $-$ h $-integrals. These include Hölder, Ostrowski, Grüss and Opial type inequalities. Refinement of the Hadamard inequality for $ q $-$ h $-integrals is also established by applying the definition of strongly convex functions. From main theorems, $ q $-Hölder, $ q $-Ostrowski and $ q $-Grüss inequalities can be obtained in particular cases.
Citation: Da Shi, Ghulam Farid, Abd Elmotaleb A. M. A. Elamin, Wajida Akram, Abdullah A. Alahmari, B. A. Younis. Generalizations of some $ q $-integral inequalities of Hölder, Ostrowski and Grüss type[J]. AIMS Mathematics, 2023, 8(10): 23459-23471. doi: 10.3934/math.20231192
This paper investigates some well-known inequalities for $ q $-$ h $-integrals. These include Hölder, Ostrowski, Grüss and Opial type inequalities. Refinement of the Hadamard inequality for $ q $-$ h $-integrals is also established by applying the definition of strongly convex functions. From main theorems, $ q $-Hölder, $ q $-Ostrowski and $ q $-Grüss inequalities can be obtained in particular cases.
[1] | Y. Zhang, T. S. Du, H. Wang, Y. J. Shen, Different types of quantum integral inequalities via $(\alpha, m)$-convexity, J. Inequal. Appl., 2018 (2018), 1–24. https://doi.org/10.1186/s13660-018-1860-2 doi: 10.1186/s13660-018-1860-2 |
[2] | B. Yu, C. Y. Luo, T. S. Du, On the refinements of some important inequalities via $(p, q)$-calculus and their applications, J. Inequal. Appl., 2021 (2021), 1–26. https://doi.org/10.1186/s13660-021-02617-8 doi: 10.1186/s13660-021-02617-8 |
[3] | H. Gauchman, Integral inequalities in $q$-calculus, Comput. Math. Appl., 47 (2004), 281–300. https://doi.org/10.1016/S0898-1221(04)90025-9 doi: 10.1016/S0898-1221(04)90025-9 |
[4] | J. Tariboon, S. K. Ntouyas, Quantum integral inequalities on finite intervals, J. Inequal. Appl., 2014 (2014), 1–13. https://doi.org/10.1186/1029-242X-2014-121 doi: 10.1186/1029-242X-2014-121 |
[5] | M. A. Ali, Y. M. Chu, H. Budak, A. Akkurt, H. Yildrim, M. A. Zahid, Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables, Adv. Diff. Equat., 2021 (2021), 1–26. https://doi.org/10.1186/s13662-020-03195-7 doi: 10.1186/s13662-020-03195-7 |
[6] | W. Sun, Q. Liu, Hadamard type local fractional integral inequalities for generalized harmonically convex functions and applications, Math. Method. Appl. Sci., 43 (2020), 5776–5787. https://doi.org/10.1002/mma.6319 doi: 10.1002/mma.6319 |
[7] | T. Zhou, Z. Yuan, T. Du, On the fractional integral inclusions having exponential kernels for interval-valued convex functions, Math. Sci., 17 (2023), 107–120. https://doi.org/10.1007/s40096-021-00445-x doi: 10.1007/s40096-021-00445-x |
[8] | W. Sun, On generalization of some inequalities for generalized harmonically convex functions via local fractional integrals, Quaest. Math., 42 (2019), 1159–1183. https://doi.org/10.2989/16073606.2018.1509242 doi: 10.2989/16073606.2018.1509242 |
[9] | D. Shi, G. Farid, B. Younis, H. A. Zinadah, M. Anwar, A unified representation of $q$- and $h$-integrals and consequences in inequalities, Preprints.org, 2023, 2023051029. https://doi.org/10.20944/preprints202305.1029.v1 doi: 10.20944/preprints202305.1029.v1 |
[10] | G. A. Anastassiou, Intelligent mathematics: Computational analysis, Heidelberg: Springer, 2011. |
[11] | W. Sudsutad, S. K. Ntouyas, J. Tariboon, Quantum integral inequalities for convex functions, J. Math. Inequal., 9 (2015), 781–793. https://doi.org/10.7153/jmi-09-64 doi: 10.7153/jmi-09-64 |
[12] | A. Florea, C. P. Niculescu, A note on Ostrowski's inequality, J. Inequal. Appl., 2005 (2005), 1–10. https://doi.org/10.1155/JIA.2005.459 doi: 10.1155/JIA.2005.459 |
[13] | V. Kac, P. Cheung, Quantum calculus, Michigan: Edwards Brothers, 2000. |
[14] | B. G. Pachpatte, Analytic inequalities, Paris: Atlantis Press, 2012. https://doi.org/10.2991/978-94-91216-44-2 |
[15] | P. Cerone, S. S. Dragomir, Mathematical inequalities, New York: CRC Press, 2011. https://doi.org/10.1201/b10483 |
[16] | N. Alp, C. C. Bilişik, M. Z. Sarıkaya, On $q$-Opial type inequality for quantum integral, Filomat, 33 (2019), 4175–4184. https://doi.org/10.2298/FIL1913175A doi: 10.2298/FIL1913175A |
[17] | G. Farid, H. Yasmeen, C. Y. Jung, S. H. Shim, G. Ha, Refinements and generalizations of some fractional integral inequalities via strongly convex functions, Math. Prob. Eng., 2021 (2021), 1–18. https://doi.org/10.1155/2021/6667226 doi: 10.1155/2021/6667226 |
[18] | D. Chen, M. Anwar, G. Farid, W. Bibi, Inequalities for $q$-$h$-integrals via $h$-convex and $m$-convex functions, Symmetry, 15 (2023), 666. https://doi.org/10.3390/sym15030666 doi: 10.3390/sym15030666 |