Citation: Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid. Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity[J]. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386
[1] | X. Yang, G. Farid, K. Mahreen, et al. On an integral and consequent fractional integral operators via generalized convexity, AIMS Math., to appear. |
[2] | X. Qiang, G. Farid, J. Pečarić, et al. Generalized fractional integral inequalities for exponentially (s, m)-convex functions, J. Inequal. Appl., 2020 (2020), 70. |
[3] | N. Mehreen, M. Anwar, Hermite-Hadamard type inequalities for exponentially p-convex functions and exponentially s-convex functions in the second sense with applications, J. Inequal. Appl., 2019 (2019), 92. |
[4] | M. U. Awan, M. A. Noor, K. I. Noor, Hermite-Hadamard inequalities for exponentially convex functions, Appl. Math. Inf. Sci., 12 (2018), 405-409. doi: 10.18576/amis/120215 |
[5] | G. Farid, A. U. Rehman, Q. U. Ain, k-fractional integral inequalities of Hadamard type for (h−m)- convex functions, Comput. Methods Differ. Equ., 8 (2020), 119-140. |
[6] | M. E. Özdemir, A. O. Akdemri, E. Set, On (h − m)-convexity and Hadamard-type inequalities, Transylv. J. Math. Mech., 8 (2016), 51-58. |
[7] | V. G. Mihesan, A generalization of the convexity, Seminar on Functional Equations, Approx. and Convex, Cluj-Napoca, Romania, 1993. |
[8] | N. Efthekhari, Some remarks on (s, m)-convexity in the second sense, J. Math. Ineq., 8 (2014), 489-495. |
[9] | H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequ. Math. 48 (1994), 100-111. doi: 10.1007/BF01837981 |
[10] | G. H. Toader, Some generalizations of the convexity, Proc. Colloq. Approx. Optim. Cluj-Naploca (Romania), (1984), 329-338. |
[11] | S. Varosanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303-311. doi: 10.1016/j.jmaa.2006.02.086 |
[12] | J. Hadamard, E$\mathop t\limits^{'}$ude sur les pude sur les proprie$\mathop t\limits^{'}$eś des fonctions entiŕes et en particulier deúne fonction consideré per riemann, J. Math. Pures Appl., (1893), 171-216. |
[13] | G. Abbas, G. Farid, Hadamard and Fejér-Hadamard type inequalities for harmonically convex functions via generalized fractional integrals, J. Anal., 25 (2017), 107-119. doi: 10.1007/s41478-017-0032-y |
[14] | F. Chen, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity, Chin. J. Math., 2014 (2014), 1-7. |
[15] | H. Chen, U. N. Katugampola, Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274-1291. doi: 10.1016/j.jmaa.2016.09.018 |
[16] | S. S. Dragomir, I. Gomm, Some Hermite-Hadamard type inequalities for functions whose exponentials are convex, Stud. Univ. Babes-Bolyai Math., 60 (2015), 527-534. |
[17] | G. Farid, Hadamard and Fejér-Hadamard inequalities for generalized fractional integral involving special functions, Konuralp J. Math., 4 (2016), 108-113. |
[18] | G. Farid, A Treatment of the Hadamard inequality due to m-convexity via generalized fractional integral, J. Fract. Calc. Appl., 9 (2018), 8-14. |
[19] | G. Farid, G. Abbas, Generalizations of some fractional integral inequalities for m-convex functions via generalized Mittag-Leffler function, Studia Univ. Babes-Bolyai, Math., 63 (2018), 23-35. doi: 10.24193/subbmath.2018.1.02 |
[20] | G. Farid, A. U. Rehman, B. Tariq, On Hadamard-type inequalities for m-convex functions via Riemann-Liouville fractional integrals, Studia Univ. Babes-Bolyai, Math., 62 (2017), 141-150. doi: 10.24193/subbmath.2017.2.01 |
[21] | G. Farid, A. U. Rehman, S. Mehmood, Hadamard and Fejér-Hadamard type integral inequalities for harmonically convex functions via an extended generalized Mittag-Leffler function, J. Math. Comput. Sci., 8 (2018), 630-643. |
[22] | G. Farid, K. A. Khan, N. Latif, et al. General fractional integral inequalities for convex and m-convex functions via an extended generalized Mittag-Leffler function, J. Inequal. Appl., 2018 (2018), 243. |
[23] | İ. İşcan, Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals, Stud. Univ. Babeş-Bolyai Math., 60 (2015), 355-366. |
[24] | S. M. Kang, G. Farid, W. Nazeer, et al. (h − m)-convex functions and associated fractional Hadamard and Fejér-Hadamard inequalities via an extended generalized Mittag-Leffler function, J. Inequal. Appl., 2019 (2019), 255. |
[25] | S. M. Kang, G. Farid, W. Nazeer, et al. Hadamard and Fejér-Hadamard inequalities for extended generalized fractional integrals involving special functions, J. Inequal. Appl., 2018 (2018), 119. |
[26] | S. Mehmood, G. Farid, K. A. Khan, et al. New Hadamard and Fejér-Hadamard fractional inequalities for exponentially m-convex function, Eng. Appl. Sci. Lett., 3 (2020), 45-55. doi: 10.30538/psrp-easl2020.0034 |
[27] | S. Mehmood, G. Farid, K. A. Khan, et al. New fractional Hadamard and Fejér-Hadamard inequalities associated with exponentially (h − m)-convex function, Eng. Appl. Sci. Lett., 3 (2020), 9-18. |
[28] | S. Mehmood, G. Farid, Fractional Hadamard and Fejér-Hadamard inequalities for exponentially m-convex function, Stud. Univ. Babeş-Bolyai Math., to appear. |
[29] | M. Z. Sarikaya, E. Set, H. Yaldiz, et al. Hermite-Hadamard inequalities for fractional integrals and related fractional inequalities, J. Math. Comput. Model., 57 (2013), 2403-2407. doi: 10.1016/j.mcm.2011.12.048 |
[30] | M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17 (2016), 1049-1059. |
[31] | M. Andrić, G. Farid, J. Pečarić, A further extension of Mittag-Leffler function, Fract. Calc. Appl. Anal., 21 (2018), 1377-1395. doi: 10.1515/fca-2018-0072 |
[32] | G. Farid, A unified integral operator and further its consequences, Open J. Math. Anal., 4 (2020), 1-7. doi: 10.30538/psrp-oma2020.0047 |
[33] | T. O. Salim, A. W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with integral calculus, J. Frac. Calc. Appl., 3 (2012), 1-13. |
[34] | G. Rahman, D. Baleanu, M. A. Qurashi, et al. The extended Mittag-Leffler function via fractional calculus, J. Nonlinear Sci. Appl., 10 (2017), 4244-4253. doi: 10.22436/jnsa.010.08.19 |
[35] | H. M. Srivastava, Z. Tomovski, Fractional calculus with an integral operator containing generalized Mittag-Leffler function in the kernal, Appl. Math. Comput., 211 (2009), 198-210. |
[36] | T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7-15. |