In this paper, we prove some new Ostrowski type inequalities for differentiable harmonically convex functions using generalized fractional integrals. Since we are using generalized fractional integrals to establish these inequalities, therefore we obtain some new inequalities of Ostrowski type for Riemann-Liouville fractional integrals and $ k $-Riemann-Liouville fractional integrals in special cases. Finally, we give some applications to special means of real numbers for newly established inequalities.
Citation: Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Chanon Promsakon. Fractional Ostrowski type inequalities for differentiable harmonically convex functions[J]. AIMS Mathematics, 2022, 7(3): 3939-3958. doi: 10.3934/math.2022217
In this paper, we prove some new Ostrowski type inequalities for differentiable harmonically convex functions using generalized fractional integrals. Since we are using generalized fractional integrals to establish these inequalities, therefore we obtain some new inequalities of Ostrowski type for Riemann-Liouville fractional integrals and $ k $-Riemann-Liouville fractional integrals in special cases. Finally, we give some applications to special means of real numbers for newly established inequalities.
[1] | S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, 2000. |
[2] | J. E. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial orderings and statistical applications, Boston: Academic Press, 1992. |
[3] | S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. lett., 11 (1998), 91–95. doi: 10.1016/S0893-9659(98)00086-X. doi: 10.1016/S0893-9659(98)00086-X |
[4] | U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput., 147 (2004), 137–146. doi: 10.1016/S0096-3003(02)00657-4. doi: 10.1016/S0096-3003(02)00657-4 |
[5] | M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. doi: 10.1016/j.mcm.2011.12.048. doi: 10.1016/j.mcm.2011.12.048 |
[6] | M. Iqbal, S. Qaisar, M. Muddassar, A short note on integral inequality of type Hermite-Hadamard through convexity, J. Comput. Anal. Appl., 21 (2016), 946–953. |
[7] | M. Z. Sarikaya, F. Ertuğral, On the generalized Hermite-Hadamard inequalities, An. Univ. Craiova Mat., 47 (2020), 193–213. |
[8] | H. Budak, F. Ertuğral, E. Pehlivan, Hermite-Hadamard type inequalities for twice differantiable functions via generalized fractional integrals, Filomat, 33 (2019), 4967–4979. doi: 10.2298/FIL1915967B. doi: 10.2298/FIL1915967B |
[9] | H. Budak, F. Ertuğral, M. Z. Sarikaya, New generalization of Hermite-Hadamard type inequalities via generalized fractional integrals, An. Univ. Craiova Mat., 47 (2020), 369–386. |
[10] | S. I. Butt, A. O. Akdemir, M. A. Dokuyucu, New Hadamard-type integral inequalities via a general form of fractional integral operators, Chaos Soliton. Fract., 148 (2021), 111025. doi: 10.1016/j.chaos.2021.111025. doi: 10.1016/j.chaos.2021.111025 |
[11] | S. I. Butt, M. Umar, S. Rashid, A. O. Akdemir, Y.-M. Chu, New Hermite-Jensen-Mercer-type inequalities via $k$-fractional integrals, Adv. Differ. Equ., 2020 (2020), 635. doi: 10.1186/s13662-020-03093-y. doi: 10.1186/s13662-020-03093-y |
[12] | A. Kashuri, E. Set, R. Liko, Some new fractional trapezium-type inequalities for preinvex functions, Fractal Fract., 3 (2019), 12. doi: 10.3390/fractalfract3010012. doi: 10.3390/fractalfract3010012 |
[13] | F. Qi, P. O. Mohammed, J. C. Yao, Y. H. Yao, Generalized fractional integral inequalities of Hermite–Hadamard type for $\left(\alpha, m\right) $-convex functions, J. Inequal. Appl., 2019 (2019), 135. doi: 10.1186/s13660-019-2079-6. doi: 10.1186/s13660-019-2079-6 |
[14] | T. S. Du, C. Y. Luo, Z. J. Cao, On the Bullen-type inequalities via generalized fractional integrals and their applications, Fractals, 29 (2021), 1–20. doi: 10.1142/S0218348X21501887. doi: 10.1142/S0218348X21501887 |
[15] | İ. İşcan, Hermite-Hadamard type inequaities for harmonically functions, Hacet. J. Math. Stat., 43 (2014), 935–942. doi: 10.15672/HJMS.2014437519. doi: 10.15672/HJMS.2014437519 |
[16] | F. Al-Azemi, O. Calin, Asian options with harmonically average, Appl. Math. Inform. Sci., 9 (2015), 2803–2811. doi: 10.12785/amis/090606. doi: 10.12785/amis/090606 |
[17] | M. A. Noor, Advanced convex and numerical analysis, Lecture Notes, COMSATS Institute of Information Technology: Islamabad, Pakistan, 2018. |
[18] | İ. İşcan, S. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput., 238 (2014), 237–244. doi: 10.1016/j.amc.2014.04.020. doi: 10.1016/j.amc.2014.04.020 |
[19] | İ. İşcan, Ostrowski type inequalities for harmonically $s$-convex functions, Konuralp J. Math., 3 (2015), 63–74. |
[20] | F. Chen, Extensions of the Hermite-Hadamard inequality for harmonically convex functions via fractional integrals, Appl. Math. Comput., 268 (2015), 121–128. doi: 10.1016/j.amc.2015.06.051. doi: 10.1016/j.amc.2015.06.051 |
[21] | M. Kunt, İ. İşscan, N. Yazici, Hermite-Hadamard type inequalities for product of harmonically convex functions via Riemann-Liouville fractional integrals, J. Math. Anal., 7 (2016), 74–82. |
[22] | E. Set, İ. İşcan, F. Zehir, On some new inequalities of Hermite-Hadamard type involving harmonically convex functions via fractional integrals, Konuralp J. Math., 3 (2015), 42–55. |
[23] | Z. Șanli, Some midpoint type inequalities for Riemann-Liouville fractional integrals, Appl. Appl. Math., 2019 (2019), 58–73. |
[24] | X. X. You, M. A. Ali, H. Budak, P. Agarwal, Y. M. Chu, Extensions of Hermite–Hadamard inequalities for harmonically convex functions via generalized fractional integrals, J. Inequal. Appl., 2021 (2021), 102. doi: 10.1186/s13660-021-02638-3. doi: 10.1186/s13660-021-02638-3 |
[25] | D. Zhao, M. A. Ali, A. Kashuri, H. Budak, Generalized fractional integral inequalities of Hermite-Hadamard type for harmonically convex functions, Adv. Differ. Equ., 2020 (2020), 137. doi: 10.1186/s13662-020-02589-x. doi: 10.1186/s13662-020-02589-x |
[26] | B. B. Mohsen, M. U. Awan, M. A. Noor, M. V. Mihai, K. I. Noor, New Ostrowski like inequalities involving the functions having harmonically $h$-convexity property and applications, J. Math. Inequal., 13 (2019), 621–644. doi: 10.7153/jmi-2019-13-41. doi: 10.7153/jmi-2019-13-41 |
[27] | N. Akhtar, M. U. Awan, M. Z. Javed, M. T. Rassias, M. V. Mihai, M. A. Noor, et al. Ostrowski type inequalities involving harmonically convex functions and applications, Symmetry, 13 (2021), 201. doi: 10.3390/sym13020201. doi: 10.3390/sym13020201 |
[28] | I. A. Baloch, A. A. Mughal, Y. M. Chu, A. U. Haq, M. D. L. Sen, A variant of Jensen-type inequality and related results for harmonically convex functions, AIMS Mathematics, 5 (2020), 6404–6418. doi: 10.3934/math.2020412. doi: 10.3934/math.2020412 |
[29] | M. U. Awan, N. Akhtar, S. Iftikhar, M. A. Noor, Y. M. Chu, New Hermite-Hadamard type inequalities for $n$-polynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 125. doi: 10.1186/s13660-020-02393-x. doi: 10.1186/s13660-020-02393-x |
[30] | S. S. Dragomir, Inequalities of Jensen type for $HA$-convex functions, Analele Universitatii Oradea Fasc. Matematica, 27 (2020), 103–124. |
[31] | İ. İşcan, Ostrowski type inequalities for harmonically $s$-convex functions via fractional integrals, Dyn. Contin. Discrete Impuls. Syst. Ser. A, 24 (2017) 219–234. |