AIMS Mathematics, 8(10): 23459-23471.
DOI: 10.3934/math.20231192
AIMS Mathematics Received: 25 April 2023

Revised: 06 June 2023

Accepted: 15 June 2023
http://www.aimspress.com/journal/Math Published: 26 July 2023

Research article

Generalizations of some g-integral inequalities of Holder, Ostrowski and
Griiss type

Da Shi!, Ghulam Farid>*, Abd Elmotaleb A. M. A. Elamin’, Wajida Akram?, Abdullah A.
Alahmari* and B. A. Younis’

' School of Computer Science, Chengdu University, Chengdu, China

2 Department of Mathematics, COMSATS University Islamabad, Attock Campus, Pakistan
3 Department of Mathematics, College of Science and Humanity, Prince Sattam bin Abdulaziz
University, Sulail, Saudi Arabia

Department of Mathematical Sciences, Faculty of Applied Science, Umm Al-Qura University,
Makkah 21955, Saudi Arabia

5 King Khalid University, College of Arts & Sciences, Saudi Arabia

* Correspondence: Email: faridphdsms@outlook.com; Tel: +92-3334426360.
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1. Introduction

Integral inequalities are important tools to estimate different kinds of quantities under some
constraints. For example, Holder inequality estimates the cumulative aggregate of product of two
functions (vectors) to product of independent aggregates of functions (vectors). The Ostrowski
inequality estimates the value of function f(x) to its integral mean provided f is differentiable and
its derivative is a bounded function. The well known Griiss inequality estimates the integral mean of
product of two functions to the product of their integral means.

Currently, inequalities of g-integrals are studied very frequently by researchers. This article deals
with some quantum estimates of integral inequalities involving quantum calculus. In particular, for
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recent articles closely related to the topic of this paper we refer the readers to [1-5]. We prove Holder,
Ostrowski and Griiss type inequalities for g-h-integrals. These inequalities will provide generalizations
of several g-integral and classical integral inequalities.

In the following we recall g-derivative, g-integral and g-derivative/g-integral on a finite
interval [a, b].

Definition 1. [13] The following expression

dof(x) _ flgx) — f(x)
dyx  (g-Dx

D,f(x) = (L.1)

is called the g-derivative of a continuous function f where q € (0, 1).

Definition 2. [4] Assume that f : J — R is a continuous function, x € J := [a,b] and 0 < g < 1.
Then, the expression

S = flgx+ (1 - qa)
(1-g)(x-a) ’

is called the g-derivative on J of function f at x. Also, ,D,f(a) = lim ,D,f(x).

aqu(x) =

xX+a (1.2)

Definition 3. [/3] Let J := [a,b] and g: J — R be a continuous function. The g-definite integral is
given by the following formula:

f g(0) udyt =(1-¢q)(x—a) Z q"¢(q"x+ (1 -q") a), (1.3)
a n=0

forxeJ, qge(0,1).

By using definition of g-definite integral it is possible to generalize the theory and concepts based on
Riemann integrals. On the other hand, fractional integral operators also generalize Riemann integrals
and are used in extending concepts of ordinary calculus. For example, classical integral inequalities
have been published for fractional and local fractional integral operators, see [6—8]. In the field of
mathematical inequalities, several integral inequalities such as Hadamard, Ostrowski and many other
inequalities have been published for g-definite integrals. In [4], authors proved the Holder, Ostrowski
and Griiss type inequalities for these integrals which are stated in the upcoming theorems.

Theorem 1. Assume that f, ¢ : J — R are two continuous functions and x € J, 0 < g < 1, p; > 1 such
that pil + piz = 1. Then, the upcoming inequality holds for g-integrals:

f F O ld,t < ( f FOP adqr)” ( f £ () | adqr)”. (1.4)

Theorem 2. Assume that [ : J — R is g-differentiable function and ,D, f is continuous on [a, b] where
0 < g < 1. Then, the upcoming inequality holds for g-integrals:
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1 b
‘f(x) - m f f(t)adqt (15)

2

(Bg—Da+(1+q)b
2 (= FEEEEY P r6g -1
<||aqu||<b—a>[1+qq[ ‘ ] +( q"+6q )]

b-a 8qg(1+q)
Theorem 3. Assume that g,& : J — R be L, L, Lipschitzian continuous functions on [a, b] such that

lg@) =g W) | < Lilu—v], [ -&M[< Ly |u—v| (1.6)

forall u,v € [a,b]. Then, the upcoming inequality holds for g-integrals:

1 b 1 b 1 b
‘EJ; g &) adqt—(mfa g adqt)(mj; £(1) adqt)

gL\L, (b — a)*
T (l+g+g) 1+

(1.7)

Next, we recall g-h-derivative and g-h-integral. These combine g-derivative/integral and h-
derivative/integral in a single definition.

Definition 4. [9] Assume that f: I — R be a continuous function. For 0 < g < 1 and h € R, the g-h
derivative of f is given by the formula;

wdof O _ flqx+h) - f)

C,D,f(x) =
wDyf () wdgx (g- Dx+qh

(1.8)

For h = 0, we have CoD,f (x) = D, f (x).

Definition 5. [9] Let 0 < g < 1 and function f: I := [a,b] — R be a continuous function. Then, the
left and right g-h integrals on I are defined by

0= [ S0 iy (19)
= -q)(x—a)+gh) ) q'f(d"a+(1-g")x+ng'h), x>a,
n=0
b
I, f(x) = f f(t) wdt (1.10)

= (=) (b= +gh) D q'f(q"x+ (1 —g")b+ng'h), x<b.

n=0

We will also prove a refinement of the Hadamard g-h-integral inequality for convex functions given
in [18]. For this the following definitions will be utilized.
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Definition 6. Suppose a real valued function f be defined on real line’s interval 1. Then, function f is
said to be convex on I if the upcoming inequality holds:

fa+(A-0b)<tf(a)+1 -1 f(), (1.11)
forte[0,1],a b€l

Definition 7. [17] Suppose that M is a convex subset of X, (X, ||.||) be a normed space. A function
f: M c X — Rwill be called strongly convex function with modulus C > 0 if

fu+A-v)<tfw+A-0fW)-Ct(1-1)|v- u||2 (1.12)
holds for allu,ve M C X, t € [0, 1].

For C = 0, (1.12) reduces to (1.11), i.e., the definition of convex function is obtained. In the
forthcoming section we prove the Holder, Ostrowski, Griiss and Hadamard inequalities for g-h-
integrals. We also give their special cases for g-integrals and connect them with their classical versions.

2. Main results

First, we give the Holder inequality for g-h-integrals in the theorem stated below.
Theorem 4. Let J=[a,b], g € (0,1), py > 1 with pi] + piz = 1. Also, let f and & be two continuous
functions defined on J. Then, the upcoming inequality holds for q-h-integrals:
T 1
I5,(f O lEDD < (I5lF O 1) (1506 @) 172)= . 2.1)
Proof. The following equation holds for left g-h-integrals:

L5 0fOIEDD = (1 =) (x—a)+gh) Y q'If (g"a+ (1= g") x + ng"h)|
n=0
x1§(q"a+ (1 -q") x+nq"h)]|
= (1 -q)(x-a)+qh) Y If (g"a+ (1 - ") x+ng"h) | (")
n=0

X |&(q"a + (1 = g") x + ng"h)| (¢")7= .

By applying the Holder inequality in discrete case on the right hand side of above inequality we have
the following inequality:

1

00 "

5, 0fOIE@D < (1= ¢q)(x—a) + gh) [Z lf (¢"a+ (1 -4")x+nqg"n)|"q"
n=0

x| D € (g"a+ (1= q") x+ng' W) q”] .

n=0

By using the definition of g-h-integral on the right hand side of the above inequality one can have the
inequality (2.1). O
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Remark 1. i) If h = 0 then we get the g-Holder inequality stated in Theorem 1.

ii) If g — 1 and h = 0 then inequality (2.1) becomes the Holder integral inequality as follows:

b % b 5
f If(X)I"dx] [ f If(x)lqu] .

b
f [f(0E)] <

(2.2)

In the next theorem we give Ostrowski type inequality for K-Lipschitz function on a finite interval.

Theorem 5. Suppose that f be a g-h-integerable function. If f is K-Lipschitz function on J := [a, b].

Then, we have the following inequality:

(I-q@b-a)+qh

1 b
f(X) - m‘[a‘ f(t) hdqt

(I-q)(b-a)
K({(1-¢q)(b—-a)+qh)
< (b-a)(1-¢% ((|x|+|b|)q+|x|+|a|+|h|(1 _qz)S)’

where S = Y2 ¢*'n.

Proof. From the definition of g-h-integral one can have

(I-q®- a)+qh
(I-g) (b~

1 b
:|b—f<f<x> F0) wdyt

1 b
£ - _aff(t) iyt

stflf(x) £yt

It is given that f is K-Lipschitz function, one can have

1 b K [
m[l If () = f @ hdqlﬁm]; lx — 1] ndyt.

By using definition of g-h-integral and properties of absolute value function we have

b b
f v — 1] sdyt < f (x] + 1d]) 4t

SCRUCEREIT)Y ¢'(1nl+1aa+ (1 = )b + ng"h)

S((l q)(b a)+qh)(

(+ 16D g + il +lal +141 (1 - ¢°) S ).

Therefore, from (2.5) we obtain

K((1-q)(b-a)+qh)
b-a)(1-q%

X (At + g + b+ lal 4141 (1 = %) S ).

1 b
mfa lf () = f (O] ndgt <

The required inequality is obtained by combining (2.4) and (2.7).
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Here we prove the g-h-Korkine identity as follows:

Lemma 1. Suppose that f, & be two continuous functions on J and q € (0, 1). The following identity
for g-integrals holds true:

1 b b
! f f (F) = £ ONEE =0 ndyx ndyy 2.8)

1—q)(b—a)+qh
=X a)+61)ff(x)§(x) iy - (f f hdx)(f £ 1d,3).

Proof. The following equation holds for g-h-integrals:

b b
f f (F ) = FON) E ) = £0)) rdyx ndyy
b b
_ f f FWEW = FOEG) = FOIED + L 0)EG) adyx ndyy
(=@ G-w+an Y a'f@a+ O =g)b+ng'h)
n=0 .
x£(q'a+ (1= q"b -+ ng'h) f ooy
0 b
S —b-ayrah) Y f (a1 - )b+ nq"h)f £(3) adyy
n=0 a
0 b
(=Gt ah) Y et A=) [ FO) idy
n=0 a

+ (1= (b-a)+qh) Y q"f(q"a+ (1 —g")b+ng"h)

n=0

21—
-f(qa+(1—q>b+nq"h)f = 2024

—2( f £ hdqx) ( f £ hdqx).

From which one deduces (2.8). |

) (b —a) +qh)
1_

ff( )& (x) pdgx

It can be noted that for 2 = 0, the Korkine’s identity for g-integrals is obtained. Furthermore,
classical Korkine’s identity is obtained by setting ¢ — 1 along with 2 = 0. The forthcoming theorem
is established by using the Korkine’s identity for g-h-integrals.

Theorem 6. Suppose that f, ¢ : J — R are Ly, L, Lipschitzian continuous functions on [a, b] such
that

FG)=fWMI<Lilx=yl,lEx) =& < Ly [x =yl (2.9)
forall x,y € [a,b]. Then, we have the inequality
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ao - |, e o (e [ ra) e

o q (b - a)
((1 -q) (b - a)+th &), d, x)

(1+q+¢*)(1+gq)
+(h2U+2th—2hT(b—a)—h2S2(1 q) - 2hs(“1+qb))(1— ))

< L1L2(

where

S = inqz,T = inq3,U: inz 3
n=0 n=0 n=0

Proof. First, we estimate the right hand side of the Korkine’s identity under given conditions for
functions f and &. Then, the following inequality can be obtained:

b b b b
f f (F @) = f O E — €0 sdyxidyy| < i f f =y wdpidy (211

b b
= Llef f (x2 - 2xy + yz) wdyX pdyy

b b 2
=211, [((1 —9 ib_—qa) *qh x? wdgXx — (f X hdqx) )

The following equation holds for g-h-integrals:

’ Pl [ a) + ghy (@ (1 +q) + 02q (1 + ) + 2abg?
fa l-q ( 1+q)(1+q+4q%)

+ (U +2bhS = 2hT (b= @)) (1 - q)).

Hence, we obtain
2

((1-9) ib_ qa)+qh) 2, dqx_( f xhdqx) (2.12)

_ (((1 —61)(1?—61)+61h))2( q(b—a)
l—gq (l1+g+¢)(1+q)

+ (th +2bhS — 21T (b — a) — B2S2(1 — q) — 2hS (“liqu)) (1- q)).

Thus, from (2.11) and (2.12)

1 b b
: f f F () = £ ON € = EOD adyindyy

(-9 (b-a)+ qh))z( q(b—a)
l—g¢ (L+g+¢*)(1+q)

+ (th + 2BAS — 2KT (b — @) — K25(1 — q) — 208 &+ qu)) (1- q)).

< L1L2(

1+
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By applying the Korkine’s identity we get the required inequality. O

Remark 2. i) Ifg — 1 and h = 0, then (2.10) becomes the classical Griiss-CebySev integral inequality
as follows [14, 15]:

1 b 1 b 1 b
— | f(x)f(x)dx—(mfa f(x)dx)(mfaax)dx)

_ Ll (b - a)2.
12
ii) If h = 0 in (2.10) then we get Theorem 3.

Next, we prove an Opial type inequality provided the fundamental theorem of calculus for g-h-
integrals holds.

(2.13)

Theorem 7. Let p (t) be a non-negative and continuous function on [0, k] and x (t) € CV [0, k] be such
that x (0) = x (k) = 0 and x(t) > 0 in (0, k). Then, the following inequality holds:

k
fo PO [{x @) +x(qt)} 1Dyx (8)| pdyt (2.14)

k k 3k )
< (1_ f P2 (@) hdqt) f |1 Dgx (] adyt.
=4 Jo 0

Proof. Let us choose y (f) and z (¢) functions as follows:

y(t)=f
0

h
2(1) = f |1Dyx (5)| 4dys.

1Dgx (5)| nd,s, (2.15)

For ¢ € [0, k], it follows that:

lx (1) = f $Dyx () ndys| < f 1Dy ()| wdys =y (@), (2.16)
0 0

k k
lx (1)) = f #Dyx (s) pd,s| < f |1Dyx ()| wdys = z(),

qt qt
@l =| [ 10 sdys| < [ D] a5 =y 0, @.17)

t

k k
|x (g1)| = f #Dgx (5) ndys| < f |1 Dyx ()| wdys = z(2).
q qt

From above, we obtain that |x (7)| < y (¢) and |x (¢)] < z(¢). Thus, we get

() < L0 +20 ”(t) f Dyx ()] 4dlys. (2.18)

x (g < 29D 204D (q’)”(qt) f 4D, x(5)| 4dys. (2.19)
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By using (2.18), we have

k 2 1 2
Lﬂp@h@|ﬂ¢siﬁpm@pﬂumh@r (2.20)

1 k s k )
= é_l(f p @) hdqt) (f hdqt) (f p () |sDyx (s)| )
0 0 0
k k k )
< 10=q (j(; p (1) hdqf) (‘f; |thx (t)| hdqt).

Similarly, by using (2.19) we have

k k k k
f'<0umm pdyt < (jﬁpmh@ﬂhthﬂaﬁh@J. (2.21)
0 41 -g)\Jo 0

Now, by using Cauchy-Schwarz inequality and (2.20) one can have

hdqt

k
JﬁP@hUM@MU)

P(Mﬂﬂhda([th®|ma

% k 2
( p HORY t) (f |thX(t)|2 hdqf)) (f(; |thx(t)|2 hdqt)

IA

(]
-

1
SE( " f p* (1) 4d t) ( f iDx 0| 1d t) (2.22)
Similarly,
k
f p () |x(qt) wDyx (©)| ndyt (2.23)
0
1 k k ) % k 5
= d D dgt|.
2ﬁkwﬁpmh4(ﬁhﬂwhﬂ
By adding (2.22) and (2.23), one can get the required inequality (2.14). O

In the last theorem we give the Hadamard type inequality for strongly convex functions. Here, we
will frequently use by = (x —a)h, hy = (b — ) h,S = Yoo 'n, T = Y0 ¢?'n, U = Y00, ¢o'n.

Theorem 8. Ler f: I C R — R* be strongly convex function and g € (0, 1). Additionally, let a, b € I,
a < b. Then, the following inequalities must hold:

a—+ x
(55 )_(1_@Cxcﬂ+whjﬂf®hdt (2.24)

o 1+g+29(1-¢)
Clx-a) (4(1+q)(1+q+q2)

+(IPU + s —20T) (1 - q))

AIMS Mathematics Volume 8, Issue 10, 23459-23471.
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< (f#(ﬂ (T + 0 -ons)+ f@(i ~a-ans)

q2

A+q9)(1+qg+4¢*)

_C(x_a)z( + (1= q) (2hT — hS —th)),

provided f is left q-h-integrable and symmetric function at 3%, x € (a, b) and

x+b
f( 2 )S(l—q)(x a)+qh1ff(t)h2dl

2 1+¢*+2¢(1-¢q)
—Co-x (4(1+q)(1+q+q2)

< ﬂ(ﬂb)( (1= hs)+ f ) (L= (1= hs)

<=
q2
I+ +g+4¢?)

+ (U + kS = 20T) (1 - q))

—C(b—x)z( +(1-g)(2hT — hS —hQU)),

provided f is right g-h-integrable and symmetric function at =~ ”b , X € (a, D).

Proof. From definition of strongly convex function the following inequality is yielded:

2
f(a;x)s %(f(ta+(1 —hx) 4 flx+ (1 —t)a))—C(x—a)z(t— %) ,

t€[0,1].

This leads to the following inequality for left g-A-integrals:

a+x 1-
(%5 )<(1_ Sz ff(ta+(l—t)x)hdt

1
+§f0f(tx+(1—t)a) hdqt—C(x—a)sz (t—i) hdqt).

Function f is symmetric about *. Therefore,

a+x
f( > )< q)+thf(a+t(x a)) pdgt

-C(x- a)f(t——) hdt

By definition, one can have
flt 1)? dt_(l—q)+qh(1+q3+2q(l—q)
o U2 T g W+ g(l+g+ )
+ (U +hS = 20T) (1 - q)).

(2.25)

(2.26)

(2.27)

(2.28)
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Then, by using (2.28) in (2.27) it takes the following form:

a—+ x
f( : )<( q)+thf(a+t(x @) nd,t

1+¢*+29(1-¢q)
41 +q)(1+q+q)
The following equation holds for left g-h-integrals:

(1—-¢q)+qgh
(1-q (x- a)+qh1ff(t) hldl‘

(- >+qh>2qf<qa+<1— )x+nq"h1)—ff(a+(x a)1) wdt.

—C(x—a)z( + (U +hS = 20T) (1 —q)).

The following estimation of the last term in (2.30) holds for strongly convex function f:

1 1 1
ff(a+(x—a)t) hdqtgf(x)fthdqt+f(a)f(1—t) wdlyt
0 0 0

1
—C(x—a)zf t(1=1) ,dgt.
0

From (2.29)—(2.31) the following inequality can be constituted:

a+x (1-¢g)+qgh "
f( > )S(l—q)(x—anthfaf(’) mdgt

1+q3+2q(1—q)
41 +q)(1+q+4q?)

1 1 1
sf(x)f l‘hdql‘+f(a)f (1-1 hdqt—C(x—a)zf t(1—1) pdgt.
0 0 0

_C(x_a)Z( +(h2U+hS—2hT)(1—q))

The g-h-integrals on the right hand side of the above inequality can be evaluated as follows:

1
(l—q)+qh( q
thd,t = +(1—61)h5),
fo " l+g

l-¢g
: (- +qgh( q
fo(l—z)hdqt_ - (1+q—(1—q)hS),
and
! (A —q) +qh) q
Jy 0= ES R i

+(1-g) (20T = hS - h2U)).

By using (2.33)—(2.35) in the inequality (2.32), the required inequality (2.24) is obtained.

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

Similarly, in (2.29) by using definition of right g-h-integral one can obtain the required

inequality (2.25).

O

Remark 3. By setting C = 0, the inequalities (2.24) and (2.25) hold for left and right q-h-integrals for

convex functions.
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3. Conclusions

We proved several well known inequalities for so-called ¢-h-integrals. These inequalities
simultaneously hold for g- and A-integrals implicitly. Results for g-integrals are deduced which have
been proven explicitly by different researchers in published articles. Also, we proved a refinement of g-
h-Hadamard inequality for convex functions via strongly convex functions. This article may motivates
the researchers to utilize g-h-integrals/derivatives in their future work.
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