Fractional versions of Simpson inequalities for differentiable convex functions are extensively researched. However, Simpson type inequalities for twice differentiable functions are also investigated slightly. Hence, we establish a new identity for twice differentiable functions. Furthermore, by utilizing generalized fractional integrals, we prove several Simpson type inequalities for functions whose second derivatives in absolute value are convex.
Citation: Xuexiao You, Fatih Hezenci, Hüseyin Budak, Hasan Kara. New Simpson type inequalities for twice differentiable functions via generalized fractional integrals[J]. AIMS Mathematics, 2022, 7(3): 3959-3971. doi: 10.3934/math.2022218
Fractional versions of Simpson inequalities for differentiable convex functions are extensively researched. However, Simpson type inequalities for twice differentiable functions are also investigated slightly. Hence, we establish a new identity for twice differentiable functions. Furthermore, by utilizing generalized fractional integrals, we prove several Simpson type inequalities for functions whose second derivatives in absolute value are convex.
[1] | M. Alomari, M. Darus, S. Dragomir, New inequalities of Simpson's type for $\mathit{s}$-convex functions with applications, Res. Rep. Coll., 12 (2009), 9. |
[2] | M. Sarikaya, E. Set, M. Özdemir, On new inequalities of Simpson's type for $s$-convex functions Comput. Math. Appl., 60 (2010), 2191–2199. doi: 10.1016/j.camwa.2010.07.033. doi: 10.1016/j.camwa.2010.07.033 |
[3] | T. Du, Y. Li, Z. Yang, A generalization of Simpson's inequality via differentiable mapping using extended $(s, m)$-convex functions, Appl. Math. Comput., 293 (2017), 358–369. doi: 10.1016/j.amc.2016.08.045. doi: 10.1016/j.amc.2016.08.045 |
[4] | İ. İşcan, Hermite-Hadamard, Simpson-like type inequalities for differentiable harmonically convex functions, J. Math., 2014 (2014), 346305. doi: 10.1155/2014/346305. doi: 10.1155/2014/346305 |
[5] | M. Matloka, Some inequalities of Simpson type for h-convex functions via fractional integrals, Abstr. Appl. Anal., 2015 (2015), 956850. doi: 10.1155/2015/956850. doi: 10.1155/2015/956850 |
[6] | M. E. Ozdemir, A. O. Akdemir, H. Kavurmacı, On the Simpson's inequality for convex functions on the coordinates, Turkish Journal of Analysis and Number Theory, 2 (2014), 165–169. doi: 10.12691/tjant-2-5-2. doi: 10.12691/tjant-2-5-2 |
[7] | J. Park, On Simpson-like type integral inequalities for differentiable preinvex functions, Applied Mathematical Sciences, 7 (2013), 6009–6021. doi: 10.12988/ams.2013.39498. doi: 10.12988/ams.2013.39498 |
[8] | J. Chen, X. Huang, Some new inequalities of Simpson's type for $s$-convex functions via fractional integrals, Filomat, 31 (2017), 4989–4997. doi: 10.2298/FIL1715989C. doi: 10.2298/FIL1715989C |
[9] | M. Iqbal, S. Qaisar, S. Hussain, On Simpson's type inequalities utilizing fractional integrals, J. Comput. Anal. Appl., 23 (2017), 1137–1145. |
[10] | M. Ali, H. Kara, J. Tariboon, S. Asawasamrit, H. Budak, F. Hezenci, Some new Simpson's-formula-type inequalities for twice-differentiable convex functions via generalized fractional operators, Symmetry, 13 (2021), 2249. doi: 10.3390/sym13122249. doi: 10.3390/sym13122249 |
[11] | M. Vivas-Cortez, T. Abdeljawad, P. Mohammed, Y. Rangel-Oliveros, Simpson's integral inequalities for twice differentiable convex functions, Math. Probl. Eng., 2020 (2020), 1936461. doi: 10.1155/2020/1936461. doi: 10.1155/2020/1936461 |
[12] | T. Abdeljawad, S. Rashid, Z. Hammouch, İ. İşcan, Y. M. Chu, Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications, Adv. Differ. Equ., 2020 (2020), 496. doi: 10.1186/s13662-020-02955-9. doi: 10.1186/s13662-020-02955-9 |
[13] | S. Butt, A. Akdemir, M. Bhatti, M. Nadeem, New refinements of Chebyshev-Pólya-Szegö-type inequalities via generalized fractional integral operators, J. Inequal. Appl., 2020 (2020), 157. doi: 10.1186/s13660-020-02425-6. doi: 10.1186/s13660-020-02425-6 |
[14] | S. Butt, E. Set, S. Yousaf, T. Abdeljawad, W. Shatanawi, Generalized integral inequalities for ABK-fractional integral operators, AIMS Mathematics, 6 (2021), 10164–10191. doi: 10.3934/math.2021589. doi: 10.3934/math.2021589 |
[15] | S. Butt, S. Yousaf, A. Asghar, K. Khan, H. Moradi, New Fractional Hermite-Hadamard-Mercer Inequalities for Harmonically Convex Function, J. Funct. Space., 2021 (2021), 5868326. doi:10.1155/2021/5868326. doi: 10.1155/2021/5868326 |
[16] | F. Ertuǧral, M. Sarikaya, Simpson type integral inequalities for generalized fractional integral, RACSAM, 113 (2019), 3115–3124. doi: 10.1007/s13398-019-00680-x. doi: 10.1007/s13398-019-00680-x |
[17] | S. Hussain, J. Khalid, Y. Chu, Some generalized fractional integral Simpson's type inequalities with applications, AIMS Mathematics, 5 (2020), 5859–5883. doi: 10.3934/math.2020375. doi: 10.3934/math.2020375 |
[18] | A. Kashuri, B. Meftah, P. Mohammed, Some weighted Simpson type inequalities for differentiable $ s $-convex functions and their applications, Journal of Fractional Calculus and Nonlinear Systems, 1 (2021), 75–94. doi: 10.48185/jfcns.v1i1.150. doi: 10.48185/jfcns.v1i1.150 |
[19] | A. Kashuri, P. Mohammed, T. Abdeljawad, F. Hamasalh, Y. Chu, New Simpson type integral inequalities for $ s $-convex functions and their applications, Math. Probl. Eng., 2020 (2020), 8871988. doi: 10.1155/2020/8871988. doi: 10.1155/2020/8871988 |
[20] | S. Kermausuor, Simpson's type inequalities via the Katugampola fractional integrals for s-convex functions, Kragujev. J. Math., 45 (2021), 709–720. |
[21] | C. Luo, T. Du, Generalized Simpson type inequalities involving Riemann-Liouville fractional integrals and their applications, Filomat, 34 (2020), 751–760. doi: 10.2298/FIL2003751L. doi: 10.2298/FIL2003751L |
[22] | S. Rashid, A. Akdemir, F. Jarad, M. Noor, K. Noor, Simpson's type integral inequalities for $\mathit{\kappa }$-fractional integrals and their applications, AIMS Mathematics, 4 (2019), 1087–1100. doi: 10.3934/math.2019.4.1087. doi: 10.3934/math.2019.4.1087 |
[23] | M. Sarıkaya, H. Budak, S. Erden, On new inequalities of Simpson's type for generalized convex functions, Korean J. Math., 27 (2019), 279–295. doi: 10.11568/kjm.2019.27.2.279. doi: 10.11568/kjm.2019.27.2.279 |
[24] | E. Set, A. Akdemir, M. Özdemir, Simpson type integral inequalities for convex functions via Riemann-Liouville integrals, Filomat, 31 (2017), 4415–4420. doi: 10.2298/FIL1714415S. doi: 10.2298/FIL1714415S |
[25] | H. Lei, G. Hu, J. Nie, T. Du, Generalized Simpson-type inequalities considering first derivatives through the $ \mathit{k}$-Fractional Integrals, IJAM, 50 (2020), 1–8. |
[26] | H. Budak, S. Erden, M. Ali, Simpson and Newton type inequalities for convex functions via newly defined quantum integrals, Math. Meth. Appl. Sci., 44 (2021), 378–390. doi: 10.1002/mma.6742. doi: 10.1002/mma.6742 |
[27] | J. Hua, B. Y. Xi, F. Qi, Some new inequalities of Simpson type for strongly $s$-convex functions, Afr. Mat., 26 (2015), 741–752. doi: 10.1007/s13370-014-0242-2. doi: 10.1007/s13370-014-0242-2 |
[28] | S. Hussain, S. Qaisar, More results on Simpson's type inequality through convexity for twice differentiable continuous mappings, SpringerPlus, 5 (2016), 77. doi: 10.1186/s40064-016-1683-x. doi: 10.1186/s40064-016-1683-x |
[29] | Y. Li, T. Du, Some Simpson type integral inequalities for functions whose third derivatives are ($\alpha \mathit{, m}$)-GA-convex functions, J. Egypt. Math. Soc., 24 (2016), 175–180. doi: 10.1016/j.joems.2015.05.009. doi: 10.1016/j.joems.2015.05.009 |
[30] | Z. Liu, An inequality of Simpson type, Proc. R. Soc. A, 461 (2005), 2155–2158. doi: 10.1098/rspa.2005.1505. doi: 10.1098/rspa.2005.1505 |
[31] | W. Liu, Some Simpson type inequalities for $h$-convex and ($\alpha \mathit{, m}$)-convex functions, J. Comput. Anal. Appl., 16 (2014), 1005–1012. |
[32] | S. S. Dragomir, R. Agarwal, P. Cerone, On Simpson's inequality and applications, J. Inequal. Appl., 5 (2000), 533–579. doi: 10.1155/S102558340000031X. doi: 10.1155/S102558340000031X |
[33] | M. Sarikaya, E. Set, M. Özdemir, On new inequalities of Simpson's type for functions whose second derivatives absolute values are convex, J. Appl. Math. Stat. Inf., 9 (2013), 37–45. |
[34] | H. Budak, H. Kara, F. Hezenci, Fractional Simpson type inequalities for twice differentiable functions, submitted for publication. |
[35] | F. Hezenci, H. Budak, H. Kara, New version of Fractional Simpson type inequalities for twice differentiable functions, Adv. Differ. Equ., 2021 (2021), 460. doi: 10.1186/s13662-021-03615-2. doi: 10.1186/s13662-021-03615-2 |
[36] | M. Sarikaya, F. Ertugral, On the generalized Hermite-Hadamard inequalities, Ann. Univ. Craiova-Mat., 47 (2020), 193–213. |
[37] | A. Kashuri, E. Set, R. Liko, Some new fractional trapezium-type inequalities for preinvex functions, Fractal Fract., 3 (2019), 12. doi: 10.3390/fractalfract3010012. doi: 10.3390/fractalfract3010012 |
[38] | H. Budak, F. Ertuǧral, E. Pehlivan, Hermite-Hadamard type inequalities for twice differantiable functions via generalized fractional integrals, Filomat, 33 (2019), 4967–4979. doi: 10.2298/FIL1915967B. doi: 10.2298/FIL1915967B |
[39] | H. Budak, E. Pehlivan, P. Kösem, On new extensions of Hermite-Hadamard inequalities for generalized fractional integrals, Communications in Mathematical Analysis, 18 (2021), 73–88. doi: 10.22130/SCMA.2020.121963.759. doi: 10.22130/SCMA.2020.121963.759 |
[40] | H. Budak, S. Yildirim, H. Kara, H. Yildirim, On new generalized inequalities with some parameters for coordinated convex functions via generalized fractional integrals, Math. Meth. Appl. Sci., 44 (2021), 13069–13098. doi: 10.1002/mma.7610. doi: 10.1002/mma.7610 |
[41] | P. Mohammed, M. Sarikaya, On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Math., 372 (2020), 112740. doi: 10.1016/j.cam.2020.112740. doi: 10.1016/j.cam.2020.112740 |
[42] | X. You, M. Ali, H. Budak, P. Agarwal, Y. Chu, Extensions of Hermite–Hadamard inequalities for harmonically convex functions via generalized fractional integrals, J. Inequl. Appl., 2021 (2021), 102. doi: 10.1186/s13660-021-02638-3. doi: 10.1186/s13660-021-02638-3 |
[43] | D. Zhao, M. Ali, A. Kashuri, H. Budak, M. Sarikaya, Hermite–Hadamard-type inequalities for the interval-valued approximately $h$-convex functions via generalized fractional integrals, J. Inequal. Appl., 2020 (2020), 222. doi: 10.1186/s13660-020-02488-5. doi: 10.1186/s13660-020-02488-5 |