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1. Introduction

It is well known that Simpson’s inequality is used in several branches of mathematics in the
literature. For four times continuously differentiable functions, the classical Simpson’s inequality is
expressed as follows:

Theorem 1. Let F : [a,b] — R denote a four times continuously differentiable mapping on (a, b) , and
let ||F(4) ||OO = sup |F(4)(x)| < oo. Then, the following inequality holds:
x€(a,b)

1 b
_b—a\f; F(x)dx

The convex theory is an available way to solve a large number of problems from various branches
of mathematics. Hence, many authors have researched on the results of Simpson-type for convex
functions. More precisely, some inequalities of Simpson’s type for s-convex functions is proved by
using differentiable functions [1]. In the paper [2], it is investigated the new variants of Simpson’s
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type inequalities based on differentiable convex mapping. For more information about Simpson type
inequalities for various convex classes, we refer the reader to Refs. [3—7] and the references therein.

In the papers [8] and [9], it is extended the Simpson inequalities for differentiable functions to
Riemann-Liouville fractional integrals. Thus, several paper focused on fractional Simpson and other
fractional integral inequalities for various fractional integral operators [10-25]. For further information
about to Simpson type inequalities, we refer the reader to Refs. [26—-32] and the references therein. In
the paper [33], Sarikaya et al. investigated several Simpson type inequalities for functions whose
second derivatives are convex.

The first and second results on fractional Simpson inequality for twice differentiable functions were
established in [34] and [35], respectively. With the help of these articles, the aim of this paper is to
extend the results of given in [33] for twice differentiable functions to generalized fractional integrals.
The general structure of the paper consists of four chapters including an introduction. The remaining
part of the paper proceeds as follows: In Section 2, after giving a general literature survey and definition
of generalized fractional integral operators, we give an equality for twice differentiable functions
involving generalized fractional integrals. In Section 3, for utilizing this equality, it is considered
several Simpson type inequalities for mapping whose second derivatives are convex. In the last section,
some conclusions and further directions of research are discussed.

The generalized fractional integrals were introduced by Sarikaya and Ertugral as follows:

Definition 1. [36] Let us note that a function ¢ : [0, c0) — [0, 00) satisfies the following condition:

f<p()dt<
0 t

We consider the following left-sided and right-sided generalized fractional integral operators

a+I¢,F(x):f ‘”i Vs, x>a (1.1)

and

b LF(x) = f Pl - )F(t)dt x<b, (12)

respectively.

The most significant feature of generalized fractional integrals is that they generalize some types
of fractional integrals such as Riemann-Liouville fractional integral, k-Riemann-Liouville fractional
integral, Hadamard fractional integrals, Katugampola fractional integrals, conformable fractional
integral, etc. These important special cases of the integral operators (1.1) and (1.2) are mentioned
as follows:

1) Let us consider ¢ (¢) = t. Then, the operators (1.1) and (1.2) reduce to the Riemann integral.

2) If we choose ¢ (1) = % and a@ > 0, then the operators (1.1) and (1.2) reduce to the Riemann-
Liouville fractional integrals J F(x) and J;_F(x), respectively. Here, I is Gamma function.

3) For ¢ (1) = T, (l)t and o, k > O the operators (1.1) and (1.2) reduce to the k-Riemann-Liouville
fractional integrals J¢ ‘kF(x) and J;f_,kF(x), respectively. Here, I'; is k-Gamma function.
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In recent years, several papers have devoted to obtain inequalities for generalized fractional integrals
[37—43].

The first result on fractional Simpson inequality for twice differentiable functions was proved by
Budak et al. in [34] as follows:

Theorem 2. Suppose F : [a,b] — R is an twice differentiable mapping (a, b) so that F” € L, ([a, b]).
Suppose also the mapping |F"'| is convex on [a, b] . Then, we have the following inequality

a+b 2710 (@ + 1)
)+F(b)] b—ar [ (442)+

)+ T,

ey F (@)

‘é[F(a)+4F(
(b-a)

A@) [IF” @I+ IF” ®)I].

2
1 a+ 1\ 3 1
A(a) = + -
@=76+2 [“( 3 ) @+ 1] 8
The other version of fractional Simpson inequality for twice differentiable functions was proved
in [35] as follows:

Here,

Lemma 1. [35] Let us consider the function @ : [0, 1] —» R by w(t) = % + @t — 1 witha > 0.

1
1-a?
f|w(t)|dt = m
0

2) If @ > L, then there exist a real number c, such that 0 < c, < 1 and we obtain the following

2’
a+2 _ 2 o,
f |@(t)| dt = ((Cw) _a 2cv>ca+(a+1)(ca))+ -«

1) If0<a< %,thenwehave

equality
3 3(@+2)

Theorem 3. [35] Assume that F : [a,b] — R is an absolutely continuous mapping (a, b) such that
F” € Ly ([a, b)) . Assume also that the mapping |F”| is convex on [a, b]. Then, we have the following

inequality
271 (@ + 1 +b +b
( ) J;)X— (a 2 ) J2’+ (a 2 )

1 a+b
‘E[F(a)+4F(T)+F(b)] - b

L b-a ay’
-~ 8(a+ 1)

Here, Q () is defined by

' (1.3)

Qi() [IF” (@l + IF” ®)I] .-

1-a?
3(@+2)’ 0O<a<s,
Q(a) =
(€)™ (1=2a)ca+(a+D)(ce)? 1-a? 1
2( e 3 )+3(a+2>, > 3.
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2. Some equalities for twice differentiable functions

In this section, we give an identity on twice differentiable functions for using the main results.

Lemma 2. Let F : [a,b] — R be an absolutely continuous mapping (a, b) such that F” € L, ([a, b]).
Then, the following equality

1 a+b 1 a+b a+b
6[F(a)+4F( > )+F(b)]——2,r(1) [a+I¢F( 7 ) b_IF( > )
1

_ (b-ay 2 1+t 1—t 1+t 1—t

2.1)

0
\ (55

is valid. Here, Q(t) = f‘I'(s) ds and Y (s) = f %du.
0 0

Proof. By using integration by parts, we obtain

(2.2)

1
K, = f(Q(l)—Q(t)—%T(l)(l—t))F”(lztb+12_ta)dt
0

2(Q(1) - 271 : _
2em-; ()>F (“b) = af( (1) - T())F’(l—”b ! ta)dt
0

b-a 2
2(QM=2rM) _(a+b) 47D 8T(1) _(a+b
- b-a F( 2 )+3(b—a)2F(b)+3(b—a)2F( 2 )

b— t _
f 2 (1”b+1 ta)dt.
- a) t 2 2

With help of the Eq (2.2) and using the change of the variable x = ' + Zta for ¢ € [0, 1], it can be
rewritten as follows

2(QM=27M) _ (a+b)  4T() 8Y (1) _[(a+b
K - F Fb F 2.3
! b—a ( 2 )+3(b—a)2 O+ 30—y ( 2 ) 2
4 a+b
_—(b_a)z b—Ith( 2 )
Similarly, we get
1
k= [lem-e0-Frma-s)e(He Ss)a a4

0
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2 L1+t 1-1¢

2(Q() =270
_2(em 30%«+ﬁ+2
b-a 2 b

—da

s _

2(Q) -2
_2(em-3 ())F,(a+b)+ aray oo 8T F(a+b)
b—a 2 ) 3(b-ay 3(b-a? \ 2

1
4 e((59)1) (1+: 1-1
_(b_a)zf t F( o — b)dt
0

2(Q)-2r
(@) -2 ())F,(a+b)+ aray oo 8T I__(a+b)
b—a 2 3(b - a) 3(b-a) \ 2

4 a+b
- L LF—].
w—#”¢(2)

From Egs (2.3) and (2.4), we have

K+ K, (25)
_ w a+b B L a+b a+b
= 3 b—ay [F (a) + 4F( > ) +F (b)] b_ar [a+I¢F( > ) +p I‘pF( > ) .

Multiplying the both sides of (2.5) by (é’,;fl))z , we obtain Eq (2.1). This ends the proof of Lemma 2. 0O

3. New Simpson’s type inequalities for twice differentiable functions

In this section, we establish several Simpson type inequalities for mapping whose second derivatives
are convex.

Theorem 4. Let us consider that the assumptions of Lemma 2 are valid. Let us also consider that the
mapping |F"”| is convex on [a, b]. Then, we get the following inequality

1 a+b 1 a+b a+b
|6 e (52)Fo| - g [ (57) o1 (57)

(b —a)’
87 (1)

| 3.1

P IF” (@) + IF” )],
where Y is defined by

1
¥ = f‘Q(l)—Q(t)—%T(l)(l —1)|dt.
0
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Proof. By taking modulus in Lemma 2, we have

1 a+b 1 a+b a+b
|6 |:F(a)+4F(T)+F(b):|—m|:a+I¢F(T) +5_ [¢F( > ) | (32)
1
(b - a) 2
< 8T (1) f‘Q(l)—Q(t)—gT(l)(l—t)'
0
[F”(lglb+~l%la) F”(lgia4~£§lb)]dt
By using convexity of |F”’|, we obtain
1 a+b 1 a+b a+b
8[F(Cl)+4F(T)+F(b)] - m[(ﬁ_LpF(T) +p_ Ith( 3 )'
(b B a) 17 1 =t 17
R f'ﬂ(l) a0 - 3raa-of (S)e o (L) F @
I+1\ _, 1- .,
+(T IF ()|+( > )|F (b)|]
1
_ (b-ay 2 , .
= 8T f'ﬂ(l)—ﬂ(t)—g'l’(l)(l—I)‘df[lF (@] +F" ()]
0
_ (b a) 12 12
= S Y IF @+ ol
This finishes the proof of Theorem 4. O

Remark 1. If we choose ¢ (t) = t in Theorem 4, then Theorem 4 reduces to [33, Theorem 2.2].

Remark 2. Let us consider ¢(t) =
inequality (1.3).

% in Theorem 4. Then, the inequality (3.1) reduces to the

Corollary 1. If we assign ¢ (t) = mt% in Theorem 4, then there exist a real number c* so that

0 < & < 1 and the following inequality holds:
1 a+b 26 (a + k a+b a+b
3 [F (a) + 4F (T) +F (b)] _ 2 Lilath Jo_iF (T) +Jg . F (T)

- a)t
k(b - a)*
——0O (o, b [IF” +|F” (b)].
S@th) (e, k) [IF” (@) + IF” ()]
Here, O(a, k) is defined by
k2—a? o
3k(a+2k)° 0< S %’
O, k) = 3.3
(e k) k(L o k200 ek ()’ Peo? a1 (3-3)
a+2k 3k k@420’ kO 2°
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Theorem 5. Let us note that the assumptions of Lemma 2 hold. If the mapping [F"|?, g > 1 is convex
on a, b], then we have the following inequality

1 a+b 1 a+b a+b
‘E[F(a)+4l:( 3 )+F(b):|-m[a+I¢F(T)+b_LpF( 3 )

(b —a)’
87 (1)

Here, % + é = 1and ¥, (p) is defined by
1 »
P
] i
0
Proof. By using the Holder inequality in inequality (3.2), we obtain

1 a+b 1 a+b a+b
|E[F(a)+4F > )+F(b)]_—2T(1) [a+I¢F(T)+b—I¢F( > )‘

1 1

1 P 1 q
(b-a)’ 2 P 1+t 1=t \[f
ST D) [fQ(l)—Q(t 3 dt] [fF (T’”T“) dt]
0

0

¥, (p) [IF” @ +F" B)]7 .

lPap (p) =

1

| b1 g
2 P L1+t 1 -1t
+ f‘Q(l)—Q(t)—gT(l)(l—r) dl] (fF ( > a+Tb) d]
0

0

(b—a)’
87 (1)

s
(!

(b—a)’
87 (1)

With the help of the convexity of [F”|?, we get
1 +1 77 q 77 q q
F O + (=] @)
1

1 a+b 1 a+b a+b
‘E[F(a)+4F( > ) +F (b )] 2‘1’(1) [a+I¢F(T)+b_I¢F( 5 )
» P
dt]
f‘Q(l)—Q(Z)

1 1
f‘Q(l) -Q@)
(1'*lyF”<>W (1;’)MW(bnﬂch]
0

S =
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x (3 F” )+ IF” <a>|4)"f N (IF" B +3IF” (a>|q)5}
4 4 ‘

This completes the proof of Theorem 5. O

Remark 3. Consider ¢ (t) = t in Theorem 5. Then, Theorem 5 reduces to [35, Corollary 1].

Remark 4. Ifit is chosen ¢ (t) = #;) in Theorem 5, then Theorem 5 reduces to [35, Theorem 4].

a
tk

Corollary 2. Let us consider ¢ (t) = @

in Theorem 5. Then, we have
2 (@+k)| ., _(a+b\ ., _[(a+b
——— |[if o + S if o

1 a+b
‘8 [F(a) +4F(T) +F(b)] — bt

L - ay’
- 8

=

Yi(a, p) [IF” @I +IF” D],

where

1 P
k ko 2 P
v - - #_Z(- .
«(@.p) {f‘a+k a+klk 3( 2 dt)
0

Theorem 6. Let us note that the assumptions of Lemma 2 hold. If the mapping [F"|?, g > 1 is convex
on [a, b], then we have the following inequality
a+b a+b
W IF (_2 ) b I¢F( : ) ‘

(2% + 22 IF” ()l + (W - W5 IF” (a)|‘1]‘lf
2

1 a+b
‘E[F(a)+4F(T)+F(b)]—

27 (1)

(b= (i
ST(C;) (\P‘f)l

+

(2% + P2 IF” (@)l + (W - W5 IF” (b)rf]‘lf
2

Here, ¥} is defined by in Theorem 4 and ¥ is defined by

1

Py = ft‘Q(l)—Q(t)— %‘I‘(l)(l —t)'dt.

0

Proof. By applying power-mean inequality in (3.2), we obtain
1 a+b 1 a+b a+b
—|F@)+4F|—— |+ F(B)| = === |aslF | —— | +»- LF
slrs e (*5) s r o] o (157) o 1 (57|

AIMS Mathematics Volume 7, Issue 3, 3959-3971.




3967

1=-1
(b —a)’
81 (1)

1
f‘Q(l) -Q() - %‘Y’(l)(l - t)‘dt]
0

Q=

‘Q(l) Q@) - zT(l)(l - t)‘

1+t 1-1
F”(—+ b+ — a)

q
dt
d]
q

dt

1-1
q

‘Q(l) -Q(() - %T(l) 1- t)‘ dt]

DS e

+t 1-1¢
F +—>b
|

X f‘Q(l)—Q(t)——T(l)(l —t)‘
0

Since |F”|? is convex, we have

1

2 1+1¢ 1—1t
fQ(l)—Q(t)—gT(l)(l—t) F (Tb 7 a)
0

1

< [lem-aw-ZFrma-of|[ S or e <a>|’f] d
0
(P4 +25) IF” (b)Y + (W = ¥5) IF” (@)l
2
and similarly
1
f‘Q(l) - —T(l) + 2‘I’(l)t— Q(t)’ F”( i ta %b) dt
0
(‘I’ + L) IF” (@)l + (¥ = ¥5) IF” (b)If
> .
Then, we obtain the desired result of Theorem 6. O

Remark 5. If we take ¢ (t) = t in Theorem 6, then Theorem 6 reduces to [33, Theorem 2.5].
Remark 6. Let us consider ¢ (t) = F(a) in Theorem 6. Then, Theorem 6 reduces to [35, Theorem 5].

Corollary 3. If we choose ¢ (1) = ( )tk in Theorem 6, then there exist a real number o so that

0 < 0% < 1 and we have the inequality
1 a+b 25T (@ + k) o a+b o a+b
'6 [F (a) + 4F(T) -+ F(b)] -———|iF > + J . F >
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(b-a) -1 | {©(a, k) + Ox(a, k) IF” (D)7 + (O1(a, k) — Ox(a, k) IF” (a)| 7
m (O (a, k) "« {( ) )

+ ((Gl(a’ k) + Oa(a, k) IF” (@) + (©1(a, k) = Ox(a, k)) IF” (b)lq);}
2 .

Here, O(a, k) is defined as in (3.3) and O,(a, k) is defined by

3 +ak—2a> 1
18k(a+3k) * O<a<sy,
0y (a, k) = sk s ,
2 k(og) * 3(k-2a)(c% ) +4(a+k) (k) + 32 rak—202 !
a3k T8k 18ka+3k) > ¥~ 2-

4. Conclusions

Fractional versions of Simpson inequalities for differentiable convex functions are investigated
extensively. On the other hand, Simpson type inequalities for twice differentiable functions are also
considered slightly. Hence, Simpson type inequality for twice differentiable functions by generalized
fractional integrals are established in this paper. Furthermore, we prove that our results generalize
the inequalities obtained by Sarikaya et al. [33] and Hezenci et al. [35]. In the future studies, authors
can try to generalize our results by utilizing different kind of convex function classes or other type
fractional integral operators.
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