Research article

Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity

  • Received: 20 May 2020 Accepted: 17 July 2020 Published: 23 July 2020
  • MSC : 26B25, 26A33, 26A51, 33E12

  • In this paper, we establish generalized fractional versions of Hermite-Hadamard inequalities for exponentially (α, h - m)-convex functions, exponentially (h - m)-convex functions and exponentially (α, m)-convex functions. These inequalities arise when using the generalized fractional integral operators containing Mittag-Leffler function via a monotonically increasing function. The presented results hold at the same time for various kinds of convexities and well-known fractional integral operators. Moreover, the established inequalities reproduce several known results which are part of the existing literature.

    Citation: Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid. Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity[J]. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386

    Related Papers:

  • In this paper, we establish generalized fractional versions of Hermite-Hadamard inequalities for exponentially (α, h - m)-convex functions, exponentially (h - m)-convex functions and exponentially (α, m)-convex functions. These inequalities arise when using the generalized fractional integral operators containing Mittag-Leffler function via a monotonically increasing function. The presented results hold at the same time for various kinds of convexities and well-known fractional integral operators. Moreover, the established inequalities reproduce several known results which are part of the existing literature.


    加载中


    [1] X. Yang, G. Farid, K. Mahreen, et al. On an integral and consequent fractional integral operators via generalized convexity, AIMS Math., to appear.
    [2] X. Qiang, G. Farid, J. Pečarić, et al. Generalized fractional integral inequalities for exponentially (s, m)-convex functions, J. Inequal. Appl., 2020 (2020), 70.
    [3] N. Mehreen, M. Anwar, Hermite-Hadamard type inequalities for exponentially p-convex functions and exponentially s-convex functions in the second sense with applications, J. Inequal. Appl., 2019 (2019), 92.
    [4] M. U. Awan, M. A. Noor, K. I. Noor, Hermite-Hadamard inequalities for exponentially convex functions, Appl. Math. Inf. Sci., 12 (2018), 405-409. doi: 10.18576/amis/120215
    [5] G. Farid, A. U. Rehman, Q. U. Ain, k-fractional integral inequalities of Hadamard type for (hm)- convex functions, Comput. Methods Differ. Equ., 8 (2020), 119-140.
    [6] M. E. Özdemir, A. O. Akdemri, E. Set, On (hm)-convexity and Hadamard-type inequalities, Transylv. J. Math. Mech., 8 (2016), 51-58.
    [7] V. G. Mihesan, A generalization of the convexity, Seminar on Functional Equations, Approx. and Convex, Cluj-Napoca, Romania, 1993.
    [8] N. Efthekhari, Some remarks on (s, m)-convexity in the second sense, J. Math. Ineq., 8 (2014), 489-495.
    [9] H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequ. Math. 48 (1994), 100-111. doi: 10.1007/BF01837981
    [10] G. H. Toader, Some generalizations of the convexity, Proc. Colloq. Approx. Optim. Cluj-Naploca (Romania), (1984), 329-338.
    [11] S. Varosanec, On h-convexity, J. Math. Anal. Appl., 326 (2007), 303-311. doi: 10.1016/j.jmaa.2006.02.086
    [12] J. Hadamard, E$\mathop t\limits^{'}$ude sur les pude sur les proprie$\mathop t\limits^{'}$eś des fonctions entiŕes et en particulier deúne fonction consideré per riemann, J. Math. Pures Appl., (1893), 171-216.
    [13] G. Abbas, G. Farid, Hadamard and Fejér-Hadamard type inequalities for harmonically convex functions via generalized fractional integrals, J. Anal., 25 (2017), 107-119. doi: 10.1007/s41478-017-0032-y
    [14] F. Chen, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals via two kinds of convexity, Chin. J. Math., 2014 (2014), 1-7.
    [15] H. Chen, U. N. Katugampola, Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274-1291. doi: 10.1016/j.jmaa.2016.09.018
    [16] S. S. Dragomir, I. Gomm, Some Hermite-Hadamard type inequalities for functions whose exponentials are convex, Stud. Univ. Babes-Bolyai Math., 60 (2015), 527-534.
    [17] G. Farid, Hadamard and Fejér-Hadamard inequalities for generalized fractional integral involving special functions, Konuralp J. Math., 4 (2016), 108-113.
    [18] G. Farid, A Treatment of the Hadamard inequality due to m-convexity via generalized fractional integral, J. Fract. Calc. Appl., 9 (2018), 8-14.
    [19] G. Farid, G. Abbas, Generalizations of some fractional integral inequalities for m-convex functions via generalized Mittag-Leffler function, Studia Univ. Babes-Bolyai, Math., 63 (2018), 23-35. doi: 10.24193/subbmath.2018.1.02
    [20] G. Farid, A. U. Rehman, B. Tariq, On Hadamard-type inequalities for m-convex functions via Riemann-Liouville fractional integrals, Studia Univ. Babes-Bolyai, Math., 62 (2017), 141-150. doi: 10.24193/subbmath.2017.2.01
    [21] G. Farid, A. U. Rehman, S. Mehmood, Hadamard and Fejér-Hadamard type integral inequalities for harmonically convex functions via an extended generalized Mittag-Leffler function, J. Math. Comput. Sci., 8 (2018), 630-643.
    [22] G. Farid, K. A. Khan, N. Latif, et al. General fractional integral inequalities for convex and m-convex functions via an extended generalized Mittag-Leffler function, J. Inequal. Appl., 2018 (2018), 243.
    [23] İ. İşcan, Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals, Stud. Univ. Babeş-Bolyai Math., 60 (2015), 355-366.
    [24] S. M. Kang, G. Farid, W. Nazeer, et al. (hm)-convex functions and associated fractional Hadamard and Fejér-Hadamard inequalities via an extended generalized Mittag-Leffler function, J. Inequal. Appl., 2019 (2019), 255.
    [25] S. M. Kang, G. Farid, W. Nazeer, et al. Hadamard and Fejér-Hadamard inequalities for extended generalized fractional integrals involving special functions, J. Inequal. Appl., 2018 (2018), 119.
    [26] S. Mehmood, G. Farid, K. A. Khan, et al. New Hadamard and Fejér-Hadamard fractional inequalities for exponentially m-convex function, Eng. Appl. Sci. Lett., 3 (2020), 45-55. doi: 10.30538/psrp-easl2020.0034
    [27] S. Mehmood, G. Farid, K. A. Khan, et al. New fractional Hadamard and Fejér-Hadamard inequalities associated with exponentially (hm)-convex function, Eng. Appl. Sci. Lett., 3 (2020), 9-18.
    [28] S. Mehmood, G. Farid, Fractional Hadamard and Fejér-Hadamard inequalities for exponentially m-convex function, Stud. Univ. Babeş-Bolyai Math., to appear.
    [29] M. Z. Sarikaya, E. Set, H. Yaldiz, et al. Hermite-Hadamard inequalities for fractional integrals and related fractional inequalities, J. Math. Comput. Model., 57 (2013), 2403-2407. doi: 10.1016/j.mcm.2011.12.048
    [30] M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17 (2016), 1049-1059.
    [31] M. Andrić, G. Farid, J. Pečarić, A further extension of Mittag-Leffler function, Fract. Calc. Appl. Anal., 21 (2018), 1377-1395. doi: 10.1515/fca-2018-0072
    [32] G. Farid, A unified integral operator and further its consequences, Open J. Math. Anal., 4 (2020), 1-7. doi: 10.30538/psrp-oma2020.0047
    [33] T. O. Salim, A. W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with integral calculus, J. Frac. Calc. Appl., 3 (2012), 1-13.
    [34] G. Rahman, D. Baleanu, M. A. Qurashi, et al. The extended Mittag-Leffler function via fractional calculus, J. Nonlinear Sci. Appl., 10 (2017), 4244-4253. doi: 10.22436/jnsa.010.08.19
    [35] H. M. Srivastava, Z. Tomovski, Fractional calculus with an integral operator containing generalized Mittag-Leffler function in the kernal, Appl. Math. Comput., 211 (2009), 198-210.
    [36] T. R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7-15.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3633) PDF downloads(241) Cited by(23)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog