Loading [MathJax]/jax/output/SVG/jax.js
Research article

New Simpson type inequalities for twice differentiable functions via generalized fractional integrals

  • Received: 26 October 2021 Accepted: 06 December 2021 Published: 10 December 2021
  • MSC : 26A33, 26D07, 26D10, 26D15

  • Fractional versions of Simpson inequalities for differentiable convex functions are extensively researched. However, Simpson type inequalities for twice differentiable functions are also investigated slightly. Hence, we establish a new identity for twice differentiable functions. Furthermore, by utilizing generalized fractional integrals, we prove several Simpson type inequalities for functions whose second derivatives in absolute value are convex.

    Citation: Xuexiao You, Fatih Hezenci, Hüseyin Budak, Hasan Kara. New Simpson type inequalities for twice differentiable functions via generalized fractional integrals[J]. AIMS Mathematics, 2022, 7(3): 3959-3971. doi: 10.3934/math.2022218

    Related Papers:

    [1] Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814
    [2] Areej A. Almoneef, Abd-Allah Hyder, Fatih Hezenci, Hüseyin Budak . Simpson-type inequalities by means of tempered fractional integrals. AIMS Mathematics, 2023, 8(12): 29411-29423. doi: 10.3934/math.20231505
    [3] Sabir Hussain, Javairiya Khalid, Yu Ming Chu . Some generalized fractional integral Simpson’s type inequalities with applications. AIMS Mathematics, 2020, 5(6): 5859-5883. doi: 10.3934/math.2020375
    [4] Muhammad Tariq, Hijaz Ahmad, Soubhagya Kumar Sahoo, Artion Kashuri, Taher A. Nofal, Ching-Hsien Hsu . Inequalities of Simpson-Mercer-type including Atangana-Baleanu fractional operators and their applications. AIMS Mathematics, 2022, 7(8): 15159-15181. doi: 10.3934/math.2022831
    [5] Chanon Promsakon, Muhammad Aamir Ali, Hüseyin Budak, Mujahid Abbas, Faheem Muhammad, Thanin Sitthiwirattham . On generalizations of quantum Simpson's and quantum Newton's inequalities with some parameters. AIMS Mathematics, 2021, 6(12): 13954-13975. doi: 10.3934/math.2021807
    [6] Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly (α,m)-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661
    [7] Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565
    [8] Zareen A. Khan, Waqar Afzal, Mujahid Abbas, Jongsuk Ro, Najla M. Aloraini . A novel fractional approach to finding the upper bounds of Simpson and Hermite-Hadamard-type inequalities in tensorial Hilbert spaces by using differentiable convex mappings. AIMS Mathematics, 2024, 9(12): 35151-35180. doi: 10.3934/math.20241671
    [9] Saima Rashid, Ahmet Ocak Akdemir, Fahd Jarad, Muhammad Aslam Noor, Khalida Inayat Noor . Simpson’s type integral inequalities for ĸ-fractional integrals and their applications. AIMS Mathematics, 2019, 4(4): 1087-1100. doi: 10.3934/math.2019.4.1087
    [10] Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Chanon Promsakon . Fractional Ostrowski type inequalities for differentiable harmonically convex functions. AIMS Mathematics, 2022, 7(3): 3939-3958. doi: 10.3934/math.2022217
  • Fractional versions of Simpson inequalities for differentiable convex functions are extensively researched. However, Simpson type inequalities for twice differentiable functions are also investigated slightly. Hence, we establish a new identity for twice differentiable functions. Furthermore, by utilizing generalized fractional integrals, we prove several Simpson type inequalities for functions whose second derivatives in absolute value are convex.



    It is well known that Simpson's inequality is used in several branches of mathematics in the literature. For four times continuously differentiable functions, the classical Simpson's inequality is expressed as follows:

    Theorem 1. Let ϝ:[a,b]Rdenote a four times continuously differentiable mapping on (a,b), and let ϝ(4)=supx(a,b)|ϝ(4)(x)|<. Then, the following inequalityholds:

    |13[ϝ(a)+ϝ(b)2+2ϝ(a+b2)]1babaϝ(x)dx|12880ϝ(4)(ba)4.

    The convex theory is an available way to solve a large number of problems from various branches of mathematics. Hence, many authors have researched on the results of Simpson-type for convex functions. More precisely, some inequalities of Simpson's type for s-convex functions is proved by using differentiable functions [1]. In the paper [2], it is investigated the new variants of Simpson's type inequalities based on differentiable convex mapping. For more information about Simpson type inequalities for various convex classes, we refer the reader to Refs. [3,4,5,6,7] and the references therein.

    In the papers [8] and [9], it is extended the Simpson inequalities for differentiable functions to Riemann-Liouville fractional integrals. Thus, several paper focused on fractional Simpson and other fractional integral inequalities for various fractional integral operators [10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25]. For further information about to Simpson type inequalities, we refer the reader to Refs. [26,27,28,29,30,31,32] and the references therein. In the paper [33], Sarikaya et al. investigated several Simpson type inequalities for functions whose second derivatives are convex.

    The first and second results on fractional Simpson inequality for twice differentiable functions were established in [34] and [35], respectively. With the help of these articles, the aim of this paper is to extend the results of given in [33] for twice differentiable functions to generalized fractional integrals. The general structure of the paper consists of four chapters including an introduction. The remaining part of the paper proceeds as follows: In Section 2, after giving a general literature survey and definition of generalized fractional integral operators, we give an equality for twice differentiable functions involving generalized fractional integrals. In Section 3, for utilizing this equality, it is considered several Simpson type inequalities for mapping whose second derivatives are convex. In the last section, some conclusions and further directions of research are discussed.

    The generalized fractional integrals were introduced by Sarikaya and Ertuǧral as follows:

    Definition 1. [36] Let us note that a function φ:[0,)[0,) satisfies the following condition:

    10φ(t)tdt<.

    We consider the following left-sided and right-sided generalized fractional integral operators

    a+Iφϝ(x)=xaφ(xt)xtϝ(t)dt,  x>a (1.1)

    and

    bIφϝ(x)=bxφ(tx)txϝ(t)dt,  x<b, (1.2)

    respectively.

    The most significant feature of generalized fractional integrals is that they generalize some types of fractional integrals such as Riemann-Liouville fractional integral, k-Riemann-Liouville fractional integral, Hadamard fractional integrals, Katugampola fractional integrals, conformable fractional integral, etc. These important special cases of the integral operators (1.1) and (1.2) are mentioned as follows:

    1) Let us consider φ(t)=t. Then, the operators (1.1) and (1.2) reduce to the Riemann integral.

    2) If we choose φ(t)=tαΓ(α) and α>0, then the operators (1.1) and (1.2) reduce to the Riemann-Liouville fractional integrals Jαa+ϝ(x) and Jαbϝ(x), respectively. Here, Γ is Gamma function.

    3) For φ(t)=1kΓk(α)tαk and α,k>0, the operators (1.1) and (1.2) reduce to the k-Riemann-Liouville fractional integrals Jαa+,kϝ(x) and Jαb,kϝ(x), respectively. Here, Γk is k-Gamma function.

    In recent years, several papers have devoted to obtain inequalities for generalized fractional integrals [37,38,39,40,41,42,43].

    The first result on fractional Simpson inequality for twice differentiable functions was proved by Budak et al. in [34] as follows:

    Theorem 2. Suppose ϝ:[a,b]R is an twice differentiable mapping (a,b) so that ϝL1([a,b]). Suppose also themapping |ϝ| is convex on [a,b]. Then, we have the following inequality

    |16[ϝ(a)+4ϝ(a+b2)+ϝ(b)]2α1Γ(α+1)(ba)α[Jα(a+b2)+ϝ(b)+Jα(a+b2)ϝ(a)]|(ba)26Λ(α)[|ϝ(a)|+|ϝ(b)|].

    Here,

    Λ(α)=14(α+2)(α(α+13)2α+3α+1)18.

    The other version of fractional Simpson inequality for twice differentiable functions was proved in [35] as follows:

    Lemma 1. [35] Let us consider the function ϖ:[0,1]R by ϖ(t)=12α3+2(α+1)3ttα+1 with α>0.

    1) If 0<α12, then we have

    10|ϖ(t)|dt=1α23(α+2).

    2) If α>12, then there exist a real number cαsuch that 0<cα<1 and we obtain the following equality

    10|ϖ(t)|dt=2((cα)α+2α+2(12α)cα+(α+1)(cα)23)+1α23(α+2).

    Theorem 3. [35] Assume that ϝ:[a,b]R is an absolutely continuous mapping (a,b) such that ϝL1([a,b]). Assume also that themapping |ϝ| is convex on [a,b]. Then, we have the following inequality

    |16[ϝ(a)+4ϝ(a+b2)+ϝ(b)]2α1Γ(α+1)(ba)α[Jαbϝ(a+b2)+Jαa+ϝ(a+b2)]|(ba)28(α+1)Ω1(α)[|ϝ(a)|+|ϝ(b)|]. (1.3)

    Here, Ω1(α) is defined by

    Ω1(α)={1α23(α+2),0<α12,2((cα)α+2α+2(12α)cα+(α+1)(cα)23)+1α23(α+2),α>12.

    In this section, we give an identity on twice differentiable functions for using the main results.

    Lemma 2. Let ϝ:[a,b]R be an absolutely continuous mapping (a,b) such that ϝL1([a,b]). Then, the followingequality

    16[ϝ(a)+4ϝ(a+b2)+ϝ(b)]12Υ(1)[a+Iφϝ(a+b2)+bIφϝ(a+b2)]=(ba)28Υ(1)10(Ω(1)Ω(t)23Υ(1)(1t))[ϝ(1+t2b+1t2a)+ϝ(1+t2a+1t2b)]dt (2.1)

    is valid. Here, Ω(t)=t0Υ(s)ds and Υ(s)=s0φ((ba2)u)udu.

    Proof. By using integration by parts, we obtain

    K1=10(Ω(1)Ω(t)23Υ(1)(1t))ϝ(1+t2b+1t2a)dt=2(Ω(1)23Υ(1))baϝ(a+b2)2ba 10(23Υ(1)Υ(t))ϝ(1+t2b+1t2a)dt=2(Ω(1)23Υ(1))baϝ(a+b2)+4Υ(1)3(ba)2ϝ(b)+8Υ(1)3(ba)2ϝ(a+b2)4(ba)210φ((ba2)t)tϝ(1+t2b+1t2a)dt. (2.2)

    With help of the Eq (2.2) and using the change of the variable x=1+t2b+1t2a for t[0,1], it can be rewritten as follows

    K1=2(Ω(1)23Υ(1))baϝ(a+b2)+4Υ(1)3(ba)2ϝ(b)+8Υ(1)3(ba)2ϝ(a+b2)4(ba)2 bIφϝ(a+b2). (2.3)

    Similarly, we get

    K2=10(Ω(1)Ω(t)23Υ(1)(1t))ϝ(1+t2a+1t2b)dt=2(Ω(1)23Υ(1))baϝ(a+b2)+2ba 10(23Υ(1)Υ(t))ϝ(1+t2a+1t2b)dt=2(Ω(1)23Υ(1))baϝ(a+b2)+4Υ(1)3(ba)2ϝ(a)+8Υ(1)3(ba)2ϝ(a+b2) 4(ba)210φ((ba2)t)tϝ(1+t2a+1t2b)dt=2(Ω(1)23Υ(1))baϝ(a+b2)+4Υ(1)3(ba)2ϝ(a)+8Υ(1)3(ba)2ϝ(a+b2)4(ba)2 a+Iφϝ(a+b2). (2.4)

    From Eqs (2.3) and (2.4), we have

    K1+K2=4Υ(1)3(ba)2[ϝ(a)+4ϝ(a+b2)+ϝ(b)]4(ba)2[a+Iφϝ(a+b2)+bIφϝ(a+b2)]. (2.5)

    Multiplying the both sides of (2.5) by (ba)28Υ(1), we obtain Eq (2.1). This ends the proof of Lemma 2.

    In this section, we establish several Simpson type inequalities for mapping whose second derivatives are convex.

    Theorem 4. Let us consider that the assumptions of Lemma 2 arevalid. Let us also consider that the mapping |ϝ| is convex on [a,b]. Then, we get thefollowing inequality

    |16[ϝ(a)+4ϝ(a+b2)+ϝ(b)]12Υ(1)[a+Iφϝ(a+b2)+bIφϝ(a+b2)]|(ba)28Υ(1)Ψφ1[|ϝ(a)|+|ϝ(b)|], (3.1)

    where Ψφ1 is defined by

    Ψφ1=10|Ω(1)Ω(t)23Υ(1)(1t)|dt.

    Proof. By taking modulus in Lemma 2, we have

    |16[ϝ(a)+4ϝ(a+b2)+ϝ(b)]12Υ(1)[a+Iφϝ(a+b2)+bIφϝ(a+b2)]|(ba)28Υ(1)10|Ω(1)Ω(t)23Υ(1)(1t)|×[|ϝ(1+t2b+1t2a)|+|ϝ(1+t2a+1t2b)|]dt. (3.2)

    By using convexity of |ϝ|, we obtain

    |16[ϝ(a)+4ϝ(a+b2)+ϝ(b)]12Υ(1)[a+Iφϝ(a+b2)+bIφϝ(a+b2)]|(ba)28Υ(1)[10|Ω(1)Ω(t)23Υ(1)(1t)|[(1+t2)|ϝ(b)|+(1t2)|ϝ(a)|]+(1+t2)|ϝ(a)|+(1t2)|ϝ(b)|]dt=(ba)28Υ(1)10|Ω(1)Ω(t)23Υ(1)(1t)|dt[|ϝ(a)|+|ϝ(b)|]=(ba)28Υ(1)Ψφ1[|ϝ(a)|+|ϝ(b)|].

    This finishes the proof of Theorem 4.

    Remark 1. If we choose φ(t)=t in Theorem 4, then Theorem 4 reduces to [33,Theorem 2.2].

    Remark 2. Let us consider φ(t)=tαΓ(α) in Theorem 4. Then, the inequality (3.1) reduces to the inequality (1.3).

    Corollary 1. If we assign φ(t)=1kΓk(α)tαk in Theorem 4, then there exist areal number ckα so that 0<ckα<1 and thefollowing inequality holds:

    |16[ϝ(a)+4ϝ(a+b2)+ϝ(b)]2αk1Γk(α+k)(ba)αk[Jαb,kϝ(a+b2)+Jαa+,kϝ(a+b2)]|k(ba)28(α+k)Θ1(α,k)[|ϝ(a)|+|ϝ(b)|].

    Here, Θ1(α,k) is defined by

    Θ1(α,k)={k2α23k(α+2k),0<αk12,2(k(ckα)α+2kkα+2k(k2α)ckα+(α+k)(ckα)23k)+k2α23k(α+2k),αk>12. (3.3)

    Theorem 5. Let us note that the assumptions of Lemma 2 hold. Ifthe mapping |ϝ|q, q>1is convex on [a,b], then we have the following inequality

    |16[ϝ(a)+4ϝ(a+b2)+ϝ(b)]12Υ(1)[a+Iφϝ(a+b2)+bIφϝ(a+b2)]|(ba)28Υ(1)Ψφ(p)[|ϝ(a)|q+|ϝ(b)|q]1q.

    Here, 1p+1q=1 and Ψφ(p) is defined by

    Ψφ(p)=(10|Ω(1)Ω(t)23Υ(1)(1t)|pdt)1p.

    Proof. By using the Hölder inequality in inequality (3.2), we obtain

    |16[ϝ(a)+4ϝ(a+b2)+ϝ(b)]12Υ(1)[a+Iφϝ(a+b2)+bIφϝ(a+b2)]|(ba)28Υ(1){(10|Ω(1)Ω(t)23Υ(1)(1t)|pdt)1p(10|ϝ(1+t2b+1t2a)|qdt)1q+(10|Ω(1)Ω(t)23Υ(1)(1t)|pdt)1p(10|ϝ(1+t2a+1t2b)|qdt)1q}.

    With the help of the convexity of |ϝ|q, we get

    |16[ϝ(a)+4ϝ(a+b2)+ϝ(b)]12Υ(1)[a+Iφϝ(a+b2)+bIφϝ(a+b2)]|(ba)28Υ(1)(10|Ω(1)Ω(t)23Υ(1)(1t)|pdt)1p×[(10[(1+t2)|ϝ(b)|q+(1t2)|ϝ(a)|q]dt)1q+(10[(1+t2)|ϝ(a)|q+(1t2)|ϝ(b)|q]dt)1q]=(ba)28Υ(1)(10|Ω(1)Ω(t)23Υ(1)(1t)|pdt)1p×[(3|ϝ(b)|q+|ϝ(a)|q4)1q+(|ϝ(b)|q+3|ϝ(a)|q4)1q].

    This completes the proof of Theorem 5.

    Remark 3. Consider φ(t)=t in Theorem 5. Then, Theorem 5 reduces to [35,Corollary 1].

    Remark 4. If it is chosen φ(t)=tαΓ(α) in Theorem 5, then Theorem 5 reduces to [35,Theorem 4].

    Corollary 2. Let us consider φ(t)=tαkkΓk(α) in Theorem 5. Then, we have

    |16[ϝ(a)+4ϝ(a+b2)+ϝ(b)]2αk1Γk(α+k)(ba)αk[Jαb,kϝ(a+b2)+Jαa+,kϝ(a+b2)]|(ba)28Ψk(α,p)[|ϝ(a)|q+|ϝ(b)|q]1q,

    where

    Ψk(α,p)=(10|kα+kkα+ktα+kk23(1t)|pdt)1p.

    Theorem 6. Let us note that the assumptions of Lemma 2 hold. Ifthe mapping |ϝ|q, q1 is convex on [a,b], then we have the following inequality

    |16[ϝ(a)+4ϝ(a+b2)+ϝ(b)]12Υ(1)[a+Iφϝ(a+b2)+bIφϝ(a+b2)]|(ba)28Υ(1)(Ψφ1)11q{((Ψφ1+Ψφ2)|ϝ(b)|q+(Ψφ1Ψφ2)|ϝ(a)|q2)1q+((Ψφ1+Ψφ2)|ϝ(a)|q+(Ψφ1Ψφ2)|ϝ(b)|q2)1q}.

    Here, Ψφ2 is defined by in Theorem 4 and Ψφ2is defined by

    Ψφ2=10t|Ω(1)Ω(t)23Υ(1)(1t)|dt.

    Proof. By applying power-mean inequality in (3.2), we obtain

    |16[ϝ(a)+4ϝ(a+b2)+ϝ(b)]12Υ(1)[a+Iφϝ(a+b2)+bIφϝ(a+b2)]|(ba)28Υ(1)[(10|Ω(1)Ω(t)23Υ(1)(1t)|dt)11q×(10|Ω(1)Ω(t)23Υ(1)(1t)||ϝ(1+t2b+1t2a)|qdt)1q+(10|Ω(1)Ω(t)23Υ(1)(1t)|dt)11q×(10|Ω(1)Ω(t)23Υ(1)(1t)||ϝ(1+t2a+1t2b)|qdt)1q].

    Since |ϝ|q is convex, we have

    10|Ω(1)Ω(t)23Υ(1)(1t)||ϝ(1+t2b+1t2a)|qdt10|Ω(1)Ω(t)23Υ(1)(1t)|[1+t2|ϝ(b)|q+1t2|ϝ(a)|q]dt=(Ψφ1+Ψφ2)|ϝ(b)|q+(Ψφ1Ψφ2)|ϝ(a)|q2

    and similarly

    10|Ω(1)23Υ(1)+23Υ(1)tΩ(t)||ϝ(1+t2a+1t2b)|qdt(Ψφ1+Ψφ2)|ϝ(a)|q+(Ψφ1Ψφ2)|ϝ(b)|q2.

    Then, we obtain the desired result of Theorem 6.

    Remark 5. If we take φ(t)=t in Theorem 6, then Theorem 6 reduces to [33,Theorem 2.5].

    Remark 6. Let us consider φ(t)=tαΓ(α) in Theorem 6. Then, Theorem 6 reduces to [35,Theorem 5].

    Corollary 3. If we choose φ(t)=1kΓk(α)tαk in Theorem 6, then there exist areal number σkα so that 0<σkα<1 andwe have the inequality

    |16[ϝ(a)+4ϝ(a+b2)+ϝ(b)]2αk1Γk(α+k)(ba)αk[Jαb,kϝ(a+b2)+Jαa+,kϝ(a+b2)]|(ba)28(α+1)(Θ1(α,k))11q{((Θ1(α,k)+Θ2(α,k))|ϝ(b)|q+(Θ1(α,k)Θ2(α,k))|ϝ(a)|q2)1q+((Θ1(α,k)+Θ2(α,k))|ϝ(a)|q+(Θ1(α,k)Θ2(α,k))|ϝ(b)|q2)1q}.

    Here, Θ1(α,k) is defined as in (3.3) and Θ2(α,k) is defined by

    Θ2(α,k)={3k2+αk2α218k(α+3k),0<α12,2(k(σkα)α+3kkα+3k3(k2α)(σkα)2+4(α+k)(σkα)318k)+3k2+αk2α218k(α+3k),α>12.

    Fractional versions of Simpson inequalities for differentiable convex functions are investigated extensively. On the other hand, Simpson type inequalities for twice differentiable functions are also considered slightly. Hence, Simpson type inequality for twice differentiable functions by generalized fractional integrals are established in this paper. Furthermore, we prove that our results generalize the inequalities obtained by Sarikaya et al. [33] and Hezenci et al. [35]. In the future studies, authors can try to generalize our results by utilizing different kind of convex function classes or other type fractional integral operators.

    This research was supported by Key Projects of Educational Commission of Hubei Province of China (D20192501), and Philosophy and Social Sciences of Educational Commission of Hubei Province of China (20Y109).

    The authors declare that they have no competing interests.



    [1] M. Alomari, M. Darus, S. Dragomir, New inequalities of Simpson's type for s-convex functions with applications, Res. Rep. Coll., 12 (2009), 9.
    [2] M. Sarikaya, E. Set, M. Özdemir, On new inequalities of Simpson's type for s-convex functions Comput. Math. Appl., 60 (2010), 2191–2199. doi: 10.1016/j.camwa.2010.07.033. doi: 10.1016/j.camwa.2010.07.033
    [3] T. Du, Y. Li, Z. Yang, A generalization of Simpson's inequality via differentiable mapping using extended (s,m)-convex functions, Appl. Math. Comput., 293 (2017), 358–369. doi: 10.1016/j.amc.2016.08.045. doi: 10.1016/j.amc.2016.08.045
    [4] İ. İşcan, Hermite-Hadamard, Simpson-like type inequalities for differentiable harmonically convex functions, J. Math., 2014 (2014), 346305. doi: 10.1155/2014/346305. doi: 10.1155/2014/346305
    [5] M. Matloka, Some inequalities of Simpson type for h-convex functions via fractional integrals, Abstr. Appl. Anal., 2015 (2015), 956850. doi: 10.1155/2015/956850. doi: 10.1155/2015/956850
    [6] M. E. Ozdemir, A. O. Akdemir, H. Kavurmacı, On the Simpson's inequality for convex functions on the coordinates, Turkish Journal of Analysis and Number Theory, 2 (2014), 165–169. doi: 10.12691/tjant-2-5-2. doi: 10.12691/tjant-2-5-2
    [7] J. Park, On Simpson-like type integral inequalities for differentiable preinvex functions, Applied Mathematical Sciences, 7 (2013), 6009–6021. doi: 10.12988/ams.2013.39498. doi: 10.12988/ams.2013.39498
    [8] J. Chen, X. Huang, Some new inequalities of Simpson's type for s-convex functions via fractional integrals, Filomat, 31 (2017), 4989–4997. doi: 10.2298/FIL1715989C. doi: 10.2298/FIL1715989C
    [9] M. Iqbal, S. Qaisar, S. Hussain, On Simpson's type inequalities utilizing fractional integrals, J. Comput. Anal. Appl., 23 (2017), 1137–1145.
    [10] M. Ali, H. Kara, J. Tariboon, S. Asawasamrit, H. Budak, F. Hezenci, Some new Simpson's-formula-type inequalities for twice-differentiable convex functions via generalized fractional operators, Symmetry, 13 (2021), 2249. doi: 10.3390/sym13122249. doi: 10.3390/sym13122249
    [11] M. Vivas-Cortez, T. Abdeljawad, P. Mohammed, Y. Rangel-Oliveros, Simpson's integral inequalities for twice differentiable convex functions, Math. Probl. Eng., 2020 (2020), 1936461. doi: 10.1155/2020/1936461. doi: 10.1155/2020/1936461
    [12] T. Abdeljawad, S. Rashid, Z. Hammouch, İ. İşcan, Y. M. Chu, Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications, Adv. Differ. Equ., 2020 (2020), 496. doi: 10.1186/s13662-020-02955-9. doi: 10.1186/s13662-020-02955-9
    [13] S. Butt, A. Akdemir, M. Bhatti, M. Nadeem, New refinements of Chebyshev-Pólya-Szegö-type inequalities via generalized fractional integral operators, J. Inequal. Appl., 2020 (2020), 157. doi: 10.1186/s13660-020-02425-6. doi: 10.1186/s13660-020-02425-6
    [14] S. Butt, E. Set, S. Yousaf, T. Abdeljawad, W. Shatanawi, Generalized integral inequalities for ABK-fractional integral operators, AIMS Mathematics, 6 (2021), 10164–10191. doi: 10.3934/math.2021589. doi: 10.3934/math.2021589
    [15] S. Butt, S. Yousaf, A. Asghar, K. Khan, H. Moradi, New Fractional Hermite-Hadamard-Mercer Inequalities for Harmonically Convex Function, J. Funct. Space., 2021 (2021), 5868326. doi:10.1155/2021/5868326. doi: 10.1155/2021/5868326
    [16] F. Ertuǧral, M. Sarikaya, Simpson type integral inequalities for generalized fractional integral, RACSAM, 113 (2019), 3115–3124. doi: 10.1007/s13398-019-00680-x. doi: 10.1007/s13398-019-00680-x
    [17] S. Hussain, J. Khalid, Y. Chu, Some generalized fractional integral Simpson's type inequalities with applications, AIMS Mathematics, 5 (2020), 5859–5883. doi: 10.3934/math.2020375. doi: 10.3934/math.2020375
    [18] A. Kashuri, B. Meftah, P. Mohammed, Some weighted Simpson type inequalities for differentiable s-convex functions and their applications, Journal of Fractional Calculus and Nonlinear Systems, 1 (2021), 75–94. doi: 10.48185/jfcns.v1i1.150. doi: 10.48185/jfcns.v1i1.150
    [19] A. Kashuri, P. Mohammed, T. Abdeljawad, F. Hamasalh, Y. Chu, New Simpson type integral inequalities for s-convex functions and their applications, Math. Probl. Eng., 2020 (2020), 8871988. doi: 10.1155/2020/8871988. doi: 10.1155/2020/8871988
    [20] S. Kermausuor, Simpson's type inequalities via the Katugampola fractional integrals for s-convex functions, Kragujev. J. Math., 45 (2021), 709–720.
    [21] C. Luo, T. Du, Generalized Simpson type inequalities involving Riemann-Liouville fractional integrals and their applications, Filomat, 34 (2020), 751–760. doi: 10.2298/FIL2003751L. doi: 10.2298/FIL2003751L
    [22] S. Rashid, A. Akdemir, F. Jarad, M. Noor, K. Noor, Simpson's type integral inequalities for κ-fractional integrals and their applications, AIMS Mathematics, 4 (2019), 1087–1100. doi: 10.3934/math.2019.4.1087. doi: 10.3934/math.2019.4.1087
    [23] M. Sarıkaya, H. Budak, S. Erden, On new inequalities of Simpson's type for generalized convex functions, Korean J. Math., 27 (2019), 279–295. doi: 10.11568/kjm.2019.27.2.279. doi: 10.11568/kjm.2019.27.2.279
    [24] E. Set, A. Akdemir, M. Özdemir, Simpson type integral inequalities for convex functions via Riemann-Liouville integrals, Filomat, 31 (2017), 4415–4420. doi: 10.2298/FIL1714415S. doi: 10.2298/FIL1714415S
    [25] H. Lei, G. Hu, J. Nie, T. Du, Generalized Simpson-type inequalities considering first derivatives through the k-Fractional Integrals, IJAM, 50 (2020), 1–8.
    [26] H. Budak, S. Erden, M. Ali, Simpson and Newton type inequalities for convex functions via newly defined quantum integrals, Math. Meth. Appl. Sci., 44 (2021), 378–390. doi: 10.1002/mma.6742. doi: 10.1002/mma.6742
    [27] J. Hua, B. Y. Xi, F. Qi, Some new inequalities of Simpson type for strongly s-convex functions, Afr. Mat., 26 (2015), 741–752. doi: 10.1007/s13370-014-0242-2. doi: 10.1007/s13370-014-0242-2
    [28] S. Hussain, S. Qaisar, More results on Simpson's type inequality through convexity for twice differentiable continuous mappings, SpringerPlus, 5 (2016), 77. doi: 10.1186/s40064-016-1683-x. doi: 10.1186/s40064-016-1683-x
    [29] Y. Li, T. Du, Some Simpson type integral inequalities for functions whose third derivatives are (α,m)-GA-convex functions, J. Egypt. Math. Soc., 24 (2016), 175–180. doi: 10.1016/j.joems.2015.05.009. doi: 10.1016/j.joems.2015.05.009
    [30] Z. Liu, An inequality of Simpson type, Proc. R. Soc. A, 461 (2005), 2155–2158. doi: 10.1098/rspa.2005.1505. doi: 10.1098/rspa.2005.1505
    [31] W. Liu, Some Simpson type inequalities for h-convex and (α,m)-convex functions, J. Comput. Anal. Appl., 16 (2014), 1005–1012.
    [32] S. S. Dragomir, R. Agarwal, P. Cerone, On Simpson's inequality and applications, J. Inequal. Appl., 5 (2000), 533–579. doi: 10.1155/S102558340000031X. doi: 10.1155/S102558340000031X
    [33] M. Sarikaya, E. Set, M. Özdemir, On new inequalities of Simpson's type for functions whose second derivatives absolute values are convex, J. Appl. Math. Stat. Inf., 9 (2013), 37–45.
    [34] H. Budak, H. Kara, F. Hezenci, Fractional Simpson type inequalities for twice differentiable functions, submitted for publication.
    [35] F. Hezenci, H. Budak, H. Kara, New version of Fractional Simpson type inequalities for twice differentiable functions, Adv. Differ. Equ., 2021 (2021), 460. doi: 10.1186/s13662-021-03615-2. doi: 10.1186/s13662-021-03615-2
    [36] M. Sarikaya, F. Ertugral, On the generalized Hermite-Hadamard inequalities, Ann. Univ. Craiova-Mat., 47 (2020), 193–213.
    [37] A. Kashuri, E. Set, R. Liko, Some new fractional trapezium-type inequalities for preinvex functions, Fractal Fract., 3 (2019), 12. doi: 10.3390/fractalfract3010012. doi: 10.3390/fractalfract3010012
    [38] H. Budak, F. Ertuǧral, E. Pehlivan, Hermite-Hadamard type inequalities for twice differantiable functions via generalized fractional integrals, Filomat, 33 (2019), 4967–4979. doi: 10.2298/FIL1915967B. doi: 10.2298/FIL1915967B
    [39] H. Budak, E. Pehlivan, P. Kösem, On new extensions of Hermite-Hadamard inequalities for generalized fractional integrals, Communications in Mathematical Analysis, 18 (2021), 73–88. doi: 10.22130/SCMA.2020.121963.759. doi: 10.22130/SCMA.2020.121963.759
    [40] H. Budak, S. Yildirim, H. Kara, H. Yildirim, On new generalized inequalities with some parameters for coordinated convex functions via generalized fractional integrals, Math. Meth. Appl. Sci., 44 (2021), 13069–13098. doi: 10.1002/mma.7610. doi: 10.1002/mma.7610
    [41] P. Mohammed, M. Sarikaya, On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Math., 372 (2020), 112740. doi: 10.1016/j.cam.2020.112740. doi: 10.1016/j.cam.2020.112740
    [42] X. You, M. Ali, H. Budak, P. Agarwal, Y. Chu, Extensions of Hermite–Hadamard inequalities for harmonically convex functions via generalized fractional integrals, J. Inequl. Appl., 2021 (2021), 102. doi: 10.1186/s13660-021-02638-3. doi: 10.1186/s13660-021-02638-3
    [43] D. Zhao, M. Ali, A. Kashuri, H. Budak, M. Sarikaya, Hermite–Hadamard-type inequalities for the interval-valued approximately h-convex functions via generalized fractional integrals, J. Inequal. Appl., 2020 (2020), 222. doi: 10.1186/s13660-020-02488-5. doi: 10.1186/s13660-020-02488-5
  • This article has been cited by:

    1. N. Kamouche, S. Ghomrani, B. Meftah, Fractional Simpson like type inequalities for differentiable s-convex functions, 2022, 18, 1339-0015, 73, 10.2478/jamsi-2022-0006
    2. Saad Ihsan Butt, Saima Rashid, Iram Javed, Khuram Ali Khan, Rostin Matendo Mabela, Behrouz Parsa Moghaddam, New Fractional Estimates of Simpson-Mercer Type for Twice Differentiable Mappings Pertaining to Mittag-Leffler Kernel, 2022, 2022, 2314-8888, 1, 10.1155/2022/4842344
    3. Fatih Hezenci, Hüseyin Budak, Some Riemann–Liouville fractional integral inequalities of corrected Euler–Maclaurin-type, 2024, 32, 0971-3611, 1309, 10.1007/s41478-024-00753-0
    4. Fatih Hezenci, Martin Bohner, Hüseyin Budak, Fractional midpoint-type inequalities for twice-differentiable functions, 2023, 37, 0354-5180, 8131, 10.2298/FIL2324131H
    5. Fatih Hezenci, Hüseyin Budak, Hasan Kara, Praveen Agarwal, 2024, 9780443185052, 21, 10.1016/B978-0-44-318505-2.00008-8
    6. N. Boutelhig, B. Meftah, W. Saleh, A. Lakhdari, Parameterized Simpson-like inequalities for differentiable Bounded and Lipschitzian functions with application example from management science, 2023, 19, 1339-0015, 79, 10.2478/jamsi-2023-0005
    7. Fatih Hezenci, A Note on Fractional Simpson Type Inequalities for Twice Differentiable Functions, 2023, 73, 1337-2211, 675, 10.1515/ms-2023-0049
    8. Wali Haider, Hüseyin Budak, Asia Shehzadi, Fatih Hezenci, Haibo Chen, A comprehensive study on Milne-type inequalities with tempered fractional integrals, 2024, 2024, 1687-2770, 10.1186/s13661-024-01855-1
    9. Fatih Hezenci, Hüseyin Budak, SOME PERTURBED NEWTON TYPE INEQUALITIES FOR RIEMANN–LIOUVILLE FRACTIONAL INTEGRALS, 2023, 53, 0035-7596, 10.1216/rmj.2023.53.1117
    10. Fatih Hezenci, Hüseyin Budak, A note on fractional Simpson-like type inequalities for functions whose third derivatives are convex, 2023, 37, 0354-5180, 3715, 10.2298/FIL2312715H
    11. Fatih Hezenci, Hüseyin Budak, Pinar Kösem, A NEW VERSION OF NEWTON’S INEQUALITIES FOR RIEMANN–LIOUVILLE FRACTIONAL INTEGRALS, 2023, 53, 0035-7596, 10.1216/rmj.2023.53.49
    12. Hüseyin Budak, Fatih Hezenci, Hasan Kara, Mehmet Zeki Sarikaya, Bounds for the Error in Approximating a Fractional Integral by Simpson’s Rule, 2023, 11, 2227-7390, 2282, 10.3390/math11102282
    13. Fatih Hezenci, Hüseyin Budak, Muhammad Amer Latif, Hermite–Hadamard-type inequalities arising from tempered fractional integrals including twice-differentiable functions, 2024, 76, 1027-3190, 1395, 10.3842/umzh.v76i9.7640
    14. Fatih Hezenci, Hüseyin Budak, Hasan Kara, Umut Baş, Novel results of Milne-type inequalities involving tempered fractional integrals, 2024, 2024, 1687-2770, 10.1186/s13661-023-01818-y
    15. Fatih Hezenci, Hasan Kara, Hüseyin Budak, New results on Bullen-type inequalities for coordinated convex functions obtained by using conformable fractional integrals, 2024, 76, 1027-3190, 1691, 10.3842/umzh.v76i11.7989
    16. Qi Liu, Muhammad Uzair Awan, Bandar Bin-Mohsin, Muhammad Zakria Javed, Loredana Ciurdariu, Badreddine Meftah, Bridging Pre-Invex Mappings and Fractional Integrals: A Pathway to Iterative Schemes via Error Boundaries of Maclaurin’s Rule, 2024, 8, 2504-3110, 734, 10.3390/fractalfract8120734
    17. Fatih Hezenci, Inequalities with parameters for twice-differentiable functions involving Riemann-Liouville fractional integrals, 2024, 38, 0354-5180, 3275, 10.2298/FIL2409275H
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2329) PDF downloads(123) Cited by(17)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog