Research article Special Issues

Spectral tau solution of the linearized time-fractional KdV-Type equations

  • Received: 06 April 2022 Revised: 03 June 2022 Accepted: 13 June 2022 Published: 16 June 2022
  • MSC : 65XX, 65M70, 33C45

  • The principal objective of the current paper is to propose a numerical algorithm for treating the linearized time-fractional KdV equation based on selecting two different sets of basis functions. The members of the first set are selected to be suitable combinations of the Chebyshev polynomials of the second kind and also to be compatible with the governing boundary conditions of the problem, while the members of the second set are selected to be the shifted second-kind Chebyshev polynomials. After expressing the approximate solutions as a double expansion of the two selected basis functions, the spectral tau method is applied to convert the equation with its underlying conditions into a linear system of algebraic equations that can be treated numerically with suitable standard procedures. The convergence analysis of the double series solution is carefully tested. Some numerical examples accompanied with comparisons with some other methods in the literature are displayed aiming to demonstrate the applicability and accuracy of the presented algorithm.

    Citation: Waleed Mohamed Abd-Elhameed, Youssri Hassan Youssri. Spectral tau solution of the linearized time-fractional KdV-Type equations[J]. AIMS Mathematics, 2022, 7(8): 15138-15158. doi: 10.3934/math.2022830

    Related Papers:

  • The principal objective of the current paper is to propose a numerical algorithm for treating the linearized time-fractional KdV equation based on selecting two different sets of basis functions. The members of the first set are selected to be suitable combinations of the Chebyshev polynomials of the second kind and also to be compatible with the governing boundary conditions of the problem, while the members of the second set are selected to be the shifted second-kind Chebyshev polynomials. After expressing the approximate solutions as a double expansion of the two selected basis functions, the spectral tau method is applied to convert the equation with its underlying conditions into a linear system of algebraic equations that can be treated numerically with suitable standard procedures. The convergence analysis of the double series solution is carefully tested. Some numerical examples accompanied with comparisons with some other methods in the literature are displayed aiming to demonstrate the applicability and accuracy of the presented algorithm.



    加载中


    [1] B. P. Moghaddam, A. Dabiri, J. A. T. Machado, Application of variable-order fractional calculus in solid mechanics, In: Volume 7 applications in engineering, life and social sciences, part A, De Gruyter, 2019. https://doi.org/10.1515/9783110571905-011
    [2] I. S. Jesus, J. A. T. Machado, Application of integer and fractional models in electrochemical systems, Math. Probl. Eng., 2012 (2012), 248175. https://doi.org/10.1155/2012/248175 doi: 10.1155/2012/248175
    [3] P. Rahimkhani, Y. Ordokhani, E. Babolian, Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet, J. Comput. Appl. Math., 309 (2017), 493–510. https://doi.org/10.1016/j.cam.2016.06.005 doi: 10.1016/j.cam.2016.06.005
    [4] W. M. Abd-Elhameed, Y. H. Youssri, New spectral solutions of multi-term fractional order initial value problems with error analysis, Comput. Model. Eng. Sci., 105 (2015), 375–398. https://doi.org/10.3970/cmes.2015.105.375 doi: 10.3970/cmes.2015.105.375
    [5] Y. H. Youssri, Two Fibonacci operational matrix pseudo-spectral schemes for nonlinear fractional Klein-Gordon equation, Int. J. Mod. Phys. C, 33 (2022), 2250049 https://doi.org/10.1142/S0129183122500498 doi: 10.1142/S0129183122500498
    [6] W. M. Abd-Elhameed, Y. H. Youssri, Spectral solutions for fractional differential equations via a novel Lucas operational matrix of fractional derivatives, Rom. J. Phys., 61 (2016), 795–813.
    [7] K. Maleknejad, J. Rashidinia, T. Eftekhari, A new and efficient numerical method based on shifted fractional-order Jacobi operational matrices for solving some classes of two-dimensional nonlinear fractional integral equations, Numer. Methods Partial Differ. Equ., 37 (2021), 2687–2713. https://doi.org/10.1002/num.22762 doi: 10.1002/num.22762
    [8] M. A. Zaky, J. A. T. Machado, Multi-dimensional spectral tau methods for distributed-order fractional diffusion equations, Comput. Math. Appl., 79 (2020), 476–488. https://doi.org/10.1016/j.camwa.2019.07.008 doi: 10.1016/j.camwa.2019.07.008
    [9] M. Izadi, H. M. Srivastava, Numerical approximations to the nonlinear fractional-order logistic population model with fractional-order Bessel and Legendre bases, Chaos Soliton Fract., 145 (2021), 110779. https://doi.org/10.1016/j.chaos.2021.110779 doi: 10.1016/j.chaos.2021.110779
    [10] R. M. Ganji, H. Jafari, M. Kgarose, A. Mohammadi, Numerical solutions of time-fractional Klein-Gordon equations by clique polynomials, Alex. Eng. J., 60 (2021), 4563–4571. https://doi.org/10.1016/j.aej.2021.03.026 doi: 10.1016/j.aej.2021.03.026
    [11] W. M. Abd-Elhameed, E. H. Doha, Y. H. Youssri, M. A. Bassuony, New Tchebyshev-Galerkin operational matrix method for solving linear and nonlinear hyperbolic telegraph type equations, Numer. Methods Partial Differ. Equ., 32 (2016), 1553–1571. https://doi.org/10.1002/num.22074 doi: 10.1002/num.22074
    [12] A. Duangpan, R. Boonklurb, M. Juytai, Numerical solutions for systems of fractional and classical integro-differential equations via finite integration method based on shifted Chebyshev polynomials, Fractal Fract., 5 (2021), 103. https://doi.org/10.3390/fractalfract5030103 doi: 10.3390/fractalfract5030103
    [13] V. Saw, S. Kumar, Second kind Chebyshev polynomials for solving space fractional advection-dispersion equation using collocation method, Iran. J. Sci. Technol. Trans. Sci., 43 (2019), 1027–1037. https://doi.org/10.1007/s40995-018-0480-5 doi: 10.1007/s40995-018-0480-5
    [14] J. Liu, X. Li, L. Wu, An operational matrix technique for solving variable order fractional differential-integral equation based on the second kind of Chebyshev polynomials, Adv. Math. Phys., 2016 (2016), 1–10. https://doi.org/10.1155/2016/6345978 doi: 10.1155/2016/6345978
    [15] W. M. Abd-Elhameed, Y. H. Youssri, Explicit shifted second-kind Chebyshev spectral treatment for fractional Riccati differential equation, Comput. Model. Eng. Sci., 121 (2019), 1029–1049.
    [16] Y. Xie, L. Li, M. Wang, Adomian decomposition method with orthogonal polynomials: Laguerre polynomials and the second kind of Chebyshev polynomials, Mathematics, 9 (2021), 1–8. https://doi.org/10.3390/math9151796 doi: 10.3390/math9151796
    [17] S. N. Tural-Polat, A. T. Dincel, Numerical solution method for multi-term variable order fractional differential equations by shifted Chebyshev polynomials of the third kind, Alex. Eng. J., 61 (2022), 5145–5153. https://doi.org/10.1016/j.aej.2021.10.036 doi: 10.1016/j.aej.2021.10.036
    [18] E. H. Doha, W. M. Abd-Elhameed, M. A. Bassuony, On the coefficients of differentiated expansions and derivatives of Chebyshev polynomials of the third and fourth kinds, Acta Math. Sci., 35 (2015), 326–338. https://doi.org/10.1016/S0252-9602(15)60004-2 doi: 10.1016/S0252-9602(15)60004-2
    [19] E. H. Doha, W. M. Abd-Elhameed, M. A. Bassuony, On using third and fourth kinds Chebyshev operational matrices for solving Lane-Emden type equations, Rom. J. Phys., 60 (2015), 281–292.
    [20] M. Masjed-Jamei, Some new classes of orthogonal polynomials and special functions: A symmetric generalization of Sturm-Liouville problems and its consequences, PhD thesis, University of Kassel, Department of Mathematics, Kassel, Germany, 2006.
    [21] W. M. Abd-Elhameed, Y. H. Youssri, Fifth-kind orthonormal Chebyshev polynomial solutions for fractional differential equations, Comput. Appl. Math., 37 (2018), 2897–2921. https://doi.org/10.1007/s40314-017-0488-z doi: 10.1007/s40314-017-0488-z
    [22] A. G. Atta, W. M. Abd-Elhameed, G. M. Moatimid, Y. H. Youssri, Advanced shifted sixth-kind Chebyshev tau approach for solving linear one-dimensional hyperbolic telegraph type problem, Math. Sci., 2022. https://doi.org/10.1007/s40096-022-00460-6 doi: 10.1007/s40096-022-00460-6
    [23] W. M. Abd-Elhameed, Y. H. Youssri, Sixth-kind Chebyshev spectral approach for solving fractional differential equations, Int. J. Nonlinear Sci. Numer. Simul., 20 (2019), 191–203. https://doi.org/10.1515/ijnsns-2018-0118 doi: 10.1515/ijnsns-2018-0118
    [24] W. M. Abd-Elhameed, Novel expressions for the derivatives of sixth kind Chebyshev polynomials: Spectral solution of the non-linear one-dimensional Burgers' equation, Fractal Fract., 5 (2021), 1–20. https://doi.org/10.3390/fractalfract5020053 doi: 10.3390/fractalfract5020053
    [25] W. M. Abd-Elhameed, Y. H. Youssri, Spectral tau algorithm for certain coupled system of fractional differential equations via generalized Fibonacci polynomial sequence, Iran. J. Sci. Technol. Trans. Sci., 43 (2019), 543–554. https://doi.org/10.1007/s40995-017-0420-9 doi: 10.1007/s40995-017-0420-9
    [26] A. Napoli, W. M. Abd-Elhameed, An innovative harmonic numbers operational matrix method for solving initial value problems, Calcolo, 54 (2017), 57–76. https://doi.org/10.1007/s10092-016-0176-1 doi: 10.1007/s10092-016-0176-1
    [27] A. Canıvar, M. Sari, I. Dag, A Taylor-Galerkin finite element method for the KdV equation using cubic B-splines, Phys. B: Condens. Matter, 405 (2010), 3376–3383. https://doi.org/10.1016/j.physb.2010.05.008 doi: 10.1016/j.physb.2010.05.008
    [28] J. Shen, A new dual-Petrov-Galerkin method for third and higher odd-order differential equations: Application to the KDV equation, SIAM J. Numer. Anal., 41 (2003), 1595–1619. https://doi.org/10.1137/S0036142902410271 doi: 10.1137/S0036142902410271
    [29] T. Aka, S. B. G. Karakocb, A. Biswas, Application of Petrov-Galerkin finite element method to shallow water waves model: Modi ed Korteweg-de Vries equation, Sci. Iran. B, 24 (2017), 1148–1159. http://hdl.handle.net/20.500.11787/5241
    [30] H. Ahmad, T. A. Khan, S. W. Yao, An efficient approach for the numerical solution of fifth-order KdV equations, Open Math., 18 (2020), 738–748. https://doi.org/10.1515/math-2020-0036 doi: 10.1515/math-2020-0036
    [31] D. Kaya, An explicit and numerical solutions of some fifth-order KdV equation by decomposition method, Appl. Math. Comput., 144 (2003), 353–363. https://doi.org/10.1016/S0096-3003(02)00412-5 doi: 10.1016/S0096-3003(02)00412-5
    [32] A. A. Soliman, A numerical simulation and explicit solutions of KdV-Burgers' and Lax's seventh-order KdV equations, Chaos Soliton Fract., 29 (2006), 294–302. https://doi.org/10.1016/j.chaos.2005.08.054 doi: 10.1016/j.chaos.2005.08.054
    [33] P. Veeresha, D. G. Prakasha, J. Singh, Solution for fractional forced KdV equation using fractional natural decomposition method, AIMS Math., 5 (2020), 798–810. https://doi.org/10.3934/math.2020054 doi: 10.3934/math.2020054
    [34] U. Le, D. E. Pelinovsky, Green's function for the fractional KdV equation on the periodic domain via Mittag-Leffler function, Fract. Calc. Appl. Anal., 24 (2021), 1507–1534. https://doi.org/10.1515/fca-2021-0063 doi: 10.1515/fca-2021-0063
    [35] N. An, C. Huang, X. Yu, Error analysis of discontinuous Galerkin method for the time fractional KdV equation with weak singularity solution, Discrete Contin. Dyn. Syst. B, 25 (2020), 321–334. https://doi.org/10.3934/dcdsb.2019185 doi: 10.3934/dcdsb.2019185
    [36] N. J. Ford, J. Xiao, Y. Yan, A finite element method for time fractional partial differential equations, Fract. Calc. Appl. Anal., 14 (2011), 454–474. https://doi.org/10.2478/s13540-011-0028-2 doi: 10.2478/s13540-011-0028-2
    [37] Y. Lin, C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533–1552. https://doi.org/10.1016/j.jcp.2007.02.001 doi: 10.1016/j.jcp.2007.02.001
    [38] A. A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280 (2015), 424–438. https://doi.org/10.1016/j.jcp.2014.09.031 doi: 10.1016/j.jcp.2014.09.031
    [39] H. Chen, T. Sun, A Petrov-Galerkin spectral method for the linearized time fractional KdV equation, Int. J. Comput. Math., 95 (2018), 1292–1307.
    [40] Y. Zhang, Formulation and solution to time-fractional generalized Korteweg-de Vries equation via variational methods, Adv. Differ. Equ., 2014 (2014), 1–12. https://doi.org/10.1186/1687-1847-2014-65 doi: 10.1186/1687-1847-2014-65
    [41] Q. Wang, Homotopy perturbation method for fractional KdV equation, Appl. Math. Comput., 190 (2007), 1795–1802. https://doi.org/10.1016/j.amc.2007.02.065 doi: 10.1016/j.amc.2007.02.065
    [42] J. C. Mason, D. C. Handscomb, Chebyshev polynomials, New York: Chapman and Hall, 2002. https://doi.org/10.1201/9781420036114
    [43] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Vol. 198, Academic press, 1998.
    [44] G. E. Andrews, R. Askey, R. Roy, Special functions, Cambridge: Cambridge University Press, 1999.
    [45] E. H. Doha, W. M. Abd-Elhameed, Efficient spectral-Galerkin algorithms for direct solution of second-order equations using ultraspherical polynomials, SIAM J. Sci. Comput., 24 (2002), 548–571. https://doi.org/10.1137/S1064827500378933 doi: 10.1137/S1064827500378933
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1409) PDF downloads(95) Cited by(5)

Article outline

Figures and Tables

Figures(6)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog