Citation: Muhammad Amer Latif, Mehmet Kunt, Sever Silvestru Dragomir, İmdat İşcan. Post-quantum trapezoid type inequalities[J]. AIMS Mathematics, 2020, 5(4): 4011-4026. doi: 10.3934/math.2020258
[1] | M. Alomari, M. Darus, S. S. Dragomir, Inequalities of Hermite-Hadamard's type for functions whose derivatives absolute values are quasi-convex, RGMIA Res. Rep. Coll., 12 (2009), 1-11. |
[2] | N. Alp, M. Z. Sarıkaya, M. Kunt, et al. q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ. Sci., 30 (2018), 193-203. doi: 10.1016/j.jksus.2016.09.007 |
[3] | N. Alp, M. Z. Sarıkaya, A new definition and properties of quantum integral which calls q-integral, Konuralp J. Math., 5 (2017), 146-159. |
[4] | A. G. Azpetitia, Convex functions and the Hadamard inequality, Rev. Colombiana Mat., 28 (1994), 7-12. |
[5] | J. D. Bukweli-Kyemba, M. N. Hounkonnou, Quantum deformed algebras: Coherent states and special functions, 2013, arXiv:1301.0116v1. |
[6] | S. S. Dragomir, R. P. Agarwal, Two inequalities for diferentiable mappings and applications to special means fo real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91-95. doi: 10.1016/S0893-9659(98)00086-X |
[7] | T. Ernst, A Comprehensive Treatment of q-Calculus, Springer, Basel, 2012. |
[8] | H. Gauchman, Integral inequalities in q-calculus, Comput. Math. Appl., 47 (2004), 281-300. doi: 10.1016/S0898-1221(04)90025-9 |
[9] | D. A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, Annals of University of Craiova, Math. Comp. Sci. Ser., 34 (2007), 82-87. |
[10] | R. Jagannathan, K. S, Rao, Tow-parameter quantum algebras, twin-basic numbers, and associated generalized hypergeometric series, 2006, arXiv:math/0602613v. |
[11] | F. H. Jackson, On a q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193-203. |
[12] | M. Kunt, İ. İşcan, N. Alp, et al. (p, q)-Hermite-Hadamard inequalities and (p, q)-estimates for midpoint type inequalities via convex and quasi-convex functions, RACSAM, 112 (2018), 969-992. |
[13] | M. Kunt, İ. İşcan, Erratum: Quantum integral inequalities for convex functions, 2016. |
[14] | M. Kunt, İ. İşcan, Erratum: Some quantum estimates for Hermite-Hadamard inequalities, 2016. |
[15] | V. Kac, P. Cheung, Quantum Calculus, Springer, 2001. |
[16] | M. A. Noor, K. I. Noor, M. U. Awan, Some quantum estimates for Hermite-Hadamard inequalities, Appl. Math. Comput., 251 (2015), 675-679. |
[17] | M. A. Noor, K. I. Noor, M. U. Awan, Some quantum integral inequalities via preinvex functions, Appl. Math. Comput., 269 (2015), 242-251. |
[18] | C. E. M. Pearce, J. Pečarić, Inequalities for diferentiable mappings with application to special means and quadrature formulae, Appl. Math. Lett., 13 (2000), 51-55. doi: 10.1016/S0893-9659(99)00164-0 |
[19] | A. W. Roberts, D. E. Varberg, Convex functions, Academic Press, New York, 1973. |
[20] | P. N. Sadjang, On the fundamental theorem of (p, q)-calculus and some (p, q)-Taylor formulas, 2013, arXiv:1309.3934v1. |
[21] | W. Sudsutad, S. K. Ntouyas, J. Tariboon, Quantum integral inequalities for convex functions, J. Math. Inequal., 9 (2015), 781-793. doi: 10.7153/jmi-09-64 |
[22] | M. Tunç, E. Göv, (p, q)-Integral inequalities, RGMIA Res. Rep. Coll., 19 (2016), 1-13. |
[23] | M. Tunç, E. Göv, Some integral inequalities via (p, q)-calculus on finite intervals, RGMIA Res. Rep. Coll., 19 (2016), 1-12. |
[24] | M. Tunç, E. Göv, S. Balgeçti, Simpson type quantum integral inequalities for convex functions, Miskolc Math. Notes, 19 (2018), 649-664. doi: 10.18514/MMN.2018.1661 |
[25] | J. Tariboon, S. K. Ntouyas, Quantum integral inequalities on finite intervals, J. Inequal. Appl., 121 (2014), 1-13. |
[26] | J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ., 282 (2013), 1-19. |
[27] | L. Yang, R. Yang, Some new Hermite-Hadamard type inequalities for h-convex functions via quantum integral on finite intervals, J. Math. Comput. Sci., 18 (2018), 74-86. doi: 10.22436/jmcs.018.01.08 |
[28] | Y. Zhang, T. S. Du, H. Wang, et al. Different types of quantum integral inequalities via (α, m)- convexity, J. Inequal. Appl., 264 (2018), 1-24. |
[29] | H. Zhuang, W. Liu, J.Park, Some quantum estimates of Hermite-Hadamard inequalities for quasiconvex functions, Mathematics, 7 (2019), 1-18. doi: 10.3390/math7020152 |