Fractional operators with integral inequalities have attracted the interest of several mathematicians. Fractional inequalities are best utilized in mathematical science with their features and wide range of applications in optimization, modeling, engineering and artificial intelligence. In this article, we consider new variants of Simpson-Mercer type inequalities involving the Atangana-Baleanu (A-B) fractional integral operator for $ s $-convex functions. First, an integral identity, which acts as an auxiliary result for the main results is proved in the frame of fractional operator. Employing this new identity, some estimations of Simpson-Mercer type for $ s $-convex functions in the second sense are discussed. In addition, we study various new applications on Modified Bessel functions, special means and $ q $-digamma functions. These applications confirm the effectiveness and validity of the results and also bring a different dimension to the study.
Citation: Muhammad Tariq, Hijaz Ahmad, Soubhagya Kumar Sahoo, Artion Kashuri, Taher A. Nofal, Ching-Hsien Hsu. Inequalities of Simpson-Mercer-type including Atangana-Baleanu fractional operators and their applications[J]. AIMS Mathematics, 2022, 7(8): 15159-15181. doi: 10.3934/math.2022831
Fractional operators with integral inequalities have attracted the interest of several mathematicians. Fractional inequalities are best utilized in mathematical science with their features and wide range of applications in optimization, modeling, engineering and artificial intelligence. In this article, we consider new variants of Simpson-Mercer type inequalities involving the Atangana-Baleanu (A-B) fractional integral operator for $ s $-convex functions. First, an integral identity, which acts as an auxiliary result for the main results is proved in the frame of fractional operator. Employing this new identity, some estimations of Simpson-Mercer type for $ s $-convex functions in the second sense are discussed. In addition, we study various new applications on Modified Bessel functions, special means and $ q $-digamma functions. These applications confirm the effectiveness and validity of the results and also bring a different dimension to the study.
[1] | H. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213–231. https://doi.org/10.1016/j.cnsns.2018.04.019 doi: 10.1016/j.cnsns.2018.04.019 |
[2] | V. V. Kulish, J. L. Lage, Application of fractional calculus to fluid mechanics, J. Fluids Eng., 124 (2002), 803–806. https://doi.org/10.1115/1.1478062 doi: 10.1115/1.1478062 |
[3] | M. A. El-Shaed, Fractional calculus model of the semilunar heart valve vibrations, International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2003,711–714. https://doi.org/10.1115/DETC2003/VIB-48384 |
[4] | A. Atangana, Application of fractional calculus to epidemiology, In: Fractional dynamics, De Gruyter Open Poland, 2015,174–190. https://doi.org/10.1515/9783110472097-011 |
[5] | D. S. Mitrinović, J. E. Pečarić, A. M. Fink, Classical and new inequalities in analysis, Springer Dordrecht, 1993. https://doi.org/10.1007/978-94-017-1043-5 |
[6] | S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, Science direct working paper, 2003. Available from: https://ssrn.com/abstract=3158351. |
[7] | M. K. Bakula, J. Pečarić, J. Perić, Extensions of the Hermite-Hadamard inequality with applications, Math. Inequal. Appl., 12 (2012), 899–921. |
[8] | K. Mehrez, P. Agarwal, New Hermite-Hadamard type integral inequalities for convex functions and their applications, J. Comput. Appl. Math., 350 (2019), 274–285. https://doi.org/10.1016/j.cam.2018.10.022 doi: 10.1016/j.cam.2018.10.022 |
[9] | S. Khan, M. A. Khan, S. I. Butt, Y. M. Chu, A new bound for the Jensen gap pertaining twice differentiable functions with applications, Adv. Differ. Equ., 2020 (2020), 333. https://doi.org/10.1186/s13662-020-02794-8 doi: 10.1186/s13662-020-02794-8 |
[10] | A. M. Mercer, A variant of Jensens inequality, J. Ineqal. Pure Appl. Math., 2003. |
[11] | A. Matkovic, J. Pečarić, I. Perić, A variant of Jensens inequality of Mercers type for operators with applications, Linear Algebra Appl., 418 (2016), 551–564. https://doi.org/10.1016/j.laa.2006.02.030 doi: 10.1016/j.laa.2006.02.030 |
[12] | M. Niezgoda, A generalization of Mercer's result on convex functions, Nonlinear Anal., 71 (2009). |
[13] | M. Kian, Operator Jensen inequality for superquadratic functions, Linear Algebra Appl., 456 (2014), 82–87. https://doi.org/10.1016/j.laa.2012.12.011 doi: 10.1016/j.laa.2012.12.011 |
[14] | E. Anjidani, M. R. Changalvaiy, Reverse Jensen-Mercer type operator inequalities, Electron. J. Linear Algebra, 31 (2016), 87–99. https://doi.org/10.13001/1081-3810.3058 doi: 10.13001/1081-3810.3058 |
[15] | E. Anjidani, Jensen-Mercer operator inequalities involving superquadratic functions, Mediterr. J. Math., 15 (2018), 31. https://doi.org/10.1007/s00009-017-1058-8 doi: 10.1007/s00009-017-1058-8 |
[16] | M. Ali, A. R. Khan, Generalized integral Mercer's inequality and integral means, J. Inequal. Spec. Funct., 10 (2019), 60–76. |
[17] | M. J. V. Cortez, J. E. H. Hernandez, Una Variante de la desigualdad de Jensen-Mercer para funciones $ h$-convexas y funciones de operadores $ h$-convexas, MATUA, 4 (2017), 62–76. |
[18] | Q. Kang, S. I. Butt, W. Nazeer, M. Nadeem, J. Nasir, H. Yang, New variant of Hermite-Jensen-Mercer inequalities via Riemann-Liouville fractional integral operators, J. Math., 2020 (2020), 4303727. https://doi.org/10.1155/2020/4303727 doi: 10.1155/2020/4303727 |
[19] | M. Vivas-Cortez, M. S. Saleem, S. Sajid, M. S. Zahoor, A. Kashuri, Hermite-Jensen-Mercer-type inequalities via Caputo-Fabrizio fractional integral for $h$-convex function, Fractal Fract., 5 (2021), 269. https://doi.org/10.3390/fractalfract5040269 doi: 10.3390/fractalfract5040269 |
[20] | M. Vivas-Cortez, M. U. Awan, M. Z. Javed, A. Kashuri, M. A. Noor, K. I. Noor, Some new generalized $\kappa$-fractional Hermite-Hadamard-Mercer type integral inequalities and their applications, AIMS Math., 7 (2022), 3203–3220. https://doi.org/10.3934/math.2022177 doi: 10.3934/math.2022177 |
[21] | H. Hudzik, L. Maligranda, Some remarks on $s$-convex functions, Aequationes Math., 48 (1994), 100–111. https://doi.org/10.1007/BF01837981 doi: 10.1007/BF01837981 |
[22] | S. S. Dragomir, S. Fitzpatrick, The Jensen inequality for $s$-Breckner convex functions in linear spaces, Demonstr. Math., 33 (2000), 43–50 https://doi.org/10.1515/dema-2000-0106 doi: 10.1515/dema-2000-0106 |
[23] | X. Chen, New convex functions in linear spaces and Jensen's discrete inequality, J. Inequal. Appl., 2013 (2013), 472. https://doi.org/10.1186/1029-242X-2013-472 doi: 10.1186/1029-242X-2013-472 |
[24] | P. Burai, A. Házy, T. Juhász, On approximately Breckner $s$-convex functions, Control Cybern., 40 (2011), 91–99. |
[25] | S. I. Butt, J. Nasir, S. Qaisar, K. M. Abualnaja, $k$-fractional variants of Hermite-Mercer-type inequalities via convexity with applications, J. Funct. Spaces, 2021 (2021), 5566360. https://doi.org/10.1155/2021/5566360 doi: 10.1155/2021/5566360 |
[26] | M. Alomari, M. Darus, S. S. Dragomir, New inequalities of Simpson's type for $s$-convex functions with applications, Research report collection, 2009. |
[27] | M. Z. Sarikaya, E. Set, M. E. Özdemir, On new inequalities of simpson's type for $s$-convex functions, Comput. Math. Appl., 60 (2010), 2191–2199. https://doi.org/10.1016/j.camwa.2010.07.033 doi: 10.1016/j.camwa.2010.07.033 |
[28] | J. Chen, X. Huang, Some new inequalities of Simpson's type for $s$-convex functions via fractional integrals, Filomat, 31 (2017), 4989–4997. https://doi.org/10.2298/FIL1715989C doi: 10.2298/FIL1715989C |
[29] | F. Hezenci, H. Budak, H. Kara, New version of fractional Simpson type inequalities for twice differentiable functions, Adv. Differ. Equ., 2021 (2021), 460. https://doi.org/10.1186/s13662-021-03615-2 doi: 10.1186/s13662-021-03615-2 |
[30] | İ. İşcan, Hermite-Hadamard and Simpson-like type inequalities for differentiable harmonically convex functions, J. Math., 2014 (2014), 346305. https://doi.org/10.1155/2014/346305 doi: 10.1155/2014/346305 |
[31] | İ. İşcan, S. Turhan, S. Maden, Hermite-Hadamard and Simpson-like type inequalities for differentiable $p$-quasi-convex functions, Filomat, 31 (2017), 5945–5953. https://doi.org/10.2298/FIL1719945I doi: 10.2298/FIL1719945I |
[32] | M. Iqbal, S. Qaisar, S. Hussain, On Simpson's type inequalities utilizing fractional integrals, J. Comput. Anal. Appl., 23 (2017), 1137–1145. |
[33] | M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048 |
[34] | I. Podlubni, Fractional differential equations, San Diego: Academic press, 1999. |
[35] | M. Kian, M. S. Moslehian, Refinements of the operator Jensen-Mercer inequality, Electron. J. Linear Algebra, 26 (2013), 742–753. |
[36] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. http://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201 |
[37] | T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80 (2017), 11–27. https://doi.org/10.1016/S0034-4877(17)30059-9 doi: 10.1016/S0034-4877(17)30059-9 |
[38] | A. Atangana, D. Baleanu, New fractional derivatices with non-local and non-singular kernel: Theory and application to heat transfer model, Thermal Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A |
[39] | T. Abdeljawad, D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098–1107. http://dx.doi.org/10.22436/jnsa.010.03.20 doi: 10.22436/jnsa.010.03.20 |
[40] | İ. İşcan, Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals, Studia Univ. Babeş-Bolyai Sect. A Math., 60 (2015), 355–366. |
[41] | F. Chen, A note on Hermite-Hadamard inequalities for products of convex functions via Riemann-Liouville fractional integrals, Ital. J. Pure Appl. Math., 33 (2014), 299–306. |
[42] | W. B. Sun, Some new inequalities for generalized $h$-convex functions involving local fractional integral operators with Mittag-Leffler kernel, Math. Meth. Appl. Sci., 44 (2021), 4985–4998. https://doi.org/10.1002/mma.7081 doi: 10.1002/mma.7081 |
[43] | W. B. Sun, Hermite-Hadamard type local fractional integral inequalities for generalized $s$-preinvex functions and their generalization, Fractals, 29 (2021), 2150098. https://doi.org/10.1142/S0218348X21500985 doi: 10.1142/S0218348X21500985 |
[44] | W. B. Sun, Hermite-Hadamard type local fractional integral inequalities with Mittag-Leffler kernel for generalized preinvex functions, Fractals, 29 (2021), 2150253. https://doi.org/10.1142/S0218348X21502534 doi: 10.1142/S0218348X21502534 |
[45] | A. Fernandez, P. O. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Meth. Appl. Sci., 44 (2021), 8414–8431. https://doi.org/10.1002/mma.6188 doi: 10.1002/mma.6188 |
[46] | H. Öǧülmüş, M. Z. Sarikaya, Hermite-Hadamard-Mercer type inequalities for fractional integrals, Filomat, 35 (2021), 2425–2436. https://doi.org/10.2298/FIL2107425O doi: 10.2298/FIL2107425O |
[47] | S. K. Sahoo, P. O. Mohammed, B. Kodamasingh, M. Tariq, Y. S. Hamed, New fractional integral inequalities for convex functions pertaining to Caputo-Fabrizio operator, Fractal Fract., 6 (2022), 171. https://doi.org/10.3390/fractalfract6030171 doi: 10.3390/fractalfract6030171 |
[48] | M. A. Latif, H. Kalsoom, Z. A. Khan, Hermite-Hadamard-Fejér type fractional inequalities relating to a convex harmonic function and a positive symmetric increasing function, AIMS Math., 7 (2022), 4176–4198. https://doi.org/10.3934/math.2022232 doi: 10.3934/math.2022232 |
[49] | M. Al-Refai, D. Baleanu, On an extension of the operator with Mittag-Leffler kernel, Fractals, 2022. https://doi.org/10.1142/S0218348X22401296 doi: 10.1142/S0218348X22401296 |
[50] | K. Velusamy, M. M. Arjunan, D. Baleanu, Non-instantaneous impulsive fractional-order delay differential systems with Mittag-Leffler kernel, AIMS Math., 7 (2022), 9353–9372. https://doi.org/10.3934/math.2022519 doi: 10.3934/math.2022519 |
[51] | B. Ahmed, Application of Shehu transform to Atangana-Baleanu derivatives, J. Math. Computer Sci., 20 (2019), 101–107. https://doi.org/10.22436/jmcs.020.02.03 doi: 10.22436/jmcs.020.02.03 |
[52] | M. Caputo, M. Fabrizio. On the singular kernels for fractional derivatives. Some applications to partial differential equations, Progr. Fract. Differ. Appl., 7 (2021), 79–82. http://dx.doi.org/10.18576/pfda/0070201 doi: 10.18576/pfda/0070201 |
[53] | J. Losada, J. J. Nieto, Fractional integral associated to fractional derivatives with nonsingular kernels, Progr. Fract. Differ. Appl., 7 (2021), 137–143. http://dx.doi.org/10.18576/pfda/070301 doi: 10.18576/pfda/070301 |
[54] | G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, 1995. |
[55] | S. Jain, K. Mehrez, D. Baleanu, P. Agarwal, Certain Hermite-Hadamard inequalities for logarithmically convex functions with applications, Mathematics, 7 (2009), 163. https://doi.org/10.3390/math7020163 doi: 10.3390/math7020163 |