Citation: Chunhong Li, Dandan Yang, Chuanzhi Bai. Some Opial type inequalities in (p, q)-calculus[J]. AIMS Mathematics, 2020, 5(6): 5893-5902. doi: 10.3934/math.2020377
[1] | Suriyakamol Thongjob, Kamsing Nonlaopon, Sortiris K. Ntouyas . Some (p, q)-Hardy type inequalities for (p, q)-integrable functions. AIMS Mathematics, 2021, 6(1): 77-89. doi: 10.3934/math.2021006 |
[2] | Chunyan Luo, Tingsong Du, Muhammad Uzair Awan, Yao Zhang . Estimation-type results with respect to the parameterized (p, q)-integral inequalities. AIMS Mathematics, 2020, 5(1): 568-586. doi: 10.3934/math.2020038 |
[3] | Chang-Jian Zhao, Wing-Sum Cheung . On Opial-Traple type inequalities for β-partial derivatives. AIMS Mathematics, 2020, 5(6): 5716-5723. doi: 10.3934/math.2020366 |
[4] | Da Shi, Ghulam Farid, Abd Elmotaleb A. M. A. Elamin, Wajida Akram, Abdullah A. Alahmari, B. A. Younis . Generalizations of some $ q $-integral inequalities of Hölder, Ostrowski and Grüss type. AIMS Mathematics, 2023, 8(10): 23459-23471. doi: 10.3934/math.20231192 |
[5] | Muhammad Amer Latif, Mehmet Kunt, Sever Silvestru Dragomir, İmdat İşcan . Post-quantum trapezoid type inequalities. AIMS Mathematics, 2020, 5(4): 4011-4026. doi: 10.3934/math.2020258 |
[6] | Pinhong Long, Huo Tang, Wenshuai Wang . Functional inequalities for several classes of q-starlike and q-convex type analytic and multivalent functions using a generalized Bernardi integral operator. AIMS Mathematics, 2021, 6(2): 1191-1208. doi: 10.3934/math.2021073 |
[7] | Waseem Ahmad Khan, Kottakkaran Sooppy Nisar, Dumitru Baleanu . A note on (p, q)-analogue type of Fubini numbers and polynomials. AIMS Mathematics, 2020, 5(3): 2743-2757. doi: 10.3934/math.2020177 |
[8] | Zhongbin Zheng, Jinwu Fang, Wentao Cheng, Zhidong Guo, Xiaoling Zhou . Approximation properties of modified (p, q)-Szász-Mirakyan-Kantorovich operators. AIMS Mathematics, 2020, 5(5): 4959-4973. doi: 10.3934/math.2020317 |
[9] | Xiaoli Zhang, Shahid Khan, Saqib Hussain, Huo Tang, Zahid Shareef . New subclass of q-starlike functions associated with generalized conic domain. AIMS Mathematics, 2020, 5(5): 4830-4848. doi: 10.3934/math.2020308 |
[10] | Muhammad Sabil Ur Rehman, Qazi Zahoor Ahmad, H. M. Srivastava, Nazar Khan, Maslina Darus, Bilal Khan . Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions. AIMS Mathematics, 2021, 6(2): 1110-1125. doi: 10.3934/math.2021067 |
In 1960, Opial [1] presented an inequality involving integral of a function and its derivative as follows
Theorem 1.1. Let x∈C1[0,h] be such that x(t)>0 in (0,h). Then, the following inequalities hold:
i) If x(0)=x(h)=0, then
∫h0|x(t)x′(t)|dt≤h4∫h0|x′(t)|2dt. | (1.1) |
ii) If x(0)=0, then
∫h0|x(t)x′(t)|dt≤h2∫h0|x′(t)|2dt. | (1.2) |
In (1.1), the constant h4 is the best possible.
Since then, the study of generalizations, extensions and discretizations for inequalities (1.1) and (1.2) of Opial type inequalities has grown into a substantial field, with many important applications in theory of differential equations, approximations and probability, among others. For more details, we cite the readers to [2,3,4,5,6,7] and the references therein.
Recently, Mirkovi et.al [8] established a new integral inequality of the q-Opial type as follows:
Theorem 1.2. Let f∈C1[0,1] be q-decreasing function with f(bq0)=0. Then, for any p≥0,
∫ba|Dqf(x)||f(x)|pdqx≤(b−a)p∫ba|Dqf(x)|p+1dqx. | (1.3) |
In [9], Alp et al. gave the following q-Opial type inequality for quantum integral :
Theorem 1.3. Let x(t)∈C1[0,h] be such that x(0)=x(h)=0, and x(t)>0 in (0,h). Then, the following inequality holds :
∫h0|(x(t)+x(qt))Dqx(t)|dqt≤h1+q∫h0|Dqx(t)|2dqt. | (1.4) |
The (p,q)-calculus is known as two parameter quantum calculus, a generalization of q-calculus, whose applications play important roles in physics, chemistry, orthogonal polynomials and number theory [10,11]. In [12], Mursaleen et al. applied (p,q)-calculus in approximation theory and investigated first (p,q)-analogue of Bernstein operators. Recently, Sadjang in [13] studied the (p,q)-derivative, the (p,q)-integration, and obtained some of their properties and the fundamental theorem of (p,q)-calculus. About the recent results of (p,q)-calculus, please see [14,15,16,17,18].
Inspired by the above mentioned works [8,9,13], in this paper, we will establish some (p,q)-Opial type inequalities by using (p,q)-calculus and analysis technique. If p=1 and q→1−, then all the results we have obtained in this paper reduce to the classical cases.
In what follows, p,q are two real numbers satisfying 0<q<p≤1, and (p,q)-bracket is defined as
[n]p,q=pn−qnp−q=pn−1+qpn−2+⋯+qn−1,n∈N. |
Definition 2.1. ([13]) The (p,q)-derivative of the function f is defined as
Dp,qf(x)=f(px)−f(qx)(p−q)x,x≠0, |
and (Dp,qf)(0)=limx→0Dp,qf(x)=f′(0), privided that f is differentiable at 0.
Definition 2.2. ([13]) Let f be an arbitrary function and a be a positive real number, the (p,q)-integral of f from 0 to a is defined by
∫a0f(x)dp,qx=(p−q)a∞∑i=0qipi+1f(qipi+1a). |
Also for two nonnegative numbers such that a<b, we have
∫baf(x)dp,qx=∫b0f(x)dp,qx−∫a0f(x)dp,qx. |
Lemma 2.1. ([13]) The (p,q)-derivative fulfills the following product rules
Dp,q(f(x)g(x))=f(px)Dp,qg(x)+g(qx)Dp,qf(x), |
Dp,q(f(x)g(x))=g(px)Dp,qf(x)+f(qx)Dp,qg(x). |
Theorem 2.2. ([13]) (Fundamental theorem of (p,q)-calculus). If F(x) is a (p,q)-antiderivative of f(x) and F(x) is continuous at x=0, we have
∫baf(x)dp,qx=F(b)−F(a), |
where 0≤a<b≤∞.
Theorem 3.1. Let f∈C1[0,h] be such that f(t)>0 in (0,h). If f(0)=0 and m∈N. Then, the following inequality holds:
∫h0|m∑j=0fm−j(px)fj(qx)||Dp,qf(x)|dp,qx≤hm∫h0|Dp,qf(x)|m+1dp,qx. | (3.1) |
Proof. Choosing g(x) as
g(x)=∫x0|Dp,qf(t)|dp,qt, | (3.2) |
such that
|Dp,qf(x)|=Dp,qg(x), | (3.3) |
and for x∈[0,h], we have
|f(x)|=|∫x0Dp,qf(t)dp,qt|≤∫x0|Dp,qf(t)|dp,qt=g(x), | (3.4) |
|f(px)|=|∫px0Dp,qf(t)dp,qt|≤∫px0|Dp,qf(t)|dp,qt=g(px), | (3.5) |
and
|f(qx)|=|∫qx0Dp,qf(t)dp,qt|≤∫qx0|Dp,qf(t)|dp,qt=g(qx). | (3.6) |
By Lemma 2.1, we can obtain that
Dp,qfm+1(x)=m∑j=0fm−j(px)fj(qx)Dp,qf(x). | (3.7) |
Thus, by (3.2)–(3.7), it follows that
∫h0|m∑j=0fm−j(px)fj(qx)Dp,qf(x)|dp,qx≤∫h0m∑j=0|f(px)|m−j|f(qx)|j|Dp,qf(x)|dp,qx≤∫h0m∑j=0gm−j(px)gj(qx)Dp,qg(x)dp,qx=∫h0Dp,qgm+1(x)dp,qx=gm+1(h). | (3.8) |
By using the H¨older's inequality and (3.8) with (3.2) for (p,q)-integral with indices m+1 and m+1m, we obtain
∫h0|m∑j=0fm−j(px)fj(qx)Dp,qf(x)|dp,qx≤gm+1(h)=[∫h0|Dp,qf(x)|dp,qx]m+1≤[(∫h0dp,qx)mm+1(∫h0|Dp,qf(x)|m+1dp,qx)1m+1]m+1=hm∫h0|Dp,qf(x)|m+1dp,qx, |
which proves the theorem.
Remark 3.1. If p=1 and m=1, then Theorem 3.1 reduces to Theorem 3.3 in [9]. If p=1 and m=α, then Theorem 3.1 reduces to Theorem 3.9 in [9]. Moreover, if p=1, m=1, and q→1−, then (3.1) reduces to (1.2) in Theorem 1.1.
Theorem 3.2. Let f∈C1[0,h] be such that f(t)>0 in (0,h). If f(0)=f(h)=0 and m∈N. Then, the following inequality holds :
∫h0|m∑j=0fm−j(px)fj(qx)||Dp,qf(x)|dp,qx≤(h1+q)m∫h0|Dp,qf(x)|m+1dp,qx. | (3.9) |
Proof. Let g(x) be as in (3.2) and w(x) be as follows
w(x)=∫hx|Dp,qf(t)|dp,qt. | (3.10) |
Then, we obtain by the condition f(h)=0 that
|Dp,qf(x)|=−Dp,qw(x), | (3.11) |
and for x∈[0,h], we have
|f(x)|=|∫hxDp,qf(t)dp,qt|≤∫hx|Dp,qf(t)|dp,qt=w(x), | (3.12) |
|f(px)|=|∫hpxDp,qf(t)dp,qt|≤∫hpx|Dp,qf(t)|dp,qt=w(px), | (3.13) |
and
|f(qx)|=|∫hqxDp,qf(t)dp,qt|≤∫hqx|Dp,qf(t)|dp,qt=w(qx). | (3.14) |
From (3.8), one has
∫h1+q0|m∑j=0fm−j(px)fj(qx)||Dp,qf(x)|dp,qx≤gm+1(h1+q). | (3.15) |
Similarly, by (3.10)–(3.14), we can get that
∫hh1+q|m∑j=0fm−j(px)fj(qx)||Dp,qf(x)|dp,qx≤−∫hh1+qm∑j=0wm−j(px)wj(qx)Dp,qw(x)dp,qx=wm+1(h1+q). | (3.16) |
Adding (3.15) to (3.16), we obtain
∫h0|m∑j=0fm−j(px)fj(qx)|Dp,qf(x)dp,qx≤gm+1(h1+q)+wm+1(h1+q). | (3.17) |
Using the H¨older's inequality with indices m+1 and m+1m, we can write that
gm+1(h1+q)=[∫h1+q0|Dp,qf(t)|dp,qt]m+1≤[(∫h1+q0dp,qt)mm+1(∫h1+q0|Dp,qf(t)|m+1dp,qt)1m+1]m+1=(h1+q)m∫hp+q0|Dp,qf(t)|m+1dp,qt. | (3.18) |
Similarly, we obtain
wm+1(h1+q)=[∫hh1+q|Dp,qf(t)|dp,qt]m+1≤[(∫hh1+qdp,qt)mm+1(∫hh1+q|Dp,qf(t)|m+1dp,qt)1m+1]m+1=(hq1+q)m∫hhp+q|Dp,qf(t)|m+1dp,qt≤(h1+q)m∫hhp+q|Dp,qf(t)|m+1dp,qt. | (3.19) |
Therefore, (3.17)–(3.19) imply that (3.9) holds.
Remark 3.2. If p=1 and m=1, then Theorem 3.2 reduces to Theorem 3.1 in [9]. In Theorem 3.2 if we take p=1, m=1, and q→1−, we recapture the inequality (1.1).
Theorem 3.3. Let m>0. Assume that μ(t) is a nonnegative and continuous function on [0,h], m∈N, and f∈C1[0,1] with f(0)=0. Then, the following inequality holds:
∫h0μ(x)|f(x)|m|Dp,qf(x)|dp,qx≤hm2m+1(∫h0μ(x)m+1mdp,qx)mm+1∫h0|Dp,qf(x)|m+1dp,qx. | (3.20) |
Proof. Using the H¨older's inequality for (p,q)-integral with indices m+1m and m+1, we obtain
∫h0μ(x)|f(x)|m|Dp,qf(x)|dp,qx≤(∫h0μ(x)m+1m|f(x)|m+1dp,qx)mm+1⋅(∫h0|Dp,qf(x)|m+1dp,qx)1m+1. | (3.21) |
By using (3.4) and from the H¨older's inequality for (p,q)-integral with indices m+1m and m+1, we get
∫h0μ(x)m+1m|f(x)|m+1dp,qx≤∫h0μ(x)m+1m[∫h0|Dp,qf(t)|dp,qt]m+1dp,qx≤∫h0μ(x)m+1mdp,qx⋅[(∫h0dp,qt)mm+1(∫h0|Dp,qf(t)|m+1dp,qt)1m+1]m+1=hm∫h0μ(x)m+1mdp,qx∫h0|Dp,qf(x)|m+1dp,qx. | (3.22) |
Substituting (3.22) into (3.21), we have
∫h0μ(t)|f(x)|m|Dp,qf(x)|dp,qx≤hm2m+1(∫h0μ(x)m+1mdp,qx)mm+1∫h0|Dp,qf(x)|m+1dp,qx. |
This completes the proof.
Theorem 3.4. If f and g are absolutely continuous functions on [0,h], and f(0)=g(0)=0, then
∫h0[f(px)Dp,qg(x)+g(qx)Dp,qf(x)]dp,qx≤h2∫h0[(Dp,qf(x))2+(Dp,qg(x))2]dp,qx. | (3.23) |
Proof. As in (3.4), we have
|f(x)|≤∫x0|Dp,qf(t)|dp,qt,|g(x)|≤∫x0|Dp,qg(t)|dp,qt. | (3.24) |
By using Lemma 2.1, Theorem 2.2, (3.24) and Cauchy inequality, we get
∫h0[f(px)Dp,qg(x)+g(qx)Dp,qf(x)]dp,qx |
=∫h0Dp,q(f(x)g(x))dp,qx=f(h)g(h)−f(0)g(0) |
=f(h)g(h)≤|f(h)||g(h)|≤∫h0|Dp,qf(x)|dp,qx⋅∫h0|Dp,qg(x)|dp,qx |
≤12[(∫h0|Dp,qf(x)|dp,qx)2+(∫h0|Dp,qg(x)|dp,qx)2] |
≤12[∫h0dp,qx⋅∫h0|Dp,qf(x)|2dp,qx+∫h0dp,qx⋅∫h0|Dp,qg(x)|2dp,qx] |
=h2∫h0[(Dp,qf(x))2+(Dp,qg(x))2]dp,qx. |
Theorem 3.5. Let m,r>0. Assume that f and g are absolutely continuous functions on [0,h], f(0)=g(0)=0, f(h)=g(h)=0, and f(t),g(t)>0 in (0,h). Then
∫h0|f(x)|m|g(x)|rdp,qx≤(h2)m+rm+r(m∫h0|Dp,qf(x)|m+rdp,qx+r∫h0|Dp,qg(x)|m+rdp,qx). | (3.25) |
Proof. Let
y(x)=∫x0|Dp,qf(t)|dp,qt,z(x)=∫hx|Dp,qf(t)|dp,qt,t∈[0,h]. | (3.26) |
Then, we have
|Dp,qf(x)|=Dp,qy(x)=−Dp,qz(x),|f(x)|=|∫x0Dp,qf(t)dp,qt|≤∫x0|Dp,qf(t)|dp,qt=y(x), | (3.27) |
and
|f(x)|=|∫hxDp,qf(t)dp,qt|≤∫hx|Dp,qf(t)|dp,qt=z(x). | (3.28) |
By (3.26)–(3.28), we obtain
|f(x)|≤y(x)+z(x)2=12∫h0|Dp,qf(t)|dp,qt. | (3.29) |
Similarly, we have
|g(x)|≤12∫h0|Dp,qg(t)|dp,qt. | (3.30) |
On the other hand, the following elementary inequality in [8] holds :
mAm+r+rBm+r−(m+r)AmBr≥0,A,B≥0,m,r>0. | (3.31) |
From (3.29)–(3.31), we get
|f(x)|m|g(x)|r≤(12)m+rm+r[m(∫h0|Dp,qf(t)|dp,qt)m+r+r(∫h0|Dp,qg(t)|dp,qt)m+r]. | (3.32) |
By using H¨older's inequality on the right side of (3.32) with indices m+rm+r−1, m+r, we obtain
|f(x)|m|g(x)|r≤(12)m+rm+r[mhm+r−1∫h0|Dp,qf(t)|m+rdp,qt+rhm+r−1∫h0|Dp,qg(t)|m+rdp,qt]. | (3.33) |
Integrating (3.33) on [0,h], we have
∫h0|f(x)|m|g(x)|rdp,qx≤(h2)m+rm+r(m∫h0|Dp,qf(t)|m+rdp,qt+r∫h0|Dp,qg(t)|m+rdp,qt), |
and the proof is completed.
Remark 3.3. If m=r>0 and f(x)=g(x), then the inequality (3.25) reduces to the following (p,q)-Wirtinger inequality:
∫h0|f(x)|2mdp,qx≤(h2)2m∫h0|Dp,qf(x)|2mdp,qx. |
In the following, we will give an example to illustrate our main result.
Example 4.1. Let p=23, q=12 and m=5. Set μ(t)=t, it is clear that μ(t) is a nonnegative and continuous function on [0,π2]. Set h=π2, and f(x)=sinx, then f∈C1[0,1] with f(0)=0. Thus, by Theorem 3.3, we have
∫π20x|sinx|5|D23,12sinx|d23,12x≤(π2)256(∫π20x65d23,12x)56∫π20|D23,12sinx|6d23,12x. |
It is known that (p,q)-calculus is a generalization of q-calculus. In this paper, we have established 5 new kinds of general Opial type integral inequalities in (p,q)-calculus. The methods we used to establish our results are quite simple and in virtue of some basic observations and applications of some fundamental inequalities and analysis technique. First, we investigated the Opial inequalities in (p,q)-calculus involving one function and its (p,q) derivative. Furthermore, Opial inequalities in (p,q)-calculus involving two functions and two functions with their (p,q) derivatives are given. We also discussed several particular cases. Our results are (p,q)-generalizations of Opial-type integral inequalities and (p,q)-Wirtinger inequality. An example is given to illustrate the effectiveness of our main result.
The authors thanks anonymous referees for their remarkable comments, suggestions which help to improve this paper. This work is supported by Natural Science Foundation of China (11571136).
The authors declare that there are no conflicts of interest.
[1] |
Z. Opial, Sur une inegalite, Ann. Pol. Math., 8 (1960), 29-32. doi: 10.4064/ap-8-1-29-32
![]() |
[2] | W. S. Cheung, Some generalized Opial-type inequalities, J. Math. Anal. Appl., 162 (1991), 317- 321. |
[3] |
M. Z. Sarikaya, H. Budak, New inequalities of Opial Type for conformable fractional integrals, Turk. J. Math., 41 (2017), 1164-1173. doi: 10.3906/mat-1606-91
![]() |
[4] | H. L. Keng, On an inequality of Opial, Scientia Sinica, 14 (1965), 789-790. |
[5] |
B. G. Pachpatte, On Opial-type integral inequalities, J. Math. Anal. Appl., 120 (1986), 547-556. doi: 10.1016/0022-247X(86)90176-9
![]() |
[6] | B. G. Pachpatte, A note on some new Opial type integral inequalities, Octogan Math. Mag., 7 (1999), 80-84. |
[7] |
S. H. Saker, M. D. Abdou, I. Kubiaczyk, Opial and Polya type inequalities via convexity, Fasciculi Mathematici, 60 (2018), 145-159. doi: 10.1515/fascmath-2018-0009
![]() |
[8] |
T. Z. Mirković, S. B. Tričković, M. S. Stanković, Opial inequality in q-calculus, J. Inequal. Appl., 2018 (2018), 1-8. doi: 10.1186/s13660-017-1594-6
![]() |
[9] |
N. Alp, C. C. Bilisik, M. Z. Sarikaya, On q-Opial type inequality for quantum integral, Filomat, 33 (2019), 4175-4184. doi: 10.2298/FIL1913175A
![]() |
[10] |
R. Chakrabarti, R. Jagannathan, A (p, q)-oscillator realization of two-parameter quantum algebras, J. Phys. A: Math. Gen., 24 (1991), 711-718. doi: 10.1088/0305-4470/24/13/002
![]() |
[11] |
I. M. Burban, A. U. Klimyk, (P, Q)-Differentiation, (P, Q) integration, and (P, Q)-hypergeometric functions related to quantum groups, Integr. Transf. Spec. F., 2 (1994), 15-36. doi: 10.1080/10652469408819035
![]() |
[12] | M. Mursaleen, K. J. Ansari, A. Khan, Erratum to "On (p, q)-analogue of Bernstein Operators" [Appl. Math. Comput. 266 (2015) 874-882], Appl. Math. Comput., 278 (2016), 70-71. |
[13] |
P. N. Sadjang, On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas, Results Math., 73 (2018), 1-21. doi: 10.1007/s00025-018-0773-1
![]() |
[14] |
M. Nasiruzzaman, A. Mukheimer, M. Mursaleen, Some Opial-type integral inequalities via (p, q)- calculus, J. Inequal. Appl., 2019 (2019), 1-11. doi: 10.1186/s13660-019-1955-4
![]() |
[15] | M. N. Hounkonnou, J. D. B. Kyemba, R(p, q)-calculus: differentiation and integration, SUT J. Math., 49 (2013), 145-167. |
[16] |
M. Mursaleen, M. Nasiruzzaman, A. Khan, et al. Some approximation results on Bleimann-ButzerHahn operators defined by (p, q)-integers, Filomat, 30 (2016), 639-648. doi: 10.2298/FIL1603639M
![]() |
[17] |
N. Rao, A. Wafi, Bivariate-Schurer-Stancu operators based on (p, q)-integers, Filomat, 32 (2018), 1251-1258. doi: 10.2298/FIL1804251R
![]() |
[18] |
M. Mursaleen, M. Nasiruzzaman, K. J. Ansari, et al. Generalized (p, q)-Bleimann-Butzer-Hahn operators and some approximation results, J. Inequal. Appl., 2017 (2017), 1-14. doi: 10.1186/s13660-016-1272-0
![]() |
1. | Julalak Prabseang, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas, Refinements of Hermite–Hadamard Inequalities for Continuous Convex Functions via (p,q)-Calculus, 2021, 9, 2227-7390, 446, 10.3390/math9040446 | |
2. | Ammara Nosheen, Anum Saba, Khuram Ali Khan, Michael Kikomba Kahungu, Ewa Pawluszewicz, q,h-Opial-Type Inequalities via Hahn Operators, 2022, 2022, 1607-887X, 1, 10.1155/2022/2650126 | |
3. | Suriyakamol Thongjob, Kamsing Nonlaopon, Jessada Tariboon, Sortiris K. Ntouyas, Generalizations of some integral inequalities related to Hardy type integral inequalities via $(p,q)$-calculus, 2021, 2021, 1029-242X, 10.1186/s13660-021-02641-8 | |
4. | Mohammed Muniru Iddrisu, Some New Integral Inequalities for Convex Functions in (p,q)-Calculus, 2022, 2581-8147, 237, 10.34198/ejms.9222.237247 | |
5. | Zhao Guo, Lei Ren, Solving elliptic Schrödinger systems with control constraints, 2021, 11, 1664-2368, 10.1007/s13324-021-00601-5 | |
6. | Suriyakamol Thongjob, Kamsing Nonlaopon, Sortiris K. Ntouyas, Some (p, q)-Hardy type inequalities for (p, q)-integrable functions, 2021, 6, 2473-6988, 77, 10.3934/math.2021006 | |
7. | José Oscar González-Cervantes, Juan Bory-Reyes, Irene Sabadini, A Borel–Pompeiu formula in a (q,q′)-model of quaternionic analysis, 2025, 66, 0022-2488, 10.1063/5.0196814 |