Research article

New Simpson type inequalities for twice differentiable functions via generalized fractional integrals

  • Received: 26 October 2021 Accepted: 06 December 2021 Published: 10 December 2021
  • MSC : 26A33, 26D07, 26D10, 26D15

  • Fractional versions of Simpson inequalities for differentiable convex functions are extensively researched. However, Simpson type inequalities for twice differentiable functions are also investigated slightly. Hence, we establish a new identity for twice differentiable functions. Furthermore, by utilizing generalized fractional integrals, we prove several Simpson type inequalities for functions whose second derivatives in absolute value are convex.

    Citation: Xuexiao You, Fatih Hezenci, Hüseyin Budak, Hasan Kara. New Simpson type inequalities for twice differentiable functions via generalized fractional integrals[J]. AIMS Mathematics, 2022, 7(3): 3959-3971. doi: 10.3934/math.2022218

    Related Papers:

  • Fractional versions of Simpson inequalities for differentiable convex functions are extensively researched. However, Simpson type inequalities for twice differentiable functions are also investigated slightly. Hence, we establish a new identity for twice differentiable functions. Furthermore, by utilizing generalized fractional integrals, we prove several Simpson type inequalities for functions whose second derivatives in absolute value are convex.



    加载中


    [1] M. Alomari, M. Darus, S. Dragomir, New inequalities of Simpson's type for $\mathit{s}$-convex functions with applications, Res. Rep. Coll., 12 (2009), 9.
    [2] M. Sarikaya, E. Set, M. Özdemir, On new inequalities of Simpson's type for $s$-convex functions Comput. Math. Appl., 60 (2010), 2191–2199. doi: 10.1016/j.camwa.2010.07.033. doi: 10.1016/j.camwa.2010.07.033
    [3] T. Du, Y. Li, Z. Yang, A generalization of Simpson's inequality via differentiable mapping using extended $(s, m)$-convex functions, Appl. Math. Comput., 293 (2017), 358–369. doi: 10.1016/j.amc.2016.08.045. doi: 10.1016/j.amc.2016.08.045
    [4] İ. İşcan, Hermite-Hadamard, Simpson-like type inequalities for differentiable harmonically convex functions, J. Math., 2014 (2014), 346305. doi: 10.1155/2014/346305. doi: 10.1155/2014/346305
    [5] M. Matloka, Some inequalities of Simpson type for h-convex functions via fractional integrals, Abstr. Appl. Anal., 2015 (2015), 956850. doi: 10.1155/2015/956850. doi: 10.1155/2015/956850
    [6] M. E. Ozdemir, A. O. Akdemir, H. Kavurmacı, On the Simpson's inequality for convex functions on the coordinates, Turkish Journal of Analysis and Number Theory, 2 (2014), 165–169. doi: 10.12691/tjant-2-5-2. doi: 10.12691/tjant-2-5-2
    [7] J. Park, On Simpson-like type integral inequalities for differentiable preinvex functions, Applied Mathematical Sciences, 7 (2013), 6009–6021. doi: 10.12988/ams.2013.39498. doi: 10.12988/ams.2013.39498
    [8] J. Chen, X. Huang, Some new inequalities of Simpson's type for $s$-convex functions via fractional integrals, Filomat, 31 (2017), 4989–4997. doi: 10.2298/FIL1715989C. doi: 10.2298/FIL1715989C
    [9] M. Iqbal, S. Qaisar, S. Hussain, On Simpson's type inequalities utilizing fractional integrals, J. Comput. Anal. Appl., 23 (2017), 1137–1145.
    [10] M. Ali, H. Kara, J. Tariboon, S. Asawasamrit, H. Budak, F. Hezenci, Some new Simpson's-formula-type inequalities for twice-differentiable convex functions via generalized fractional operators, Symmetry, 13 (2021), 2249. doi: 10.3390/sym13122249. doi: 10.3390/sym13122249
    [11] M. Vivas-Cortez, T. Abdeljawad, P. Mohammed, Y. Rangel-Oliveros, Simpson's integral inequalities for twice differentiable convex functions, Math. Probl. Eng., 2020 (2020), 1936461. doi: 10.1155/2020/1936461. doi: 10.1155/2020/1936461
    [12] T. Abdeljawad, S. Rashid, Z. Hammouch, İ. İşcan, Y. M. Chu, Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications, Adv. Differ. Equ., 2020 (2020), 496. doi: 10.1186/s13662-020-02955-9. doi: 10.1186/s13662-020-02955-9
    [13] S. Butt, A. Akdemir, M. Bhatti, M. Nadeem, New refinements of Chebyshev-Pólya-Szegö-type inequalities via generalized fractional integral operators, J. Inequal. Appl., 2020 (2020), 157. doi: 10.1186/s13660-020-02425-6. doi: 10.1186/s13660-020-02425-6
    [14] S. Butt, E. Set, S. Yousaf, T. Abdeljawad, W. Shatanawi, Generalized integral inequalities for ABK-fractional integral operators, AIMS Mathematics, 6 (2021), 10164–10191. doi: 10.3934/math.2021589. doi: 10.3934/math.2021589
    [15] S. Butt, S. Yousaf, A. Asghar, K. Khan, H. Moradi, New Fractional Hermite-Hadamard-Mercer Inequalities for Harmonically Convex Function, J. Funct. Space., 2021 (2021), 5868326. doi:10.1155/2021/5868326. doi: 10.1155/2021/5868326
    [16] F. Ertuǧral, M. Sarikaya, Simpson type integral inequalities for generalized fractional integral, RACSAM, 113 (2019), 3115–3124. doi: 10.1007/s13398-019-00680-x. doi: 10.1007/s13398-019-00680-x
    [17] S. Hussain, J. Khalid, Y. Chu, Some generalized fractional integral Simpson's type inequalities with applications, AIMS Mathematics, 5 (2020), 5859–5883. doi: 10.3934/math.2020375. doi: 10.3934/math.2020375
    [18] A. Kashuri, B. Meftah, P. Mohammed, Some weighted Simpson type inequalities for differentiable $ s $-convex functions and their applications, Journal of Fractional Calculus and Nonlinear Systems, 1 (2021), 75–94. doi: 10.48185/jfcns.v1i1.150. doi: 10.48185/jfcns.v1i1.150
    [19] A. Kashuri, P. Mohammed, T. Abdeljawad, F. Hamasalh, Y. Chu, New Simpson type integral inequalities for $ s $-convex functions and their applications, Math. Probl. Eng., 2020 (2020), 8871988. doi: 10.1155/2020/8871988. doi: 10.1155/2020/8871988
    [20] S. Kermausuor, Simpson's type inequalities via the Katugampola fractional integrals for s-convex functions, Kragujev. J. Math., 45 (2021), 709–720.
    [21] C. Luo, T. Du, Generalized Simpson type inequalities involving Riemann-Liouville fractional integrals and their applications, Filomat, 34 (2020), 751–760. doi: 10.2298/FIL2003751L. doi: 10.2298/FIL2003751L
    [22] S. Rashid, A. Akdemir, F. Jarad, M. Noor, K. Noor, Simpson's type integral inequalities for $\mathit{\kappa }$-fractional integrals and their applications, AIMS Mathematics, 4 (2019), 1087–1100. doi: 10.3934/math.2019.4.1087. doi: 10.3934/math.2019.4.1087
    [23] M. Sarıkaya, H. Budak, S. Erden, On new inequalities of Simpson's type for generalized convex functions, Korean J. Math., 27 (2019), 279–295. doi: 10.11568/kjm.2019.27.2.279. doi: 10.11568/kjm.2019.27.2.279
    [24] E. Set, A. Akdemir, M. Özdemir, Simpson type integral inequalities for convex functions via Riemann-Liouville integrals, Filomat, 31 (2017), 4415–4420. doi: 10.2298/FIL1714415S. doi: 10.2298/FIL1714415S
    [25] H. Lei, G. Hu, J. Nie, T. Du, Generalized Simpson-type inequalities considering first derivatives through the $ \mathit{k}$-Fractional Integrals, IJAM, 50 (2020), 1–8.
    [26] H. Budak, S. Erden, M. Ali, Simpson and Newton type inequalities for convex functions via newly defined quantum integrals, Math. Meth. Appl. Sci., 44 (2021), 378–390. doi: 10.1002/mma.6742. doi: 10.1002/mma.6742
    [27] J. Hua, B. Y. Xi, F. Qi, Some new inequalities of Simpson type for strongly $s$-convex functions, Afr. Mat., 26 (2015), 741–752. doi: 10.1007/s13370-014-0242-2. doi: 10.1007/s13370-014-0242-2
    [28] S. Hussain, S. Qaisar, More results on Simpson's type inequality through convexity for twice differentiable continuous mappings, SpringerPlus, 5 (2016), 77. doi: 10.1186/s40064-016-1683-x. doi: 10.1186/s40064-016-1683-x
    [29] Y. Li, T. Du, Some Simpson type integral inequalities for functions whose third derivatives are ($\alpha \mathit{, m}$)-GA-convex functions, J. Egypt. Math. Soc., 24 (2016), 175–180. doi: 10.1016/j.joems.2015.05.009. doi: 10.1016/j.joems.2015.05.009
    [30] Z. Liu, An inequality of Simpson type, Proc. R. Soc. A, 461 (2005), 2155–2158. doi: 10.1098/rspa.2005.1505. doi: 10.1098/rspa.2005.1505
    [31] W. Liu, Some Simpson type inequalities for $h$-convex and ($\alpha \mathit{, m}$)-convex functions, J. Comput. Anal. Appl., 16 (2014), 1005–1012.
    [32] S. S. Dragomir, R. Agarwal, P. Cerone, On Simpson's inequality and applications, J. Inequal. Appl., 5 (2000), 533–579. doi: 10.1155/S102558340000031X. doi: 10.1155/S102558340000031X
    [33] M. Sarikaya, E. Set, M. Özdemir, On new inequalities of Simpson's type for functions whose second derivatives absolute values are convex, J. Appl. Math. Stat. Inf., 9 (2013), 37–45.
    [34] H. Budak, H. Kara, F. Hezenci, Fractional Simpson type inequalities for twice differentiable functions, submitted for publication.
    [35] F. Hezenci, H. Budak, H. Kara, New version of Fractional Simpson type inequalities for twice differentiable functions, Adv. Differ. Equ., 2021 (2021), 460. doi: 10.1186/s13662-021-03615-2. doi: 10.1186/s13662-021-03615-2
    [36] M. Sarikaya, F. Ertugral, On the generalized Hermite-Hadamard inequalities, Ann. Univ. Craiova-Mat., 47 (2020), 193–213.
    [37] A. Kashuri, E. Set, R. Liko, Some new fractional trapezium-type inequalities for preinvex functions, Fractal Fract., 3 (2019), 12. doi: 10.3390/fractalfract3010012. doi: 10.3390/fractalfract3010012
    [38] H. Budak, F. Ertuǧral, E. Pehlivan, Hermite-Hadamard type inequalities for twice differantiable functions via generalized fractional integrals, Filomat, 33 (2019), 4967–4979. doi: 10.2298/FIL1915967B. doi: 10.2298/FIL1915967B
    [39] H. Budak, E. Pehlivan, P. Kösem, On new extensions of Hermite-Hadamard inequalities for generalized fractional integrals, Communications in Mathematical Analysis, 18 (2021), 73–88. doi: 10.22130/SCMA.2020.121963.759. doi: 10.22130/SCMA.2020.121963.759
    [40] H. Budak, S. Yildirim, H. Kara, H. Yildirim, On new generalized inequalities with some parameters for coordinated convex functions via generalized fractional integrals, Math. Meth. Appl. Sci., 44 (2021), 13069–13098. doi: 10.1002/mma.7610. doi: 10.1002/mma.7610
    [41] P. Mohammed, M. Sarikaya, On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Math., 372 (2020), 112740. doi: 10.1016/j.cam.2020.112740. doi: 10.1016/j.cam.2020.112740
    [42] X. You, M. Ali, H. Budak, P. Agarwal, Y. Chu, Extensions of Hermite–Hadamard inequalities for harmonically convex functions via generalized fractional integrals, J. Inequl. Appl., 2021 (2021), 102. doi: 10.1186/s13660-021-02638-3. doi: 10.1186/s13660-021-02638-3
    [43] D. Zhao, M. Ali, A. Kashuri, H. Budak, M. Sarikaya, Hermite–Hadamard-type inequalities for the interval-valued approximately $h$-convex functions via generalized fractional integrals, J. Inequal. Appl., 2020 (2020), 222. doi: 10.1186/s13660-020-02488-5. doi: 10.1186/s13660-020-02488-5
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1962) PDF downloads(121) Cited by(14)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog