Processing math: 70%
Research article Special Issues

Global dynamics of deterministic-stochastic dengue infection model including multi specific receptors via crossover effects

  • Dengue viruses have distinct viral regularities due to the their serotypes. Dengue can be aggravated from a simple fever in an acute infection to a presumably fatal secondary pathogen. This article investigates a deterministic-stochastic secondary dengue viral infection (SDVI) model including logistic growth and a nonlinear incidence rate through the use of piecewise fractional differential equations. This framework accounts for the fact that the dengue virus can penetrate various kinds of specific receptors. Because of the supplementary infection, the system comprises both heterologous and homologous antibody. For the deterministic case, we determine the invariant region and threshold for the aforesaid model. Besides that, we demonstrate that the suggested stochastic SDVI model yields a global and non-negative solution. Taking into consideration effective Lyapunov candidates, the sufficient requirements for the presence of an ergodic stationary distribution of the solution to the stochastic SDVI model are generated. This report basically utilizes a novel idea of piecewise differentiation and integration. This method aids in the acquisition of mechanisms, including crossover impacts. Graphical illustrations of piecewise modeling techniques for chaos challenges are demonstrated. A piecewise numerical scheme is addressed. For various cases, numerical simulations are presented.

    Citation: Saima Rashid, Fahd Jarad, Sobhy A. A. El-Marouf, Sayed K. Elagan. Global dynamics of deterministic-stochastic dengue infection model including multi specific receptors via crossover effects[J]. AIMS Mathematics, 2023, 8(3): 6466-6503. doi: 10.3934/math.2023327

    Related Papers:

    [1] Roshan Ara, Saeed Ahmad, Zareen A. Khan, Mostafa Zahri . Threshold dynamics of stochastic cholera epidemic model with direct transmission. AIMS Mathematics, 2023, 8(11): 26863-26881. doi: 10.3934/math.20231375
    [2] Shah Hussain, Naveed Iqbal, Elissa Nadia Madi, Thoraya N. Alharthi, Ilyas Khan . Vaccination strategies in a stochastic SIVR epidemic model. AIMS Mathematics, 2025, 10(2): 4441-4456. doi: 10.3934/math.2025204
    [3] Yousef Alnafisah, Moustafa El-Shahed . Deterministic and stochastic model for the hepatitis C with different types of virus genome. AIMS Mathematics, 2022, 7(7): 11905-11918. doi: 10.3934/math.2022664
    [4] Khaled A. Aldwoah, Mohammed A. Almalahi, Kamal Shah, Muath Awadalla, Ria H. Egami . Dynamics analysis of dengue fever model with harmonic mean type under fractal-fractional derivative. AIMS Mathematics, 2024, 9(6): 13894-13926. doi: 10.3934/math.2024676
    [5] Ahmed M. Elsherbeny, Taher A. Nofal, Yakup Yıldırım, Ahmed H. Arnous . New solitary waveforms and their dynamics in the stochastic generalized Chen–Lee–Liu model. AIMS Mathematics, 2025, 10(3): 5197-5235. doi: 10.3934/math.2025239
    [6] Jawdat Alebraheem . Asymptotic stability of deterministic and stochastic prey-predator models with prey herd immigration. AIMS Mathematics, 2025, 10(3): 4620-4640. doi: 10.3934/math.2025214
    [7] Zhengwen Yin, Yuanshun Tan . Threshold dynamics of stochastic SIRSW infectious disease model with multiparameter perturbation. AIMS Mathematics, 2024, 9(12): 33467-33492. doi: 10.3934/math.20241597
    [8] Shaymaa H. Salih, Nadia M. G. Al-Saidi . 3D-Chaotic discrete system of vector borne diseases using environment factor with deep analysis. AIMS Mathematics, 2022, 7(3): 3972-3987. doi: 10.3934/math.2022219
    [9] Kottakkaran Sooppy Nisar, Aqeel Ahmad, Mustafa Inc, Muhammad Farman, Hadi Rezazadeh, Lanre Akinyemi, Muhammad Mannan Akram . Analysis of dengue transmission using fractional order scheme. AIMS Mathematics, 2022, 7(5): 8408-8429. doi: 10.3934/math.2022469
    [10] Turki D. Alharbi, Md Rifat Hasan . Global stability and sensitivity analysis of vector-host dengue mathematical model. AIMS Mathematics, 2024, 9(11): 32797-32818. doi: 10.3934/math.20241569
  • Dengue viruses have distinct viral regularities due to the their serotypes. Dengue can be aggravated from a simple fever in an acute infection to a presumably fatal secondary pathogen. This article investigates a deterministic-stochastic secondary dengue viral infection (SDVI) model including logistic growth and a nonlinear incidence rate through the use of piecewise fractional differential equations. This framework accounts for the fact that the dengue virus can penetrate various kinds of specific receptors. Because of the supplementary infection, the system comprises both heterologous and homologous antibody. For the deterministic case, we determine the invariant region and threshold for the aforesaid model. Besides that, we demonstrate that the suggested stochastic SDVI model yields a global and non-negative solution. Taking into consideration effective Lyapunov candidates, the sufficient requirements for the presence of an ergodic stationary distribution of the solution to the stochastic SDVI model are generated. This report basically utilizes a novel idea of piecewise differentiation and integration. This method aids in the acquisition of mechanisms, including crossover impacts. Graphical illustrations of piecewise modeling techniques for chaos challenges are demonstrated. A piecewise numerical scheme is addressed. For various cases, numerical simulations are presented.



    Dengue is one of the deadliest and most dangerous infections. According to the World Health Organization (WHO), 50–100 million viruses cause illness each year, resulting in 500,000 emergency room visits and approximately 12,500 deaths [1]. Recently, dengue has come to be presumed as a tropical illness, but it has propagated the zone of infection to maintain or restore zones, owing mainly to global climate change [2]. Dengue is spread to individuals through the mouth of contaminated Aedes aegypti and Aedes albopictus mosquitoes. It is believed that four highly associated DENV adenoviruses occur, namely DENV-1, DENV-2, DENV-3 and DENV-4 [3], so these serotypes lead to illnesses of varying severities in individuals. The contaminated person typically suffers from an intense bacteraemia known as dengue fever that is checked by a highly complicated immune reaction within seven days of disease initiation. Dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) are more drastic representations of this illness (DSS). DHF/DSS can be potentially lethal if not cured appropriately and properly. The WHO previously suggested a new dengue classification predicated on infection intensity [4]. We should notice that, despite significant initiatives to create an efficacious vaccine against dengue pathogens, advertising for dengue immunization is still not accessible [5]. From this perspective, it is critical to comprehend the biochemical practices and dynamic system procedures at work all throughout the infection [6,7]. These intricate nonlinear natural mechanisms also produce a model structure with diverse and significant complexities. The incidence rate of dengue in various demographics has been investigated previously or in gradually expanded editions of the fundamental SIR mathematical formulation [8]. Moreover, we should mention that only a handful of micro-epidemiological experiments on dengue viruses, including one new analysis focusing on the T-cell immune reaction, provide a comprehensive and vibrant model that encompasses a specific antibody immune reaction [9,10].

    Furthermore, secondary infection occurs when a person who has had a systemic virus is subjected to dengue virus with a high degree of specificity. It is common for certain sick people to develop intricate and potentially lethal DSS/DHF environments. Because the new DENV serotype is similar in composition to the old one, it stimulates the development of lymphocytes that enhance the old serotype (i.e., cross immunity) as well as the most recent immune responses that counteract the different pathogenicity. Consequently, there are primarily two pertinent immunoglobulins presently: one generated by the viral illness that is heterologous to the unique subtype and one generated by the antibiotic treatment that is homologous. Both of these immune cells have the ability to attach to and incapacitate viral genomes. After neutralization, the specific antibody are transported to phagocytes. However, owing to their low attachment to this fresh serotype, the heterologous immune cells are primed to extract the pathogen when it enters the leukocytes. This leaves a portion of the virions exposed and willing to inoculate the phagocyte. Hence, reactions are catalyzed against the latest serotype that both safeguard and transport the pathogen to their priorities, contingent on the attachment of the immune response receptor. This is known as antibody reliant augmentation (ARA) of infection [11]. For generations, the most prevalent speculation that could describe the increased heinousness of potential pathogens has been ARA [12]. As a result, we can conclude that the immune system is mainly accountable for both influencing the virus and supplying protection, while also boosting responses within the bloodstream that cause extreme manifestations such as DHF/DSS. Lastly, a framework for reinfection should incorporate the similar phenomenon of ARA of viruses and increased lymphocyte proliferation.

    Researchers in numerous classifications and scientific disciplines have gravitated toward using fractional systems of differential equations (DEs) in the majority of their novel evidence and investigations as a consequence of the emergence of fractional derivatives [13]. In addition, to see this realistically, we can resort to numerical techniques for the proliferation and evolution of numerous infections and communicable conditions, which have emerged as an intriguing issue for scholars in past centuries; they employ fractional frameworks of initial value problems [14,15]. While reviewing the articles, we discovered that various scholars have proposed kernels that can be employed to create fractional differential formulations [16]. The major motivation behind this is that serious challenges exhibit signs of mechanisms that are similar to the behaviors of precise scientific expressions. Fractional calculus incorporating a power law kernel has been led by the contributions of Riemann, Liouville, Cauchy, and Abel. Caputo later improved their approach, and this form has been employed in several scientific disciplines owing to its capacity to enable classical initial conditions (ICs) [17]. Prabhakar proposed an appropriate kernel containing three components as a combination of index laws and the generalized Mittag-Leffler (GML) kernel. This form has likewise piqued the interest of numerous scholars and investigations into both concepts and implementations have been conducted.

    Furthermore, the various kernels have distinctive features; for instance an index kernel only aids in the replication of systems that indicate index kernel tendencies. GML, the combination of the index kernel, exponential kernel and GML kernel. The generalized three distinct have their own domain of applicability [18,19]. Because the phenomenon is multifaceted, Caputo and Fabrizio developed a novel kernel with a particular exponential kernel exhibiting Delta Dirac characteristics. A differential formulation that is becoming increasingly popular due to memory. Furthermore, the notion of a fractional derivative having a nonsingular kernel was pioneered by this kernel, marking the inauguration of a revolutionary era in fractional calculus [20]. A scientist's observation regarding the kernel's non-fractionality resulted in the creation of a novel kernel, i.e., the GML function, which includes one component. Atangana and Baleanu [21] proposed this formulation, which represents another advancement in the discipline of fractional calculus. The formulations have been employed successfully in a variety of fields of study. Glancing at reality and its intricacies, it is clear that these proposed kernels are insufficient to forecast all of our universe's complicated characteristics. Following the remark, one will look for a different kernel or modified kernel, or a set of procedures that will be used to add novel differential formulations. Sabatier has proposed various kernel variants that will additionally lead to novel avenues of inquiry [22]. In addition to these remarkable breakthroughs, numerous additional notions were proposed, such as the conception of short memory and the definition of a fractional derivative in the Caputo interpretation for distinct characteristics of fractional orders. Notwithstanding the well-known formulation, which takes a fractional order to be time-dependent, the goal was to achieve a different form of variable order derivative. Wu et al. [23] proposed and implemented this scenario in chaotic theory. However, researchers have discovered that some real-world phenomena demonstrate mechanisms exhibiting varying behaviors as a factor of space and time. A transition from deterministic to stochastic, either from index-law to exponential decay, is an example. Because conventional differential formulations may be incapable of accounting for these tendencies, piecewise differential/integral formulations were devised to cope with issues manifesting crossover phenomena [24]. The primary goal of this article is to present a detailed evaluation, potential implementations, strengths and shortcomings of these two notions.

    Moreover, there are multiple fractional operators that identify dengue evolution in the research [25,26] and the reference materials therein. All of the additional implications above depict the complexities of dengue viruses from various perspectives, including nonlinear dynamic analysis, vaccination and stochastic optimization analysis. El-Sayed et al. [27] lists several notable survey reports that mentioned dengue disease by using actual information.

    The purpose of this research is to investigate the dynamic behavior of a deterministic-stochastic secondary dengue viral infection (SDVI) model with multiple target cells via the piecewise fractional differential operators approach, which aids in the identification of mechanisms with crossover patterns. Thus, it is more pragmatic to investigate frameworks with both white noise and deterministic noise rather than just white noise. Even so, there are no studies on the stationary distribution of the stochastic SDVI model under regime switching in the existing literature. In this manuscript, we demonstrate the ergodicity stationary distribution (ESD) of an SDVI model under regime switching by effectively preparing Lyapunov candidates and an invariant region. Piecewise modeling via the well-noted fractional derivative operators is highlighted with descriptions of chaos concerns. Taking into account the computed findings, we procure a critical value for the extinction of SDVI, which is presented by Rs0<1. As a result, the intermittent nature of untreated specific receptors has a significant impact on virus infection elimination. We contend that, while the GML kernel, exponential decay and power law have been revealed to be capable of depicting several crossover behaviors, their strengths to accomplish this may be restricted due to the enormity of nature.

    The structure of the article is organized as follows, Section 2 describes preliminary ideas related to stochastic processes and fractional calculus. Also, the model formulation is predicted herein. Section 3 examines the qualitative characteristics of the deterministic and stochastic states. By formulating a certain adequate Lyapunov mapping, we demonstrate the existence of a unique ESD of the solution. In Section 4, theoretical findings are analyzed by utilizing the crossover effects with varying kernels. Section 5 exhibits the results and discussion of the suggested model. Finally, Section 6 contends with some epilogue and future perspectives.

    The secondary infectious disease framework presented by [28] is an extended version of the acute infection system depicted in [9]. A sixth component, which also characterized the threshold of immune response constituted during the preceding reinfection but is heterologous to the active viral serotype, has been incorporated into the main framework. The homologous recombination immune cells can connect to the virus particles in this scenario, but the severity of complexation is determined not only by the substitutability between the pathogen and immunoglobulin but also by the densities of the heterologous immune cells. It has been discovered that various pathogen serovars in both dominant and supplementary pathogens share immunologic similarities in their enzyme shell. Tanvi et al. [28] developed the SDVI model for neutralizing antibody:

    {˙s1(t)=ϑ1δ1s1v1γ1s1,˙x1(t)=ϑ2δ2x1v1γ2x1,˙u1(t)=δ1s1v1ς1u1,˙r1(t)=δ2s1v1ς2r1,˙v1(t)=ζ1u1+ζ2r1φv1ω1v1m1ω2v1j1,˙m1(t)=χ1v1m1ρ1m1,˙j1(t)=χ2v1j1ρ2j1, (2.1)

    with ICs s1(0)=s10,x1(0)=x10,u1(0)=u10,r1(0)=r10,v1(0)=v10,m1(0)=m10,j1(0)=j10. At a time step t, the intensities of the heterologous immune response interacting on the initial infection and homologous specific antibody against the deadly pathogen serogroup of the serious infection are denoted by m1=m1(t) and j1=j1(t), respectively. The descriptor ω2v1j1 refers to the yield of dengue virus neutralization by immune responses j1. The phrase ρ2j1 refers to the mortality speed of specific antibody j1. B-cells produce specific antibody m1 and j1 at rates of ρ1m1 and ρ2j1, respectively. The immune response pathogen compound has an effect on the antibody development at rates of s1v1m1 and x1v1m1. Researchers [29] have incorporated immunity and CTL immunity into their framework of supplementary reinfection. Rashid et al. [30] presented the numerical investigation of a fractional-order cholera epidemic model with transmission dynamics via fractal–fractional operator technique. Atangana and Rashid [31] contemplated the novel view of a deterministic-stochastic oncolytic M1 model involving immune response through the use of a crossover behavior. Rashid and Jarad [32] expounded upon the stochastic dynamics of the fractal-fractional ebola epidemic model by combining a fear and environmental spreading mechanism. Al-Qureshi et al. [33] established the dynamical behavior of a stochastic highly pathogenic avian influenza A (HPAI) epidemic model via piecewise fractional differential technique. Boisov et al. [34] evaluated a SDVI model with contagious and systemic infections of viral diseases, trying to take secretory and CTL prerogatives into consideration. Bonyah et al. [35] contemplated the fractional order dengue fever model in the frame of reference of secured travellers. Fatmawati et al. [36] expounded a new framework for dengue fever in the context of fractional calculus. Khan and Fatmawati [37] examined the modeling and simulation consequences of a fractional dengue system.

    In fact, there is unpredictability and stochasticity. As a result of the impact of Browinian motion on modeling techniques, the stochastic framework is more accurate than the other modeling techniques [38,39,40]. We assume that stochastic disturbances to individuals are influenced by random intensities and are proportional to each state s1(t),x1(t),u1(t),r1(t),v1(t),m1(t) and j1(t), respectively.

    In light of the preceding discussion conducted in [38], we advocate for the stochastic SDVI framework via logistic growth as follows:

    {ds1(t)=(ϑ1δ1s1v1γ1s1)+1s1(t)dB1(t),dx1(t)=(ϑ2δ2x1v1γ2x1)+2x1(t)dB2(t),du1(t)=(δ1s1v1ς1u1)+3u1(t)dB3(t),dr1(t)=(δ2s1v1ς2r1)+4r1(t)dB4(t),dv1(t)=(ζ1u1+ζ2r1φv1ω1v1m1ω2v1j1)+5v1(t)dB5(t),dm1(t)=(χ1v1m1ρ1m1)+6m1(t)dB6(t),dj1(t)=(χ2v1j1ρ2j1)+7j1(t)dB7(t), (2.2)

    where the concentrations of the standard Gaussian white noises are p,p=1,...,7 and Bp(t),p=1,...,7 are independent standard Wiener mechanisms.

    Throughout this investigation, it is assumed that the scheme (2.2) is identified on a complete probability space (,F,{Ft}t>0,P) with a right continuous filtration {Ft}t>0 and an {F0} comprising all of the components with measure zero.

    The stochastic DE in d-dimensions is described as follows:

    du(t)=f(u(t),t)dt+g1(u(t),t)dB(t),u(t0)=u0,t0tT<, (2.3)

    where f:Rd×[t0,T]Rd and g1:Rd×[t0,T]Rd×m1 are Borel measurable, B={B(t)}tt0 is an Rm1-valued Wiener technique, and u0 is an Rd-valued random variable stated on Θ.

    Furthermore, C2,1(Rd×[t0,);R+) is regarded as the collection of all positive mappings V(u,t) on Rd×[t0,) that are continuously twice differentiable in uRd and once in t[t0,). The differential operator L for the stochastic DE (2.3) is provided by

    L=t+dp=1fp(u,t)up+12di,p=1m1=1g1p(u,t)g1p(u,t)2upui.

    Define the mapping VC2,1(Rd×[t0,); then,

    LV(u,t)=Vt(u,t)+Vu(u,t)f(u,t)+12di,p=1m1=1g1i(u,t)g1p(u,t)Vuu(u,t),

    where Vt:=Vt,Vs1=(Vup,...,Vud)andVuu=(Vup,Vup)d×d.

    For u(t)Rd, Ito's approach is defined as

    dV(u(t),t)=LV(u(t),t)dt+Vu(u(t),t)g1(u(t),t)dB(t).

    Here, we provide the accompanying description to help readers who are acquainted with fractional calculus[17,20,21].

    C0DβtF(t)=1Γ(1β)t0F(r)(tr)βdr,β(0,1].
    CF0DβtF(t)=M(β)1βt0F(r)exp[β1β(tr)]dr,β(0,1],

    where M(β) is defined as a normalized function with M(0)=M(1)=1.

    The formulation of the Atangana-Baleanu derivative is represented below:

    ABC0DβtF(t)=ABC(β)1βt0F(r)Eβ[β1β(tr)β]dr,β(0,1],

    where ABC(β)=1β+βΓ(β) signifies the normalization function.

    To verify that our framework is reproductively adequate, we define a region for the densities of the system's cohorts. Intensities should not be negative or undefined on specific terms.

    Generate the compact set Δ={(s1, ...,sn,u1,...,un,v1, m1,j1)R2n+3+:sp, up[0,Lp], v1[0,K1], m1[0,K2],j1[0,K3],p=1, ...,n}.

    Lemma 3.1. The domain Δ of the model (2.1) is positively invariant.

    Proof. Equating the system Eq (2.1) to zero, we have

    ˙sp|sp=ϑp>0,p=1,...,n,˙up|up=δps1pv1>0,fors1p,v10,p=1,...,n,˙v1p|v1=np=1ζpyp0,fors1p,v10,p=1,...,n,˙m1p|m1=0,˙j1p|j1=0.

    Therefore, (s1,...,sn,u1,...,un,v1,m1,j1)R2n+3+ for all t0.

    Taking Tp=s1p+u1p; then,

    ˙Tp=ϑpξps1pςpu1pϑpσp(s1p+u1p)=ϑpσpTp,

    where σp=min{ξp,ςp},p=1,...,n. Thus, TpLp, if Tp(0)Lp, where Lp=ϑpσp. The positivity of the system's parameters implies that s1p,u1pLp. Moreover, we describe G=v1+ω1χ1m1+ω2χ2j1; then,

    ˙G=np=1ζpu1pφv1ω1χ1m1ω2χ2j1np=1ζpLpϖ(v1+ω1χ1m1+ω2χ2j1)=np=1ζpLpϖG,

    where ϖ=min{φ,ρ1,ρ2}. Thus G(t)K1, if G(0)K1, where K1=1ϖnp=1ζpLp. Since v1(t),m1(t)0 and j1(t)0; then, v1(t)[0,K1],m1(t)[0,K2]andj1(t)[0,K3]. Also, K2=χ1ω1K1 and K3=χ2ω2K1.

    Next, we established the equilibria and basic reproduction numbers of the system (2.1).

    Theorem 3.1. Assume that there are three thresholds parameters R0,R1 and R2 with R1<R0 and R2<R0 such that

    (a) if R01; then, (2.1) has one equilibrium point E0Δ,

    (b) if R11<R0 and R21<R0 then (2.1) has two equilibria points E0Δ and E1Δ, where Δ is the interior point of Δ,

    (c) if R1>1 and R2<1 then (2.1) has three equilibria points E0Δ,E1Δ and E2Δ,

    (d) if R2>1 and R1<1 then (2.1) has three equilibria points E0Δ,E1Δ and E3Δ,

    (e) if R2>1 and R1>1 then (2.1) has three equilibria points E0Δ,E1Δ,E2Δ and E3Δ.

    Proof. Equating the left side of the model (2.1) to zero, we have

    0=ϑpδps1pv1ξps1p,0=δps1pv1ςpu1p,0=np=1ζpu1pφv1ω1v1m1ω2v1j1,0=χ1v1m1ρ1m1,0=χ2v1j1ρ2j1. (3.1)

    Utilizing last two equations of (3.1), we have three scenarios, as follows:

    Case (a) For m1=j1=0; then, the first and second equations of (3.1) can reduces to

    s1p=ϑpξp+δpv1,u1p=δps1pv1ςp. (3.2)

    In view of the third equation of (3.1), we find

    (np=1ζpδps1pφςp1)φv1=0. (3.3)

    Then, (3.3) has one of two configurations v1=0 or np=1ζpδpxpφςp1=0.

    Further, if v1=0; then, inserting it into (3.2) yields the infection-free equilibrium E0(s0,...,s0n,n+30,...,0,0) with s10p=ϑpξp. If v10, we have

    np=1ζpδps1pφςp1=0. (3.4)

    Inserting the first equation of (3.1) into (3.4), we have

    np=1ζp(ϑpξps1p)φςpv1=0. (3.5)

    As s1p depends on v1; then, from (3.5), we present a mapping Υ1(v1) as

    Υ1(v1)=np=1ζp(ϑpξps1p(v1))φςpv1. (3.6)

    We must demonstrate that there exists ~v1>0 such that Υ1(~v1)=0. Note that, if v1=0 then s1p=s10p and Υ1(0)=0 and when v1=v1=np=1ζpξps1pφςp>0, we have s1p=s1p(v1) and

    Υ1(v1)=np=1ζpξps1pφςp<0.

    Therefore, we have

    Υ1(0)=np=1ζpδpϑpφξpςp1.

    Thus, Υ1(0)>0 if

    np=1ζpδpϑpφξpςp>1. (3.7)

    This implies that if the criterion (3.7) is fulfilled, then there exists ~v1(0,v1) fulfilling Υ1(~v1)=0. Again, from (3.2), we have that ~s1p,~u1p,~v1>0. Therefore, a persistent infection to a deactivated immunologic antibody reaction E1(˜s1,...,˜sn,˜u1,...,˜un,˜v1,0,0) holds when np=1ζpδpϑpφξpςp>1.

    Then, we can establish

    R0=np=1ζpδpϑpφξpςp.

    In this case, R0 represents the basic reproduction number, which also represents the number of productive specific receptors produced by a single afflicted cell over the course of its existence. The next-generation matrix approach [41] or the local stability of the infection equilibrium point E0 can furthermore be applied to determine R0.

    Case (b) If m10andj1=0, we achieve a contaminated equilibrium point by using only the effective heterologous immune response E2(ˉs,...,ˉsn,ˉu,...,ˉun,¯v1,¯m1,0), where ¯s1p=ϑpξp+δpρ1χ1,¯u1p=δpϑpρ1ςp(χ1ξp+δpρ1),¯v1=ρ1χ1,¯m1=φω1(R11)andR1=np=1χ1ζpδpϑpφςp(χ1ξp+δpρ1).

    Case (c) If m1=0andj10, we achieve an afflicted steady state by using only the effective homologous immune response E3(ˆs,...,ˆsn,ˆu,...,ˆun,^v1,0,^j1), where ˆsp=ϑpξp+δpρ2χ2,^u1p=δpϑpρ2ςp(χ2ξp+δpρ2),^v1=ρ2χ2,^j1=φω2(R21)andR2=np=1χ2ζpδpϑpφςp(χ2ξp+δpρ2).

    Obviously R1<R0 and R2<R0.

    Assertions (b) and (c) show that if R1>1 and R2>1 then E0,E1,E2 and E3 all occur.

    Here, R1 is the heterologous specific antibody immune system stimulation quantity and R2 is the handful of homologous specific antibody immune reaction stimulation.

    We presently demonstrate that E0Δ and E1,E2,E3Δ. It is obvious that E0Δ. Suppose that that R0>1; then, E1 holds and ϑp=ξp˜sp+ςp˜up. As a result of this,

    sp<ϑpξpLp,up<ϑpςpLp.

    Also, we have that φ~v1=np=1ζp˜up; then,

    ~v1=1φnp=1ζp˜up<1φnp=1ζpLp1ϖnp=1ζpLp=K1.

    We obtain ~m1=~j1; then, E1Δ. Obvious that ˉsp,ˉup(0,Lp).

    Following that, we define that 0<¯v1<K1 and 0<¯m1<K2 when R1>1. The equilibrium condition of M2 yields

    φ¯v1+ω1¯v1¯m1=np=1ζp¯u1p.

    Thus, if R1>1, we have that φ¯v1<np=1ζpˉup0<¯v1<1φnp=1ζpLp1ϖnp=1ζpLp=K1.

    Eventually, we get

    ¯m1<1ω1¯v1np=1ζpˉup<χ1ω1K1=K2.

    Thus, E2Δ. Analogously, we can easily prove that E3Δ.

    The first consideration when researching the dynamic characteristics of an outbreak framework is determining whether the configuration is global and non-negative. In this segment, we will demonstrate that the Scheme (2.2) has a unique global non-negative solution with any initial settings by using the Lyapunov mechanism technique referenced in [42]. We demonstrate the subsequent formalism.

    Theorem 3.2. Assume that a system (2.2) (s1(t),x1(t),u1(t),r1(t),v1(t),m1(t),j1(t)) on t0 by the ICs (s1(0),x1(0),u1(0),r1(0),v1(0),m1(0),j1(0))R7+ and the solution (s1(t),x1(t),u1(t),r1(t),v1(t),m1(t),j1(t))R7+,t0 almost surely (a.s.).

    Proof. Because the system (2.2) indices fulfill the local Lipschitz requirement, for any ICs (s1(0),x1(0),u1(0),r1(0),v1(0),m1(0),j1(0))R7+, there exists only one local solution (s1(t),x1(t),u1(t),r1(t),v1(t),m1(t),j1(t)) on t[0,λϵ), where λϵ indicates the moment of explosion [43]. In order to prove the global solution, we need λϵ=. To that point, let k0>1 be large enough that (s1(0),x1(0),u1(0),r1(0),v1(0),m1(0),j1(0))R7+ is defined on [1/k0,k0]. Identify the stopping time for every integer kk0 as shown:

    λϵ=inf{t[0,λϵ):min{(s1(t),x1(t),u1(t),r1(t),v1(t),m1(t),j1(t))}1kormax{(s1(t),x1(t),u1(t),r1(t),v1(t),m1(t),j1(t))}k}.

    For the sake of simplicity, we take inf= ( signifies the empty set). Evidently, λk is nondecreasing as k. Assume that λ=limkλk, where λλϵ (a.s). When λ= holds (a.s), then λϵ= (a.s) and (s1(t),x1(t),u1(t),r1(t),v1(t),m1(t),j1(t))R7+,t0 (a.s). That is, we only need to demonstrate λ=(a.s) to obtain the evidence. If this assumption is factually inaccurate, then a couple of constants exist T>0 and ϵ(0,1) such that

    P{λT}>ϵ. (3.8)

    As a result, there is an integer k1k0 such that

    P{λkT}ϵ,kk1.

    We introduce a C2-function Φ:R7+R+ as follows:

    Φ(s1,x1,u1,r1,v1,m1,j1)=((s1a1a1lns1a1)+(x1+u1+r1+v1+m1+j1)6(lnx1+lnu1+lnr1+lnv1+lnm1+lnj1). (3.9)

    The positivity of (3.9) is evident from ρ1lnρ110 for every ρ1>0.

    Using Ito's strategy [44], we get

    dΦ(s1,x1,u1,r1,v1,m1,j1)=LΦ(s1,x1,u1,r1,v1,m1,j1)dt+1(s1a1)dB1(t)+1(s11)dB1(t)+2(x11)dB2(t)+3(u11)dB3(t)+4(r11)dB4(t)+5(v11)dB5(t)+6(m11)dB6(t)+7(j11)dB7(t), (3.10)

    where LΦ:R7+R is stated as

    dΦ(s1,x1,u1,r1,v1,m1,j1)=(1a1s1)(λ1δ1s1v1γ1s1)+(11x1)(λ2δ2x1v1γ2x1)+(11u1)(δ1s1v1ς1u1)+(11r1)(δ2x1v1ς2r1)+(11v1)(ζ1u1+ζ2r1φv1ω1v1m1ω2v1j1)+(11m1)(χ1v1m1ρ1m1)+(11j1)(χ2v1j1ρ2j1)+12(a121+22+23+24+25+26+27)=λ1+λ2+a1γ1+γ2+ς1+ς2+ρ1+ρ2δ1s1v1γ1s1+a1δ1v1δ2x1v1γ2x1+δ2v1+δ1s1v1ς1u1+δ2x1v1ς2r1+ζ1u1+ζ2r1φv1ω1s1m1ω2v1j1+ω1m1+ω2j1+χ1v1m1ρ1m1χ1v1+χ2v1j1ρ2j1χ2v1+a1ϑ1s1ϑ2x1λ1s1v1u1λ2x1v1r1ζ1u1v1ζ2r1v1+12(a121+22+23+24+25+26+27)(ϑ1+ϑ2)+a1γ1+γ2+ς1+ς2+ρ1+ρ2+(ζ1ς1)u1+(a1+δ1+δ2χ1φχ2)v1+(ζ2ς2)r1+(ω1ρ1)m1+(ω2ρ2)j1+12(a121+22+23+24+25+26+27).

    Since a1=χ1+φ+χ2δ1δ2, it follows that

    dΦ(s1,x1,u1,r1,v1,m1,j1)(ϑ1+ϑ2)+a1γ1+γ2+ς1+ς2+ρ1+ρ2+12(a121+22+23+24+25+26+27):=ϝ.

    Additionally, ϝ is non-negative constant. Therefore, we have

    dΦ(s1,x1,u1,r1,v1,m1,j1)ϝdt+1(s1a1)dB1(t)+1(s11)dB1(t)+2(x11)dB2(t)+3(u11)dB3(t)+4(r11)dB4(t)+5(v11)dB5(t)+6(m11)dB6(t)+7(j11)dB7(t). (3.11)

    For every k>k0, integrating (3.11) on both sides from 0 to λkT and then applying the expectation gives

    EΦ(s1(λkT),x1(λkT),u1(λkT),r1(λkT),v1(λkT),m1(λkT),j1(λkT))Φ(s1(0),x1(0),u1(0),r1(0),v1(0),m1(0),j1(0))+ϝT.

    For kk0, Λk={ωΛ:λk=λk(ω)T}. Thus, we get P(Λk)˜ϵ. Obviously, for each ωΛk there exists s1(λk,ω),x1(λk,ω), u1(λk,ω), r1(λk,ω),v1(λk,ω),m1(λk,ω)andj1(λk,ω) equating to either k or 1k. Therefore, Φ(s1(λk,ω),x1(λk,ω), u1(λk,ω),r1(λk,ω),v1(λk,ω), m1(λk,ω), j1(λk,ω)) is not less than either ka1a1lnka1or1ka1a1ln1a1k = 1ka1+a1ln(a1k), k1lnk, 1k1ln1k=1k1+lnk.

    As a result, we have

    Φ(s1(λk,ω),x1(λk,ω),u1(λk,ω),r1(λk,ω),v1(λk,ω),m1(λk,ω),j1(λk,ω))(ka1a1lnka1)(1ka1+a1ln(a1k))(k1lnk)(1k1+lnk).

    Finally, we have

    Φ(s1(0),x1(0),u1(0),r1(0),v1(0),m1(0),j1(0))+ϝTE{IΛkΦ(s1(λk,ω),x1(λk,ω),u1(λk,ω),r1(λk,ω),v1(λk,ω),m1(λk,ω),j1(λk,ω))}ϵ(ka1a1lnka1)(1ka1+a1ln(a1k))(k1lnk)(1k1+lnk),

    where IΛk presents the indicator function of Λk. Taking k leads to the contradiction

    >Φ(s1(0),x1(0),u1(0),r1(0),v1(0),m1(0),j1(0))+ϝT=.

    This completes the proof.

    In disease transmission, it is important to determine when an illness will persist in the community. We demonstrate that the endemic equilibrium exists and is globally asymptotically stable in the deterministic model (2.1). However, the highly prevalent stabilization does not exist in the stochastic model (2.2) of the infected individual. According to Has'minskii's theory [45], there exists an ESD that reveals that the illness will endure.

    Besides that, we reveal several hypotheses about the ESD (see Has'minskii [45]). Suppose that there is a homogeneous Markov procedure u(t) in R7+ that is characterized by the stochastic DE presented as

    du(t)=f(u(t))dt+r1=1g1r1(u(t))dBr1(t). (3.12)

    The diffusion matrix of the system u(t) is presented as follows:

    A(y)=(aip(y)),aip(y)=r1=1g1ir1(y)g1pr1(y). (3.13)

    Lemma 3.2. [45] Suppose that u(t) is the Markov process with a unique ESD π(.) if there exists a bounded region QRn has a regular boundary O and

    (i) a positive S1 such that di,p=1aip(y)ξiξpS1|ξ|2,yQ,ξRn,

    (ii) a positive C2-mapping Φ such that LΦ is non-positive for every RnQ, where L presents the differential operator described by

    L=np=1b1p(y)yp+12ni,p=1aip(y)2yiyp. (3.14)

    Then

    Py{limT1TT0f(u(t))dt=Rnf(y)π(dy)}=1,yRn, (3.15)

    where f(.) is an integrable mapping regarding to the measure π.

    Define a parameter

    Rs0=ζ1ζ2ϑ1ϑ2δ1δ2(212γ1)(222γ2)(232ς1)(242ς2)(252+φ)2. (3.16)

    Theorem 3.3. Suppose that system (2.2) (s1(t),x1(t),u1(t),r1(t),1(t),v1(t),m1(t),j1(t)) is ergodic and admits a unique stationary distribution π(.).

    Proof. To test the assertion (ii) of Lemma 3.2, we must classify a non-negative C2-mapping Φ:R7+R+, which must be categorized

    Φ1=s1+x1+u1+r1+v1+m1+j1q1lns1q2lnx1q3lnu1q4lnr1q5lnv1, (3.17)

    where q1,q2,q3,q4 and q5 are the constants to be determined later. Using Ito's methodology and the proposed framework, we produce the mentioned findings (2.2).

    L(s1+x1+u1+r1+v1+m1+j1)=πd(s1(t)+x1(t)+u1(t)+r1(t)+v1(t)+m1(t)+j1(t)). (3.18)

    It follows that

    L(lns1)=ϑ1s1δ1v1γ1+212,L(lnx1)=ϑ2x1δ2v1γ2+222,L(lnu1)=δ1s1v1u1ς1+232,L(lnr1)=δ2x1v1r1ς2+242,L(lnv1)=ζ1u1v1ζ2r1v1+φ+ω1m1+ω2j1+252,L(lnm1)=χ1v1+ρ1+252,L(lnj1)=χ2j1+ρ2+262.

    Now, we have

    LΦ1=d(s1+x1+u1+r1+v1+m1+j1)q1ϑ1s1+q1(212γ1)q1δ1v1q2ϑ2x1+q2(222γ2)q2δ2v1q3δ1s1v1u1q3(ς1232)q4δ2x1v1r1q4(ς2242)q5ζ1u1v1q5ζ2r1v1+q5ω1m1+q5ω2j1+q5(φ+252).

    The preceding signifies that

    LΦ17{d(s1+x1+u1+r1+v1+m1+j1)×q1ϑ1s1d(s1+x1+u1+r1+v1+m1+j1)×q2ϑ2x1×q3δ1s1v1u1×q4δ2x1v1r1×q5ζ1u1v1×q5ζ2r1v1}1/7+q1(212γ1)+q2(222γ2)+q3(232ς1)+q4(242ς2)+q5(φ+252)+(ϑ1+ϑ2)+q1ϑ1s1.

    Assume that

    q1(212γ1)=q2(222γ2)=q3(232ς1)=q4(242ς2)=q5(φ+252)=(ϑ1+ϑ2).

    Accordingly, we have

    q1=ϑ1+ϑ2(212γ1),q2=ϑ1+ϑ2(222γ2),q3=ϑ1+ϑ2(232ς1),q4=ϑ1+ϑ2(242ς2),q5=ϑ1+ϑ2(252+φ).

    As a result, we get

    LΦ17({(ϑ1+ϑ2)7ζ1ζ2ϑ1ϑ2δ1δ2(212γ1)(222γ2)(232ς1)(242ς2)(252+φ)2}1/7π)+q1ϑ1s17(ϑ1+ϑ2)[(Rs0)1/71]+q1ϑ1s1.

    Furthermore, we obtain

    Φ2=q6(s1+x1+u1+r1+v1+m1+j1q1lns1q2lnx1q3lnu1q4lnr1q5lnv1)lns1lnm1lnj1+s1(t)+x1(t)+u1(t)+r1(t)+v1(t)+m1(t)+j1(t)=(q6+1)(s1+x1+u1+r1+v1+m1+j1)(q1q6+1)lns1q2q6lnx1q3q6lnu1q4q6lnr1q6q5lnv1lnm1lnj1.

    Note that q6>0 is a constant which will be determined later. It is effective to demonstrate that

    lim(s1,x1,u1,r1,v1,m1,j1)R7+HΦ2(s1,x1,u1,r1,v1,m1,j1)=+,as, (3.19)

    where H=(1/,)×(1/,)×(1/,)×(1/,)×(1/,). The next process is to demonstrate that Φ2(s1,x1,u1,r1,v1,m1,j1) has only specified minimum value Φ2(s10,x10,u10,r10,v10,m10,j10).

    The partial derivatives of Φ2(s1,x1,u1,r1,v1,m1,j1) corresponding to s1,x1,u1,r1,v1,m1andj1 is as follows:

    Φ2(s1,x1,u1,r1,v1,m1,j1)s1=1+q61+q1q6s1,Φ2(s1,x1,u1,r1,v1,m1,j1)x1=1+q6q2q6x1,Φ2(s1,x1,u1,r1,v1,m1,j1)u1=1+q6q3q6u1,Φ2(s1,x1,u1,r1,v1,m1,j1)r1=1+q6q4q6r1,Φ2(s1,x1,u1,r1,v1,m1,j1)v1=1+q6q5q6v1,Φ2(s1,x1,u1,r1,v1,m1,j1)m1=1+q61m1,Φ2(s1,x1,u1,r1,v1,m1,j1)j1=1+q61j1. (3.20)

    It is not difficult to determine that Φ2 has a distinct stagnation point.

    (s1(0),x1(0),u1(0),r1(0),v1(0),m1(0),j1(0))=(1+q1q61+q6,q2q61+q6,q3q61+q6,q4q61+q6,q5q61+q6,11+q6,11+q6). (3.21)

    Also, the Hessian matrix Φ2(s1,x1,u1,r1,v1,m1,j1) at (s1(0),x1(0),u1(0),r1(0),v1(0),m1(0),j1(0)) is

    U=[1+q1q6s21(0)0000000q2q6x21(0)0000000q3q6u21(0)0000000q4q6r21(0)0000000q5q6v21(0)00000001m21(0)00000001j21(0)]. (3.22)

    The aforesaid matrix seems to be positive definite. As a result, Φ2(s1,x1,u1,r1,v1,m1,j1) has the lowest value of Φ2(s1(0),x1(0),u1(0),r1(0),v1(0),m1(0),j1(0)).

    In view of (3.19) and the continuity of Φ2(s1,x1,u1,r1,v1,m1,j1), observe that Φ2(s1,x1,u1,r1,v1,m1,j1) has at least one value Φ2(s1(0),x1(0),u1(0),r1(0),v1(0),m1(0),j1(0))R7+.

    After that, we shall define a positive C2-mapping Φ:R7+R+ as follows

    Φ(s1,x1,u1,r1,v1,m1,j1)=Φ2(s1,x1,u1,r1,v1,m1,j1)Φ2(s1(0),x1(0),u1(0),r1(0),v1(0),m1(0),j1(0)). (3.23)

    In view of Ito's formula and the suggested model, we have

    LΦq6{7(ϑ1+ϑ2)[(Rs0)1/71]+q1ϑ1s1}ϑ1s1δ1v1γ1+212ϑ2x1δ2v1γ2+222δ1s1v1u1ς1+232δ2x1v1r1ς2+242ζ1u1v1ζ2r1v1+φ+ω1m1+ω2j1+252+πd(s1(t)+x1(t)+u1(t)+r1(t)+v1(t)+m1(t)+j1(t)). (3.24)

    As a result of this, the following supposition can be constituted:

    LΦq6q7+(1+q1q6)ϑ1s1ϑ1s1δ1v1γ1+212ϑ2x1δ2v1γ2+222δ1s1v1u1ς1+232δ2x1v1r1ς2+242ζ1u1v1ζ2r1v1+φ+ω1m1+ω2j1+252+πd(s1(t)+x1(t)+u1(t)+r1(t)+v1(t)+m1(t)+j1(t)), (3.25)

    where q7=7(ϑ1+ϑ2)[(Rs0)1/71]>0.

    The next stage is to produce the set

    Q={s1(ϵ1,1ϵ2),x1(ϵ1,1ϵ2),u1(ϵ1,1ϵ2),r1(ϵ1,1ϵ2),v1(ϵ1,1ϵ2),m1(ϵ1,1ϵ2),j1(ϵ1,1ϵ2)}, (3.26)

    where ϵp>0,p=1,2 is a very small arbitrary constant. For the sake of clarification, we will split up the whole R7+Q into the aforementioned domains.

    Q1={(s1,x1,u1,r1,v1,m1,j1)R7+;s1(0,ϵ1]},Q2={(s1,x1,u1,r1,v1,m1,j1)R7+;x1(0,ϵ2],s1>ϵ2},Q3={(s1,x1,u1,r1,v1,m1,j1)R7+;u1(0,ϵ1],x1>ϵ2},Q4={(s1,x1,u1,r1,v1,m1,j1)R7+;r1(0,ϵ1],u1>ϵ2},Q5={(s1,x1,u1,r1,v1,m1,j1)R7+;v1(0,ϵ1],r1>ϵ2},Q6={(s1,x1,u1,r1,v1,m1,j1)R7+;m1(0,ϵ1],v1>ϵ2},Q7={(s1,x1,u1,r1,v1,m1,j1)R7+;j1(0,ϵ1],m1>ϵ2},Q8={(s1,x1,u1,r1,v1,m1,j1)R7+;s11ϵ2},Q9={(s1,x1,u1,r1,v1,m1,j1)R7+;x11ϵ2},Q10={(s1,x1,u1,r1,v1,m1,j1)R7+;u11ϵ2},Q11={(s1,x1,u1,r1,v1,m1,j1)R7+;r11ϵ2},Q12={(s1,x1,u1,r1,v1,m1,j1)R7+;v11ϵ2},Q13={(s1,x1,u1,r1,v1,m1,j1)R7+;m11ϵ2},Q14={(s1,x1,u1,r1,v1,m1,j1)R7+;j11ϵ2}.

    Here we will demonstrate that LΦ(s1,x1,u1,r1,v1,m1,j1) on R7+Q, which is equivalent to conveying it on the ten previously specified domains.

    Case I. For (s1,x1,u1,r1,v1,m1,j1)Q1, Eq (3.25), yields

    LΦq6q7+(1+q1q6)ϑ1s1ϑ1s1δ1v1γ1+212ϑ2x1δ2v1γ2+222δ1s1v1u1ς1+232δ2x1v1r1ς2+242ζ1u1v1ζ2r1v1+φ+ω1m1+ω2j1+252+πϑ1ϵ1+(1+q1q6)ϑ1ϵ1+Y1, (3.27)

    where

    Y1=sup(s1,x1,u1,r1,v1,m1,j1)R7+{q6q7δ1v1γ1+212ϑ2x1δ2v1γ2+222δ1s1v1u1ς1+232δ2x1v1r1ς2+242ζ1u1v1ζ2r1v1+φ+ω1m1+ω2j1+252}.

    Thus, we conclude that LΦ1 for each (s1,x1,u1,r1,v1,m1,j1)Q1.

    Case II. For (s1,x1,u1,r1,v1,m1,j1)Q2, Eq (3.25) yields

    LΦq6q7+(1+q1q6)ϑ1s1ϑ1s1δ1v1γ1+212ϑ2x1δ2v1γ2+222δ1s1v1u1ς1+232δ2x1v1r1ς2+242ζ1u1v1ζ2r1v1+φ+ω1m1+ω2j1+252+πϑ2ϵ2+Y2, (3.28)

    where

    Y2=sup(s1,x1,u1,r1,v1,m1,j1)R7+{q6q7+(1+q1q6)ϑ1s1ϑ1s1δ1v1γ1+212δ2v1γ2+222δ1s1v1u1ς1+232δ2x1v1r1ς2+242ζ1u1v1ζ2r1v1+φ+ω1m1+ω2j1+252+π}.

    Thus, we conclude that LΦ1 for each (s1,x1,u1,r1,v1,m1,j1)Q2.

    Case III. For (s1,x1,u1,r1,v1,m1,j1)Q3, Eq (3.25) yields

    LΦq6q7+(1+q1q6)ϑ1s1ϑ1s1δ1v1γ1+212ϑ2x1δ2v1γ2+222δ1s1v1u1ς1+232δ2x1v1r1ς2+242ζ1u1v1ζ2r1v1+φ+ω1m1+ω2j1+252+πδ1ϵ1v1ϵ2ζ1ϵ1v1+Y3, (3.29)

    where

    Y3=sup(s1,x1,u1,r1,v1,m1,j1)R7+{q6q7+(1+q1q6)ϑ1s1ϑ1s1δ1v1γ1+212ϑ2x1δ2v1γ2+222ς1+232δ2x1v1r1ς2+242ζ2r1v1+φ+ω1m1+ω2j1+252+π}.

    Thus, we conclude that LΦ1 for each (s1,x1,u1,r1,v1,m1,j1)Q3.

    Case IV. For (s1,x1,u1,r1,v1,m1,j1)Q4, Eq (3.25) yields

    LΦq6q7+(1+q1q6)ϑ1s1ϑ1s1δ1v1γ1+212ϑ2x1δ2v1γ2+222δ1s1v1u1ς1+232δ2x1v1r1ς2+242ζ1u1v1ζ2r1v1+φ+ω1m1+ω2j1+252+πδ2ϵ2v1ϵ1ζ2ϵ1v1+Y4, (3.30)

    where

    Y4=sup(s1,x1,u1,r1,v1,m1,j1)R7+{q6q7+(1+q1q6)ϑ1s1ϑ1s1δ1v1γ1+212ϑ2x1δ2v1γ2+222δ1s1v1u1ς1+232ς2+242ζ1u1v1+φ+ω1m1+ω2j1+252+π}.

    Thus, we conclude that LΦ1 for each (\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathcal{Q}_{4}.

    Case V. For (\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathcal{Q}_{5}, Eq (3.25) yields

    \begin{eqnarray} \mathbb{L}\Phi&&\leq -\mathbf{q}_{6}\mathbf{q}_{7}+(1+\mathbf{q}_{1}\mathbf{q}_{6})\frac{\vartheta_{1}}{\mathbf{s}_{1}}-\frac{\vartheta_{1}}{\mathbf{s}_{1}}-{\delta_{1}\mathbf{v}_{1}}-\gamma_{1}+\frac{\wp_{1}^{2}}{2}-\frac{\vartheta_{2}}{\mathbf{x}_{1}}-{\delta_{2}\mathbf{v}_{1}}-\gamma_{2}+\frac{\wp_{2}^{2}}{2}-\frac{\delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}}{\mathbf{u}_{1}}\\&&\quad-\varsigma_{1}+\frac{\wp_{3}^{2}}{2}-\frac{\delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}}{\mathbf{r}_{1}}-\varsigma_{2}+\frac{\wp_{4}^{2}}{2}-\frac{\zeta_{1}\mathbf{u}_{1}}{\mathbf{v}_{1}}-\frac{\zeta_{2}\mathbf{r}_{1}}{\mathbf{v}_{1}}+\varphi+\omega_{1}\mathbf{m}_{1}+\omega_{2}\mathbf{j}_{1}+\frac{\wp_{5}^{2}}{2}+\pi\\&&\leq-{\delta_{1}\epsilon_{1}}-\frac{\delta_{2}\epsilon_{2}}{\epsilon_{1}}-\frac{\zeta_{1}\mathbf{u}_{1}}{\epsilon_{1}}-\frac{\zeta_{2}\mathbf{r}_{1}}{\epsilon_{1}}+\mathbb{Y}_{5}, \end{eqnarray} (3.31)

    where

    \begin{eqnarray*} \mathbb{Y}_{5}&& = \sup\limits_{(\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathbb{R}_{+}^{7}}\Big\{-\mathbf{q}_{6}\mathbf{q}_{7}+(1+\mathbf{q}_{1}\mathbf{q}_{6})\frac{\vartheta_{1}}{\mathbf{s}_{1}}-\frac{\vartheta_{1}}{\mathbf{s}_{1}}-{\delta_{1}\mathbf{v}_{1}}-\gamma_{1}+\frac{\wp_{1}^{2}}{2}-\frac{\vartheta_{2}}{\mathbf{x}_{1}}-{\delta_{2}\mathbf{v}_{1}}-\gamma_{2}\nonumber\\&&\quad+\frac{\wp_{2}^{2}}{2}-\varsigma_{1}+\frac{\wp_{3}^{2}}{2}-\varsigma_{2}+\frac{\wp_{4}^{2}}{2}+\varphi+\omega_{1}\mathbf{m}_{1}+\omega_{2}\mathbf{j}_{1}+\frac{\wp_{5}^{2}}{2}+\pi\Big\}. \end{eqnarray*}

    Thus, we conclude that \mathbb{L}\Phi\leq-1 for each (\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathcal{Q}_{5}.

    Case VI. For (\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathcal{Q}_{6}, Eq (3.25) yields

    \begin{eqnarray} \mathbb{L}\Phi&&\leq -\mathbf{q}_{6}\mathbf{q}_{7}+(1+\mathbf{q}_{1}\mathbf{q}_{6})\frac{\vartheta_{1}}{\mathbf{s}_{1}}-\frac{\vartheta_{1}}{\mathbf{s}_{1}}-{\delta_{1}\mathbf{v}_{1}}-\gamma_{1}+\frac{\wp_{1}^{2}}{2}-\frac{\vartheta_{2}}{\mathbf{x}_{1}}-{\delta_{2}\mathbf{v}_{1}}-\gamma_{2}+\frac{\wp_{2}^{2}}{2}-\frac{\delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}}{\mathbf{u}_{1}}\\&&\quad-\varsigma_{1}+\frac{\wp_{3}^{2}}{2}-\frac{\delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}}{\mathbf{r}_{1}}-\varsigma_{2}+\frac{\wp_{4}^{2}}{2}-\frac{\zeta_{1}\mathbf{u}_{1}}{\mathbf{v}_{1}}-\frac{\zeta_{2}\mathbf{r}_{1}}{\mathbf{v}_{1}}+\varphi+\omega_{1}\mathbf{m}_{1}+\omega_{2}\mathbf{j}_{1}+\frac{\wp_{5}^{2}}{2}+\pi\\&&\leq\omega_{1}\epsilon_{1}-\frac{\delta_{1}\mathbf{s}_{1}\epsilon_{2}}{\mathbf{u}_{1}}-\frac{\delta_{2}\mathbf{x}_{1}\epsilon_{2}}{\mathbf{r}_{1}}-\frac{\zeta_{1}\mathbf{u}_{1}}{\epsilon_{2}}-\frac{\zeta_{2}\mathbf{r}_{1}}{\epsilon_{2}}+\mathbb{Y}_{6}, \end{eqnarray} (3.32)

    where

    \begin{eqnarray*} \mathbb{Y}_{6}&& = \sup\limits_{(\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathbb{R}_{+}^{7}}\Big\{-\mathbf{q}_{6}\mathbf{q}_{7}+(1+\mathbf{q}_{1}\mathbf{q}_{6})\frac{\vartheta_{1}}{\mathbf{s}_{1}}-\frac{\vartheta_{1}}{\mathbf{s}_{1}}-\gamma_{1}+\frac{\wp_{1}^{2}}{2}-\frac{\vartheta_{2}}{\mathbf{x}_{1}}-{\delta_{2}\mathbf{v}_{1}}-\gamma_{2}+\frac{\wp_{2}^{2}}{2}\nonumber\\&&\quad-\varsigma_{1}+\frac{\wp_{3}^{2}}{2}-\varsigma_{2}+\frac{\wp_{4}^{2}}{2}+\varphi+\omega_{2}\mathbf{j}_{1}+\frac{\wp_{5}^{2}}{2}+\pi\Big\}. \end{eqnarray*}

    Thus, we conclude that \mathbb{L}\Phi\leq-1 for each (\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathcal{Q}_{6}.

    Case VII. For (\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathcal{Q}_{7}, Eq (3.25) yields

    \begin{eqnarray} \mathbb{L}\Phi&&\leq -\mathbf{q}_{6}\mathbf{q}_{7}+(1+\mathbf{q}_{1}\mathbf{q}_{6})\frac{\vartheta_{1}}{\mathbf{s}_{1}}-\frac{\vartheta_{1}}{\mathbf{s}_{1}}-{\delta_{1}\mathbf{v}_{1}}-\gamma_{1}+\frac{\wp_{1}^{2}}{2}-\frac{\vartheta_{2}}{\mathbf{x}_{1}}-{\delta_{2}\mathbf{v}_{1}}-\gamma_{2}+\frac{\wp_{2}^{2}}{2}-\frac{\delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}}{\mathbf{u}_{1}}\\&&\quad-\varsigma_{1}+\frac{\wp_{3}^{2}}{2}-\frac{\delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}}{\mathbf{r}_{1}}-\varsigma_{2}+\frac{\wp_{4}^{2}}{2}-\frac{\zeta_{1}\mathbf{u}_{1}}{\mathbf{v}_{1}}-\frac{\zeta_{2}\mathbf{r}_{1}}{\mathbf{v}_{1}}+\varphi+\omega_{1}\mathbf{m}_{1}+\omega_{2}\mathbf{j}_{1}+\frac{\wp_{5}^{2}}{2}+\pi\\&&\leq-\mathbf{q}_{6}\mathbf{q}_{7}+\omega_{1}\epsilon_{2}+\omega_{2}\epsilon_{1}+\mathbb{Y}_{7}, \end{eqnarray} (3.33)

    where

    \begin{eqnarray*} \mathbb{Y}_{7}&& = \sup\limits_{(\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathbb{R}_{+}^{7}}\Big\{(1+\mathbf{q}_{1}\mathbf{q}_{6})\frac{\vartheta_{1}}{\mathbf{s}_{1}}-\frac{\vartheta_{1}}{\mathbf{s}_{1}}-{\delta_{1}\mathbf{v}_{1}}-\gamma_{1}+\frac{\wp_{1}^{2}}{2}-\frac{\vartheta_{2}}{\mathbf{x}_{1}}-{\delta_{2}\mathbf{v}_{1}}-\gamma_{2}+\frac{\wp_{2}^{2}}{2}\nonumber\\&&\quad-\frac{\delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}}{\mathbf{u}_{1}}-\varsigma_{1}+\frac{\wp_{3}^{2}}{2}-\frac{\delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}}{\mathbf{r}_{1}}-\varsigma_{2}+\frac{\wp_{4}^{2}}{2}-\frac{\zeta_{1}\mathbf{u}_{1}}{\mathbf{v}_{1}}-\frac{\zeta_{2}\mathbf{r}_{1}}{\mathbf{v}_{1}}+\varphi+\frac{\wp_{5}^{2}}{2}+\pi\Big\}. \end{eqnarray*}

    Thus, we conclude that \mathbb{L}\Phi\leq-1 for each (\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathcal{Q}_{7}.

    Case VIII. For (\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathcal{Q}_{8}, Eq (3.25) yields

    \begin{eqnarray} \mathbb{L}\Phi&&\leq -\mathbf{q}_{6}\mathbf{q}_{7}+(1+\mathbf{q}_{1}\mathbf{q}_{6})\frac{\vartheta_{1}}{\mathbf{s}_{1}}-\frac{\vartheta_{1}}{\mathbf{s}_{1}}-{\delta_{1}\mathbf{v}_{1}}-\gamma_{1}+\frac{\wp_{1}^{2}}{2}-\frac{\vartheta_{2}}{\mathbf{x}_{1}}-{\delta_{2}\mathbf{v}_{1}}-\gamma_{2}+\frac{\wp_{2}^{2}}{2}-\frac{\delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}}{\mathbf{u}_{1}}\\&&\quad-\varsigma_{1}+\frac{\wp_{3}^{2}}{2}-\frac{\delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}}{\mathbf{r}_{1}}-\varsigma_{2}+\frac{\wp_{4}^{2}}{2}-\frac{\zeta_{1}\mathbf{u}_{1}}{\mathbf{v}_{1}}-\frac{\zeta_{2}\mathbf{r}_{1}}{\mathbf{v}_{1}}+\varphi+\omega_{1}\mathbf{m}_{1}+\omega_{2}\mathbf{j}_{1}+\frac{\wp_{5}^{2}}{2}+\pi\\&&\leq(1+\mathbf{q}_{1}\mathbf{q}_{6})\frac{\vartheta_{1}}{\epsilon_{2}}-\frac{\vartheta_{1}}{\epsilon_{2}}+\mathbb{Y}_{8}, \end{eqnarray} (3.34)

    where

    \begin{eqnarray*} \mathbb{Y}_{8}&& = \sup\limits_{(\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathbb{R}_{+}^{7}}\Big\{-\mathbf{q}_{6}\mathbf{q}_{7}-{\delta_{1}\mathbf{v}_{1}}-\gamma_{1}+\frac{\wp_{1}^{2}}{2}-\frac{\vartheta_{2}}{\mathbf{x}_{1}}-{\delta_{2}\mathbf{v}_{1}}-\gamma_{2}+\frac{\wp_{2}^{2}}{2}-\frac{\delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}}{\mathbf{u}_{1}}\nonumber\\&&\quad-\varsigma_{1}+\frac{\wp_{3}^{2}}{2}-\frac{\delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}}{\mathbf{r}_{1}}-\varsigma_{2}+\frac{\wp_{4}^{2}}{2}-\frac{\zeta_{1}\mathbf{u}_{1}}{\mathbf{v}_{1}}-\frac{\zeta_{2}\mathbf{r}_{1}}{\mathbf{v}_{1}}+\varphi+\omega_{1}\mathbf{m}_{1}+\omega_{2}\mathbf{j}_{1}+\frac{\wp_{5}^{2}}{2}+\pi\Big\}. \end{eqnarray*}

    Thus, we conclude that \mathbb{L}\Phi\leq-1 for each (\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathcal{Q}_{8}.

    Case IX. For (\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathcal{Q}_{9}, Eq (3.25) yields

    \begin{eqnarray} \mathbb{L}\Phi&&\leq -\mathbf{q}_{6}\mathbf{q}_{7}+(1+\mathbf{q}_{1}\mathbf{q}_{6})\frac{\vartheta_{1}}{\mathbf{s}_{1}}-\frac{\vartheta_{1}}{\mathbf{s}_{1}}-{\delta_{1}\mathbf{v}_{1}}-\gamma_{1}+\frac{\wp_{1}^{2}}{2}-\frac{\vartheta_{2}}{\mathbf{x}_{1}}-{\delta_{2}\mathbf{v}_{1}}-\gamma_{2}+\frac{\wp_{2}^{2}}{2}-\frac{\delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}}{\mathbf{u}_{1}}\\&&\quad-\varsigma_{1}+\frac{\wp_{3}^{2}}{2}-\frac{\delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}}{\mathbf{r}_{1}}-\varsigma_{2}+\frac{\wp_{4}^{2}}{2}-\frac{\zeta_{1}\mathbf{u}_{1}}{\mathbf{v}_{1}}-\frac{\zeta_{2}\mathbf{r}_{1}}{\mathbf{v}_{1}}+\varphi+\omega_{1}\mathbf{m}_{1}+\omega_{2}\mathbf{j}_{1}+\frac{\wp_{5}^{2}}{2}+\pi\\&&\leq-\frac{\delta_{2}\mathbf{v}_{1}}{\epsilon_{2}\mathbf{r}_{1}}-\frac{\vartheta_{2}}{\epsilon_{2}}+\mathbb{Y}_{9}, \end{eqnarray} (3.35)

    where

    \begin{eqnarray*} \mathbb{Y}_{9}&& = \sup\limits_{(\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathbb{R}_{+}^{7}}\Big\{-\mathbf{q}_{6}\mathbf{q}_{7}+(1+\mathbf{q}_{1}\mathbf{q}_{6})\frac{\vartheta_{1}}{\mathbf{s}_{1}}-\frac{\vartheta_{1}}{\mathbf{s}_{1}}-{\delta_{1}\mathbf{v}_{1}}-\gamma_{1}+\frac{\wp_{1}^{2}}{2}-{\delta_{2}\mathbf{v}_{1}}-\gamma_{2}+\frac{\wp_{2}^{2}}{2}\nonumber\\&&\quad-\frac{\delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}}{\mathbf{u}_{1}}-\varsigma_{1}+\frac{\wp_{3}^{2}}{2}-\varsigma_{2}+\frac{\wp_{4}^{2}}{2}-\frac{\zeta_{1}\mathbf{u}_{1}}{\mathbf{v}_{1}}-\frac{\zeta_{2}\mathbf{r}_{1}}{\mathbf{v}_{1}}+\varphi+\omega_{1}\mathbf{m}_{1}+\omega_{2}\mathbf{j}_{1}+\frac{\wp_{5}^{2}}{2}+\pi\Big\}. \end{eqnarray*}

    Thus, we conclude that \mathbb{L}\Phi\leq-1 for each (\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathcal{Q}_{9}.

    Case X. For (\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathcal{Q}_{10}, Eq (3.25) yields

    \mathbb{L}\Phi \leq -\mathbf{q}_{6}\mathbf{q}_{7}+(1+\mathbf{q}_{1}\mathbf{q}_{6})\frac{\vartheta_{1}}{\mathbf{s}_{1}}-\frac{\vartheta_{1}}{\mathbf{s}_{1}}-{\delta_{1}\mathbf{v}_{1}}-\gamma_{1}+\frac{\wp_{1}^{2}}{2}-\frac{\vartheta_{2}}{\mathbf{x}_{1}}-{\delta_{2}\mathbf{v}_{1}}-\gamma_{2}+\frac{\wp_{2}^{2}}{2}\\ \quad-\frac{\delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}}{\mathbf{u}_{1}}-\varsigma_{1}+\frac{\wp_{3}^{2}}{2}-\frac{\delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}}{\mathbf{r}_{1}}-\varsigma_{2}+\\ \frac{\wp_{4}^{2}}{2}-\frac{\zeta_{1}\mathbf{u}_{1}}{\mathbf{v}_{1}}-\frac{\zeta_{2}\mathbf{r}_{1}}{\mathbf{v}_{1}}+\varphi+\omega_{1}\mathbf{m}_{1}+\omega_{2}\mathbf{j}_{1}+\frac{\wp_{5}^{2}}{2}+\pi\\ \leq-\frac{\delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}}{\epsilon_{2}}-\frac{\zeta_{1}\epsilon_{2}}{\mathbf{v}_{1}}+\mathbb{Y}_{10}, (3.36)

    where

    \begin{eqnarray*} \mathbb{Y}_{10}&& = \sup\limits_{(\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathbb{R}_{+}^{7}}\Big\{-\mathbf{q}_{6}\mathbf{q}_{7}+(1+\mathbf{q}_{1}\mathbf{q}_{6})\frac{\vartheta_{1}}{\mathbf{s}_{1}}-\frac{\vartheta_{1}}{\mathbf{s}_{1}}-{\delta_{1}\mathbf{v}_{1}}-\gamma_{1}+\frac{\wp_{1}^{2}}{2}-\frac{\vartheta_{2}}{\mathbf{x}_{1}}-{\delta_{2}\mathbf{v}_{1}}\nonumber\\&&\quad-\gamma_{2}+\frac{\wp_{2}^{2}}{2}-\varsigma_{1}+\frac{\wp_{3}^{2}}{2}-\frac{\delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}}{\mathbf{r}_{1}}-\varsigma_{2}+\frac{\wp_{4}^{2}}{2}-\frac{\zeta_{2}\mathbf{r}_{1}}{\mathbf{v}_{1}}+\varphi+\omega_{1}\mathbf{m}_{1}+\omega_{2}\mathbf{j}_{1}+\frac{\wp_{5}^{2}}{2}+\pi\Big\}. \end{eqnarray*}

    Thus, we conclude that \mathbb{L}\Phi\leq-1 for each (\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathcal{Q}_{10}.

    Case XI. For (\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathcal{Q}_{11}, Eq (3.25) yields

    \begin{eqnarray} \mathbb{L}\Phi&&\leq -\mathbf{q}_{6}\mathbf{q}_{7}+(1+\mathbf{q}_{1}\mathbf{q}_{6})\frac{\vartheta_{1}}{\mathbf{s}_{1}}-\frac{\vartheta_{1}}{\mathbf{s}_{1}}-{\delta_{1}\mathbf{v}_{1}}-\gamma_{1}+\frac{\wp_{1}^{2}}{2}-\frac{\vartheta_{2}}{\mathbf{x}_{1}}-{\delta_{2}\mathbf{v}_{1}}-\gamma_{2}+\frac{\wp_{2}^{2}}{2}-\frac{\delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}}{\mathbf{u}_{1}}\\&&\quad-\varsigma_{1}+\frac{\wp_{3}^{2}}{2}-\frac{\delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}}{\mathbf{r}_{1}}-\varsigma_{2}+\frac{\wp_{4}^{2}}{2}-\frac{\zeta_{1}\mathbf{u}_{1}}{\mathbf{v}_{1}}-\frac{\zeta_{2}\mathbf{r}_{1}}{\mathbf{v}_{1}}+\varphi+\omega_{1}\mathbf{m}_{1}+\omega_{2}\mathbf{j}_{1}+\frac{\wp_{5}^{2}}{2}+\pi\\&&\leq-\frac{\delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}}{\epsilon_{2}}-\frac{\zeta_{2}\epsilon_{2}}{\mathbf{v}_{1}}+\mathbb{Y}_{11}, \end{eqnarray} (3.37)

    where

    \begin{eqnarray*} \mathbb{Y}_{11}&& = \sup\limits_{(\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathbb{R}_{+}^{7}}\Big\{-\mathbf{q}_{6}\mathbf{q}_{7}+(1+\mathbf{q}_{1}\mathbf{q}_{6})\frac{\vartheta_{1}}{\mathbf{s}_{1}}-\frac{\vartheta_{1}}{\mathbf{s}_{1}}-{\delta_{1}\mathbf{v}_{1}}-\gamma_{1}+\frac{\wp_{1}^{2}}{2}-\frac{\vartheta_{2}}{\mathbf{x}_{1}}-{\delta_{2}\mathbf{v}_{1}}\nonumber\\&&\quad-\gamma_{2}+\frac{\wp_{2}^{2}}{2}-\frac{\delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}}{\mathbf{u}_{1}}-\varsigma_{1}+\frac{\wp_{3}^{2}}{2}-\varsigma_{2}+\frac{\wp_{4}^{2}}{2}-\frac{\zeta_{1}\mathbf{u}_{1}}{\mathbf{v}_{1}}+\varphi+\omega_{1}\mathbf{m}_{1}+\omega_{2}\mathbf{j}_{1}+\frac{\wp_{5}^{2}}{2}+\pi\Big\}. \end{eqnarray*}

    Thus, we conclude that \mathbb{L}\Phi\leq-1 for each (\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathcal{Q}_{11}.

    Case XII. For (\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathcal{Q}_{12}, Eq (3.25) yields

    \begin{eqnarray} \mathbb{L}\Phi&&\leq -\mathbf{q}_{6}\mathbf{q}_{7}+(1+\mathbf{q}_{1}\mathbf{q}_{6})\frac{\vartheta_{1}}{\mathbf{s}_{1}}-\frac{\vartheta_{1}}{\mathbf{s}_{1}}-{\delta_{1}\mathbf{v}_{1}}-\gamma_{1}+\frac{\wp_{1}^{2}}{2}-\frac{\vartheta_{2}}{\mathbf{x}_{1}}-{\delta_{2}\mathbf{v}_{1}}-\gamma_{2}+\frac{\wp_{2}^{2}}{2}-\frac{\delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}}{\mathbf{u}_{1}}\\&&\quad-\varsigma_{1}+\frac{\wp_{3}^{2}}{2}-\frac{\delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}}{\mathbf{r}_{1}}-\varsigma_{2}+\frac{\wp_{4}^{2}}{2}-\frac{\zeta_{1}\mathbf{u}_{1}}{\mathbf{v}_{1}}-\frac{\zeta_{2}\mathbf{r}_{1}}{\mathbf{v}_{1}}+\varphi+\omega_{1}\mathbf{m}_{1}+\omega_{2}\mathbf{j}_{1}+\frac{\wp_{5}^{2}}{2}+\pi\\&&\leq-\frac{\delta_{1}}{\epsilon_{2}}-\frac{\delta_{2}}{\epsilon_{2}}+\mathbb{Y}_{12}, \end{eqnarray} (3.38)

    where

    \begin{eqnarray*} \mathbb{Y}_{12}&& = \sup\limits_{(\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathbb{R}_{+}^{7}}\Big\{-\mathbf{q}_{6}\mathbf{q}_{7}+(1+\mathbf{q}_{1}\mathbf{q}_{6})\frac{\vartheta_{1}}{\mathbf{s}_{1}}-\frac{\vartheta_{1}}{\mathbf{s}_{1}}-\gamma_{1}+\frac{\wp_{1}^{2}}{2}-{\delta_{2}\mathbf{v}_{1}}-\gamma_{2}+\frac{\wp_{2}^{2}}{2}\nonumber\\&&\quad-\frac{\delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}}{\mathbf{u}_{1}}-\varsigma_{1}+\frac{\wp_{3}^{2}}{2}-\frac{\delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}}{\mathbf{r}_{1}}-\varsigma_{2}+\frac{\wp_{4}^{2}}{2}-\frac{\zeta_{1}\mathbf{u}_{1}}{\mathbf{v}_{1}}-\frac{\zeta_{2}\mathbf{r}_{1}}{\mathbf{v}_{1}}+\varphi+\omega_{1}\mathbf{m}_{1}+\omega_{2}\mathbf{j}_{1}+\frac{\wp_{5}^{2}}{2}+\pi\Big\}. \end{eqnarray*}

    Thus, we conclude that \mathbb{L}\Phi\leq-1 for each (\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathcal{Q}_{12}.

    Case XIII. For (\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathcal{Q}_{13}, Eq (3.25) yields

    \begin{eqnarray} \mathbb{L}\Phi&&\leq -\mathbf{q}_{6}\mathbf{q}_{7}+(1+\mathbf{q}_{1}\mathbf{q}_{6})\frac{\vartheta_{1}}{\mathbf{s}_{1}}-\frac{\vartheta_{1}}{\mathbf{s}_{1}}-{\delta_{1}\mathbf{v}_{1}}-\gamma_{1}+\frac{\wp_{1}^{2}}{2}-\frac{\vartheta_{2}}{\mathbf{x}_{1}}-{\delta_{2}\mathbf{v}_{1}}-\gamma_{2}+\frac{\wp_{2}^{2}}{2}-\frac{\delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}}{\mathbf{u}_{1}}\\&&\quad-\varsigma_{1}+\frac{\wp_{3}^{2}}{2}-\frac{\delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}}{\mathbf{r}_{1}}-\varsigma_{2}+\frac{\wp_{4}^{2}}{2}-\frac{\zeta_{1}\mathbf{u}_{1}}{\mathbf{v}_{1}}-\frac{\zeta_{2}\mathbf{r}_{1}}{\mathbf{v}_{1}}+\varphi+\omega_{1}\mathbf{m}_{1}+\omega_{2}\mathbf{j}_{1}+\frac{\wp_{5}^{2}}{2}+\pi\\&&\leq-\mathbf{q}_{6}\mathbf{q}_{7}+\frac{\omega_{1}}{\epsilon_{2}}+\mathbb{Y}_{13}, \end{eqnarray} (3.39)

    where

    \begin{eqnarray*} \mathbb{Y}_{13}&& = \sup\limits_{(\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathbb{R}_{+}^{7}}\Big\{(1+\mathbf{q}_{1}\mathbf{q}_{6})\frac{\vartheta_{1}}{\mathbf{s}_{1}}-\frac{\vartheta_{1}}{\mathbf{s}_{1}}-{\delta_{1}\mathbf{v}_{1}}-\gamma_{1}+\frac{\wp_{1}^{2}}{2}-\frac{\vartheta_{2}}{\mathbf{x}_{1}}-{\delta_{2}\mathbf{v}_{1}}-\gamma_{2}+\frac{\wp_{2}^{2}}{2}\nonumber\\&&\quad-\frac{\delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}}{\mathbf{u}_{1}}-\varsigma_{1}+\frac{\wp_{3}^{2}}{2}-\frac{\delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}}{\mathbf{r}_{1}}-\varsigma_{2}+\frac{\wp_{4}^{2}}{2}-\frac{\zeta_{1}\mathbf{u}_{1}}{\mathbf{v}_{1}}-\frac{\zeta_{2}\mathbf{r}_{1}}{\mathbf{v}_{1}}+\varphi+\omega_{2}\mathbf{j}_{1}+\frac{\wp_{5}^{2}}{2}+\pi\Big\}. \end{eqnarray*}

    Thus, we conclude that \mathbb{L}\Phi\leq-1 for each (\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathcal{Q}_{13}.

    Case XIV. For (\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathcal{Q}_{14}, Eq (3.25) yields

    \begin{eqnarray} \mathbb{L}\Phi&&\leq -\mathbf{q}_{6}\mathbf{q}_{7}+(1+\mathbf{q}_{1}\mathbf{q}_{6})\frac{\vartheta_{1}}{\mathbf{s}_{1}}-\frac{\vartheta_{1}}{\mathbf{s}_{1}}-{\delta_{1}\mathbf{v}_{1}}-\gamma_{1}+\frac{\wp_{1}^{2}}{2}-\frac{\vartheta_{2}}{\mathbf{x}_{1}}-{\delta_{2}\mathbf{v}_{1}}-\gamma_{2}+\frac{\wp_{2}^{2}}{2}-\frac{\delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}}{\mathbf{u}_{1}}\\&&\quad-\varsigma_{1}+\frac{\wp_{3}^{2}}{2}-\frac{\delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}}{\mathbf{r}_{1}}-\varsigma_{2}+\frac{\wp_{4}^{2}}{2}-\frac{\zeta_{1}\mathbf{u}_{1}}{\mathbf{v}_{1}}-\frac{\zeta_{2}\mathbf{r}_{1}}{\mathbf{v}_{1}}+\varphi+\omega_{1}\mathbf{m}_{1}+\omega_{2}\mathbf{j}_{1}+\frac{\wp_{5}^{2}}{2}+\pi\\&&\leq-\mathbf{q}_{6}\mathbf{q}_{7}+\frac{\omega_{2}}{\epsilon_{2}}+\mathbb{Y}_{14}, \end{eqnarray} (3.40)

    where

    \begin{eqnarray*} \mathbb{Y}_{14}&& = \sup\limits_{(\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathbb{R}_{+}^{7}}\Big\{(1+\mathbf{q}_{1}\mathbf{q}_{6})\frac{\vartheta_{1}}{\mathbf{s}_{1}}-\frac{\vartheta_{1}}{\mathbf{s}_{1}}-{\delta_{1}\mathbf{v}_{1}}-\gamma_{1}+\frac{\wp_{1}^{2}}{2}-\frac{\vartheta_{2}}{\mathbf{x}_{1}}-{\delta_{2}\mathbf{v}_{1}}-\gamma_{2}+\frac{\wp_{2}^{2}}{2}\nonumber\\&&\quad-\frac{\delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}}{\mathbf{u}_{1}}-\varsigma_{1}+\frac{\wp_{3}^{2}}{2}-\frac{\delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}}{\mathbf{r}_{1}}-\varsigma_{2}+\frac{\wp_{4}^{2}}{2}-\frac{\zeta_{1}\mathbf{u}_{1}}{\mathbf{v}_{1}}-\frac{\zeta_{2}\mathbf{r}_{1}}{\mathbf{v}_{1}}+\varphi+\omega_{1}\mathbf{m}_{1}+\frac{\wp_{5}^{2}}{2}+\pi\Big\}. \end{eqnarray*}

    Thus, we conclude that \mathbb{L}\Phi\leq-1 for each (\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathcal{Q}_{14}.

    Evidently, we can deduce from (3.27)–(3.40) that for a sufficiently small \epsilon ,

    \begin{eqnarray*} \mathbb{L}\Phi\leq-1\; \; \forall \; (\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathbb{R}_{+}^{7}\setminus\mathcal{Q}. \end{eqnarray*}

    As a result, we develop that a constant \mathcal{U} > 0 is such that it ensures

    \begin{eqnarray*} \mathbb{L}\Phi(\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1}) < \mathcal{U}, \; \; \; \; \forall \; (\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\mathbb{R}_{+}^{7}\setminus\mathcal{Q}. \end{eqnarray*}

    Finally,

    \begin{eqnarray} && d\Phi(\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\\&& < -\mathcal{U}d\mathbf{t}+\big[(\mathbf{q}_{6}+1)\mathbf{s}_{1}-(\mathbf{q}_{1}\mathbf{q}_{6})\wp_{1}\big]d\mathcal{B}_{1}(\mathbf{t})+\big[(\mathbf{q}_{6}+1)\mathbf{x}_{1}-\mathbf{q}_{2}\mathbf{q}_{6}\wp_{2}\big]d\mathcal{B}_{2}(\mathbf{t})\\&&\quad+\big[(\mathbf{q}_{6}+1)\mathbf{u}_{1}-\mathbf{q}_{3}\mathbf{q}_{6}\wp_{3}\big]d\mathcal{B}_{3}(\mathbf{t})+\big[(\mathbf{q}_{6}+1)\mathbf{r}_{1}-\mathbf{q}_{4}\mathbf{q}_{6}\wp_{4}\big]d\mathcal{B}_{4}(\mathbf{t})\\&&\quad+\big[(\mathbf{q}_{6}+1)\mathbf{v}_{1}-\mathbf{q}_{5}\mathbf{q}_{6}\wp_{5}\big]d\mathcal{B}_{5}(\mathbf{t})+\big[(\mathbf{q}_{6}+1)\mathbf{m}_{1}-\wp_{6}\big]d\mathcal{B}_{6}(\mathbf{t})\\&&\quad+\big[(\mathbf{q}_{6}+1)\mathbf{j}_{1}-\wp_{7}\big]d\mathcal{B}_{7}(\mathbf{t}). \end{eqnarray} (3.41)

    Suppose that (\mathbf{s}_{1}(0), \mathbf{x}_{1}(0), \mathbf{u}_{1}(0), \mathbf{r}_{1}(0), \mathbf{v}_{1}(0), \mathbf{m}_{1}(0), \mathbf{j}_{1}(0)) = (r_{1}, r_{2}, r_{3}, r_{4}, r_{5}, r_{6}, r_{7}) = \bar{r}\in\mathbb{R}_{+}^{7}\setminus\mathcal{Q}, and that \delta^{\bar{r}} is the time span from an initial point \bar{r} to reach a domain \mathcal{Q}; then

    \begin{eqnarray*} \lambda _{\mathfrak{n}} = \inf\big\{\mathbf{t}:\vert \mathbf{u}(\mathbf{t}) = \mathfrak{n}\vert\big\}\; and\; \lambda ^{(\mathfrak{n})}(\mathbf{t}) = \min\{\lambda ^{\bar{r}}, \mathbf{t}, \lambda _{\mathfrak{n}}\}. \end{eqnarray*}

    By integrating both sides of the variant (3.41) from zero to \lambda ^{(\mathfrak{n})}(\mathbf{t}) , contemplating the expectation and using Dynkin's computation, one can obtain the following:

    \mathbb{U}\Phi\big(\mathbf{s}_{1}(\lambda ^{(\mathfrak{n})}(\mathbf{t})), \mathbf{x}_{1}(\lambda ^{(\mathfrak{n})}(\mathbf{t})), \mathbf{u}_{1}(\lambda ^{(\mathfrak{n})}(\mathbf{t})),\\ \mathbf{r}_{1}(\lambda ^{(\mathfrak{n})}(\mathbf{t})), \mathbf{v}_{1}(\lambda ^{(\mathfrak{n})}(\mathbf{t})), \mathbf{m}_{1}(\lambda ^{(\mathfrak{n})}(\mathbf{t})), \mathbf{m}_{1}(\lambda ^{(\mathfrak{n})}(\mathbf{t}))\big)-\Phi(\bar{r})\\ = \mathbb{U}\in\mathbf{t}_{0}^{\lambda ^{(\mathfrak{n})}(\mathbf{t})}\mathbb{L}\Phi\big(\mathbf{s}_{1}(u_{1}), \mathbf{x}_{1}(u_{1}), \mathbf{u}_{1}(u_{1}), \mathbf{r}_{1}(u_{1}), \mathbf{v}_{1}(u_{1}), \mathbf{m}_{1}(u_{1}), \mathbf{j}_{1}(u_{1})\big)du_{1}\\ \leq\mathbb{U}\in\mathbf{t}_{0}^{\lambda ^{(\mathfrak{n})}(\mathbf{t})}-\mathcal{U}du_{1} = -\mathcal{U}\mathbb{U}\lambda ^{(\mathfrak{n})}(\mathbf{t}). (3.42)

    Since \Phi(\bar{r}) is positive,

    \begin{eqnarray} \mathbb{U}\lambda ^{(\mathfrak{n})}(\mathbf{t})\leq\frac{\Phi(\bar{r})}{\mathcal{U}}. \end{eqnarray} (3.43)

    This indicates that \mathbf{P}\big\{\lambda _{\epsilon} < \infty\big\} = 1 as a consequence of proof of Theorem 3.3. Conversely, the model (2.2) can be stated as regular. Thus, if \mathfrak{n}, \mathbf{t}\mapsto\infty, we almost surely find \lambda ^{(\mathfrak{n})}(\mathbf{t})\mapsto\lambda ^{\bar{r}}, \; (a.s).

    Applying Fatou's lemma, we have

    \begin{eqnarray} \mathbb{U}\lambda ^{(\mathfrak{n})}(\mathbf{t})\leq\frac{\Phi(\bar{r})}{\mathcal{U}} < \infty. \end{eqnarray} (3.44)

    Obviously, \sup_{\bar{r}\in\ell}\mathbb{U}\lambda ^{\bar{r}} , where \ell is a compact subset of \mathbb{R}_{+}^{7} . It validates the Lemma 3.2 assertion (ii).

    Also, the diffusion matrix of the model (2.2) is

    \begin{eqnarray} \mathcal{U} = \begin{bmatrix} \wp_{1}^{2}\mathbf{s}_{1}^{2}&0&0&0&0&0&0\\ 0&\wp_{2}^{2}\mathbf{x}_{1}^{2}&0&0&0&0&0\\ 0&0&\wp_{3}^{2}\mathbf{u}_{1}^{2}&0&0&0&0\\ 0&0&0&\wp_{4}^{2}\mathbf{r}_{1}^{2}&0&0&0\\ 0&0&0&0&\wp_{5}^{2}\mathbf{v}_{1}^{2}&0&0\\ 0&0&0&0&0&\wp_{6}^{2}\mathbf{m}_{1}^{2}&0\\ 0&0&0&0&0&0&\wp_{7}^{2}\mathbf{j}_{1}^{2}\\ \end{bmatrix}. \end{eqnarray} (3.45)

    Selecting V_{1} = \min\limits_{(\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\bar{\mathcal{Q}}\in\mathbb{R}_{+}^{7}}\big\{\wp_{1}^{2}\mathbf{s}_{1}^{2}, \wp_{2}^{2}\mathbf{x}_{1}^{2}, \wp_{3}^{2}\mathbf{u}_{1}^{2}, \wp_{4}^{2}\mathbf{r}_{1}^{2}, \wp_{5}^{2}\mathbf{v}_{1}^{2}, \wp_{6}^{2}\mathbf{m}_{1}^{2}, \wp_{7}^{2}\mathbf{j}_{1}^{2}\big\}, we find that

    \begin{eqnarray} &&\sum\limits_{\mathbf{p}, \mathbf{p} = 1}^{7}a_{\mathbf{p}\mathbf{p}}(\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\Im_{\mathbf{p}}\Im_{\mathbf{p}}\\&& = \wp_{1}^{2}\mathbf{s}_{1}^{2}\Im^{2}+\wp_{2}^{2}\mathbf{x}_{1}^{2}\Im^{2}+\wp_{3}^{2}\mathbf{u}_{1}^{2}\Im^{2}+\wp_{4}^{2}\mathbf{r}_{1}^{2}\Im^{2}+\wp_{5}^{2}\mathbf{v}_{1}^{2}\Im^{2}+\wp_{6}^{2}\mathbf{m}_{1}^{2}\Im^{2}+\wp_{7}^{2}\mathbf{j}_{1}^{2}\Im^{2}\geq V_{1}\vert\Im\vert^{2}, \\&&\; \; \; \; \; \; \; \; (\mathbf{s}_{1}, \mathbf{x}_{1}, \mathbf{u}_{1}, \mathbf{r}_{1}, \mathbf{v}_{1}, \mathbf{m}_{1}, \mathbf{j}_{1})\in\bar{\mathcal{Q}}, \\ \end{eqnarray} (3.46)

    where \Im = (\Im_{1}, \Im_{2}, \Im_{3}, \Im_{4}, \Im_{5}, \Im_{6}, \Im_{7})\in\mathbb{R}_{+}^{7}. This shows that the assertion (i) of Lemma 3.2 is satisfied. Based on the foregoing discussion, Lemma 3.2 illustrates that the framework (2.2) is ergodic and has only one stationary distribution.

    In this part, we will investigate the dynamical behavior of SDVI models (2.1) and (2.2) that incorporate the multi-target cells and involve classical, index-law and eventually, stochastic processes. In this scenario, if we define \mathbb{T} as the final time of transmission, that is, the penultimate time when a secondary outbreak occurs, then the mathematical framework will be developed by using the classical derivative formulation in the first round, then the index-law kernel in the second step and finally the stochastic environment in the later phases. Following that, the mathematical formalism that explains this phenomenon is offered as follows:

    \begin{eqnarray} \begin{cases} \frac{d\mathbf{s}_{1}}{d\mathbf{t}} = \vartheta_{1}-\delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}-\gamma_{1}\mathbf{s}_{1}, \\\frac{d\mathbf{x}_{1}}{d\mathbf{t}} = \vartheta_{2}-\delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}-\gamma_{2}\mathbf{s}_{1}, \\ \frac{d\mathbf{u}_{1}}{d\mathbf{t}} = \delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}-\chi_{1}\mathbf{u}_{1}, \; \; if\; \; 0\leq \mathbf{t}\leq\mathbb{T}_{1}, \\\frac{d\mathbf{r}_{1}}{d\mathbf{t}} = \delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}-\chi_{2}\mathbf{r}_{1}, \\ \frac{d\mathbf{v}_{1}}{d\mathbf{t}} = \zeta_{1}\mathbf{u}_{1}+\zeta_{2}\mathbf{r}_{1}-\varphi \mathbf{v}_{1}-\omega_{1}\mathbf{v}_{1}\mathbf{m}_{1}-\omega_{2}\mathbf{v}_{1}\mathbf{j}_{1}, \\ \frac{d\mathbf{m}_{1}}{d\mathbf{t}} = \chi_{1}\mathbf{v}_{1}\mathbf{m}_{1}-\rho_{1}\mathbf{m}_{1}, \\ \frac{d\mathbf{j}_{1}}{d\mathbf{t}} = \chi_{2}\mathbf{v}_{1}\mathbf{j}_{1}-\rho_{2}\mathbf{j}_{1}, \end{cases} \end{eqnarray} (4.1)
    \begin{eqnarray} \begin{cases} \, _{0}^{c}\mathbf{D}_{\mathbf{t}}^{\varpi}\mathbf{s}_{1}(\mathbf{t}) = \vartheta_{1}-\delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}-\gamma_{1}\mathbf{s}_{1}, \\\, _{0}^{c}\mathbf{D}_{\mathbf{t}}^{\varpi}\mathbf{x}_{1}(\mathbf{t}) = \vartheta_{2}-\delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}-\gamma_{2}\mathbf{s}_{1}, \\ \, _{0}^{c}\mathbf{D}_{\mathbf{t}}^{\varpi}\mathbf{u}_{1}(\mathbf{t}) = \delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}-\chi_{1}\mathbf{u}_{1}, \; \; if\; \; \mathbb{T}_{1}\leq \mathbf{t}\leq\mathbb{T}_{2}, \\\, _{0}^{c}\mathbf{D}_{\mathbf{t}}^{\varpi}\mathbf{r}_{1}(\mathbf{t}) = \delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}-\chi_{2}\mathbf{r}_{1}, \\ \, _{0}^{c}\mathbf{D}_{\mathbf{t}}^{\varpi}\mathbf{v}_{1}(\mathbf{t}) = \zeta_{1}\mathbf{u}_{1}+\zeta_{2}\mathbf{r}_{1}-\varphi \mathbf{v}_{1}-\omega_{1}\mathbf{v}_{1}\mathbf{m}_{1}-\omega_{2}\mathbf{v}_{1}\mathbf{j}_{1}, \\ \, _{0}^{c}\mathbf{D}_{\mathbf{t}}^{\varpi}\mathbf{m}_{1}(\mathbf{t}) = \chi_{1}\mathbf{v}_{1}\mathbf{m}_{1}-\rho_{1}\mathbf{m}_{1}, \\ \, _{0}^{c}\mathbf{D}_{\mathbf{t}}^{\varpi}\mathbf{j}_{1}(\mathbf{t}) = \chi_{2}\mathbf{v}_{1}\mathbf{j}_{1}-\rho_{2}\mathbf{j}_{1}\end{cases} \end{eqnarray} (4.2)
    \begin{eqnarray} \begin{cases} d\mathbf{s}_{1}(\mathbf{t}) = \big(\vartheta_{1}-\delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}-\gamma_{1}\mathbf{s}_{1}\big)+\wp_{1}\mathbf{s}_{1}(\mathbf{t})d\mathcal{B}_{1}(\mathbf{t}), \\d\mathbf{x}_{1}(\mathbf{t}) = \big( = \vartheta_{2}-\delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}-\gamma_{2}\mathbf{s}_{1}\big)+\wp_{2}\mathbf{x}_{1}(\mathbf{t})d\mathcal{B}_{2}(\mathbf{t}), \\ d\mathbf{u}_{1}(\mathbf{t}) = \big(\delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}-\chi_{1}\mathbf{u}_{1}\big)+\wp_{3}\mathbf{u}_{1}(\mathbf{t})d\mathcal{B}_{3}(\mathbf{t}), \; \; if\; \; \mathbb{T}_{2}\leq \mathbf{t}\leq\mathbb{T}, \\d\mathbf{r}_{1}(\mathbf{t}) = \big(\delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}-\chi_{2}\mathbf{r}_{1}\big)+\wp_{4}\mathbf{r}_{1}(\mathbf{t})d\mathcal{B}_{4}(\mathbf{t}), \\ d\mathbf{v}_{1}(\mathbf{t}) = \big(\zeta_{1}\mathbf{u}_{1}+\zeta_{2}\mathbf{r}_{1}-\varphi \mathbf{v}_{1}-\omega_{1}\mathbf{v}_{1}\mathbf{m}_{1}-\omega_{2}\mathbf{v}_{1}\mathbf{j}_{1}\big)+\wp_{5}\mathbf{v}_{1}(\mathbf{t})d\mathcal{B}_{5}(\mathbf{t}), \\ d\mathbf{m}_{1}(\mathbf{t}) = \big( = \chi_{1}\mathbf{v}_{1}\mathbf{m}_{1}-\rho_{1}\mathbf{m}_{1}\big)+\wp_{6}\mathbf{m}_{1}(\mathbf{t})d\mathcal{B}_{6}(\mathbf{t}), \\ d\mathbf{j}_{1}(\mathbf{t}) = \big( = \chi_{2}\mathbf{v}_{1}\mathbf{j}_{1}-\rho_{2}\mathbf{j}_{1}\big)+\wp_{7}\mathbf{j}_{1}(\mathbf{t})d\mathcal{B}_{7}(\mathbf{t})\end{cases} \end{eqnarray} (4.3)

    Here, we apply the technique described in [24] for the scenario of Caputo's derivative to analyze quantitatively the piecewise structure described by (4.1)–(4.3). We commence the technique as follows:

    \begin{eqnarray*} \begin{cases} \frac{d\Omega_{\ell}(\mathbf{t})}{d\mathbf{t}} = \Lambda(\mathbf{t}, \Omega_{\ell}).\; \Omega_{\ell}(0) = \Omega_{\ell, 0}, \; \ell = 1, 2, ..., \mathfrak{n}\; if\; \mathbf{t}\in[0, \mathbb{T}_{1}], \\ \, _{\mathbb{T}_{1}}^{c}\mathbf{D}_{\mathbf{t}}^{\beta}\Omega_{\ell}(\mathbf{t}) = \Lambda(\mathbf{t}, \Omega_{\ell}), \; \Omega_{\ell}(\mathbb{T}_{1}) = \Omega_{\ell, 1}, \; if\; \mathbf{t}\in[\mathbb{T}_{1}, \mathbb{T}_{2}], \\ d\Omega_{\ell}(\mathbf{t}) = \Lambda(\mathbf{t}, \Omega_{\ell})d\mathbf{t}+\wp_{\ell}\Omega_{\ell}d\mathcal{B}_{\ell}(\mathbf{t}), \; \Omega_{\ell}(\mathbb{T}_{2}) = \Omega_{\ell, 2}, \; if\; \mathbf{t}\in[\mathbb{T}_{2}, \mathbb{T}]. \end{cases} \end{eqnarray*}

    It follows that

    \begin{eqnarray*} \Omega_{\ell}^{\mathbf{r}} = \begin{cases}\Omega_{\ell}(0)+\sum\limits_{\mathbf{p} = 2}^{\mathbf{r}}\Big\{\frac{23}{12}\Lambda({\mathbf{t}}_{\mathbf{p}}, \Omega^{\mathbf{p}})\Delta \mathbf{t}-\frac{4}{3}\Lambda({\mathbf{t}}_{\mathbf{p}-1}, \Omega^{\mathbf{p}-1})\Delta \mathbf{t}+\frac{5}{12}\Lambda({\mathbf{t}}_{\mathbf{p}-2}, \Omega^{\mathbf{p}-2})\Delta \mathbf{t}\Big\}, \; \; \mathbf{t}\in[0, \mathbb{T_{1}}].\\ \Omega_{\ell}(\mathbb{T}_{1})+\frac{(\Delta \mathbf{t})^{\beta-1}}{\Gamma(\beta+1)}\sum\limits_{\mathbf{p} = 2}^{\mathbf{r}}\Lambda({\mathbf{t}}_{\mathbf{p}-2}, \Omega^{\mathbf{p}-2})\Xi_{1}\\\quad+ \frac{(\Delta \mathbf{t})^{\beta-1}}{\Gamma(\beta+2)}\sum\limits_{\mathbf{p} = 2}^{\mathbf{r}}\Big\{\Lambda({\mathbf{t}}_{\mathbf{p}-1}, \Omega^{\mathbf{p}-1})-\Lambda({\mathbf{t}}_{\mathbf{p}-2}, \Omega^{\mathbf{p}-2})\Big\}\Xi_{2}\\\quad+\frac{\beta(\Delta \mathbf{t})^{\beta-1}}{2\Gamma(\beta+3)}\sum\limits_{\mathbf{p} = 2}^{\mathbf{r}}\Big\{\Lambda({\mathbf{t}}_{\mathbf{p}}, \Omega^{\mathbf{p}})-2\Lambda({\mathbf{t}}_{\mathbf{p}-1}, \Omega^{\mathbf{p}-1})+\Lambda({\mathbf{t}}_{\mathbf{p}-2}, \Omega^{\mathbf{p}-2})\Big\}\Xi_{3}, \; \; \mathbf{t}\in[\mathbb{T}_{1}, \mathbb{T}_{2}], \\ \Omega_{\ell}(\mathbb{T}_{2})+\sum\limits_{\mathbf{p} = \mathbf{r}+3}^{\mathfrak{n}}\Big\{\frac{5}{12}\Lambda({\mathbf{t}}_{\mathbf{p}-2}, \Omega^{\mathbf{p}-2})\Delta \mathbf{t}-\frac{4}{3}\Lambda({\mathbf{t}}_{\mathbf{p}-1}, \Omega^{\mathbf{p}-1})\Delta \mathbf{t}+\frac{23}{12}\Lambda({\mathbf{t}}_{\mathbf{p}}, \Omega^{\mathbf{p}})\Delta \mathbf{t}\Big\} \\\quad+\sum\limits_{\mathbf{p} = \mathbf{r}+3}^{\mathfrak{n}}\Big\{\frac{5}{12}\big(\mathcal{B}({\mathbf{t}}_{\mathbf{p}-1})-\mathcal{B}({\mathbf{t}}_{\mathbf{p}-2})\big)\wp\Omega^{\mathbf{p}-2}- \frac{4}{3}\big(\mathcal{B}({\mathbf{t}}_{\mathbf{p}})-\mathcal{B}({\mathbf{t}}_{\mathbf{p}-1})\big)\wp\Omega^{\mathbf{p}-1}\\\quad+\frac{23}{12}\big(\mathcal{B}({\mathbf{t}}_{\mathbf{p}+1})-\mathcal{B}({\mathbf{t}}_{\mathbf{p}})\big)\wp\Omega^{\mathbf{p}}\Big\}, \; \; \mathbf{t}\in[\mathbb{T}_{2}, \mathbb{T}], \end{cases} \end{eqnarray*}

    where

    \begin{eqnarray} \Xi_{1}: = (\mathbf{r}-\mathbf{p}-1)^{\beta}-(\mathbf{r}-\mathbf{p})^{\beta}, \end{eqnarray} (4.4)
    \begin{eqnarray} \Xi_{2}: = (\mathbf{r}-\mathbf{p}+1)^{\beta}(\mathbf{r}-\mathbf{p}+2\beta+3)-(\mathbf{r}-\mathbf{p})^{\beta}(\mathbf{r}-\mathbf{p}+3\beta+3), \end{eqnarray} (4.5)

    and

    \begin{eqnarray} \Xi_{3}: = \begin{cases}(\mathbf{r}-\mathbf{p}+1)^{\beta}\Big(2(\mathbf{r}-\mathbf{p})^{2}+ (3\beta+10)(\mathbf{r}-\mathbf{p})+2\beta^{2}+9\beta+12\Big)\\\quad+ (\mathbf{r}-\mathbf{p})^{\beta}\Big(2(\mathbf{r}-\mathbf{p})^{2}+(5\beta+10)(\mathbf{r}-\mathbf{p})+6\beta^{2}+18\beta+12\Big). \end{cases} \end{eqnarray} (4.6)

    In this subsection, we will examine the system dynamics of SDVI propagation involving multiple-target cells comprising classical, exponential decay law and stochastic mechanisms. If we describe \mathbb{T} as the concluding time of transmission, that is, the final time when a secondary epidemic appears, then the mathematical structure will be formed in the first round by using the classical derivative implementation, then the exponential decay kernel in the second step and eventually the stochastic environment in the subsequent periods. Regarding that, the mathematical approach used to illustrate this occurrence is presented as follows:

    \begin{eqnarray} \begin{cases} \frac{d\mathbf{s}_{1}}{d\mathbf{t}} = \vartheta_{1}-\delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}-\gamma_{1}\mathbf{s}_{1}, \\\frac{d\mathbf{x}_{1}}{d\mathbf{t}} = \vartheta_{2}-\delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}-\gamma_{2}\mathbf{s}_{1}, \\ \frac{d\mathbf{u}_{1}}{d\mathbf{t}} = \delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}-\chi_{1}\mathbf{u}_{1}, \; \; if\; \; 0\leq \mathbf{t}\leq\mathbb{T}_{1}, \\\frac{d\mathbf{r}_{1}}{d\mathbf{t}} = \delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}-\chi_{2}\mathbf{r}_{1}, \\ \frac{d\mathbf{v}_{1}}{d\mathbf{t}} = \zeta_{1}\mathbf{u}_{1}+\zeta_{2}\mathbf{r}_{1}-\varphi \mathbf{v}_{1}-\omega_{1}\mathbf{v}_{1}\mathbf{m}_{1}-\omega_{2}\mathbf{v}_{1}\mathbf{j}_{1}, \\ \frac{d\mathbf{m}_{1}}{d\mathbf{t}} = \chi_{1}\mathbf{v}_{1}\mathbf{m}_{1}-\rho_{1}\mathbf{m}_{1}, \\ \frac{d\mathbf{j}_{1}}{d\mathbf{t}} = \chi_{2}\mathbf{v}_{1}\mathbf{j}_{1}-\rho_{2}\mathbf{j}_{1}, \end{cases} \end{eqnarray} (4.7)
    \begin{eqnarray} \begin{cases} \, _{0}^{CF}\mathbf{D}_{\mathbf{t}}^{\varpi}\mathbf{s}_{1}(\mathbf{t}) = \vartheta_{1}-\delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}-\gamma_{1}\mathbf{s}_{1}, \\\, _{0}^{CF}\mathbf{D}_{\mathbf{t}}^{\varpi}\mathbf{x}_{1}(\mathbf{t}) = \vartheta_{2}-\delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}-\gamma_{2}\mathbf{s}_{1}, \\ \, _{0}^{CF}\mathbf{D}_{\mathbf{t}}^{\varpi}\mathbf{u}_{1}(\mathbf{t}) = \delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}-\chi_{1}\mathbf{u}_{1}, \; \; if\; \; \mathbb{T}_{1}\leq \mathbf{t}\leq\mathbb{T}_{2}, \\\, _{0}^{CF}\mathbf{D}_{\mathbf{t}}^{\varpi}\mathbf{r}_{1}(\mathbf{t}) = \delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}-\chi_{2}\mathbf{r}_{1}, \\ \, _{0}^{CF}\mathbf{D}_{\mathbf{t}}^{\varpi}\mathbf{v}_{1}(\mathbf{t}) = \zeta_{1}\mathbf{u}_{1}+\zeta_{2}\mathbf{r}_{1}-\varphi \mathbf{v}_{1}-\omega_{1}\mathbf{v}_{1}\mathbf{m}_{1}-\omega_{2}\mathbf{v}_{1}\mathbf{j}_{1}, \\ \, _{0}^{CF}\mathbf{D}_{\mathbf{t}}^{\varpi}\mathbf{m}_{1}(\mathbf{t}) = \chi_{1}\mathbf{v}_{1}\mathbf{m}_{1}-\rho_{1}\mathbf{m}_{1}, \\ \, _{0}^{CF}\mathbf{D}_{\mathbf{t}}^{\varpi}\mathbf{j}_{1}(\mathbf{t}) = \chi_{2}\mathbf{v}_{1}\mathbf{j}_{1}-\rho_{2}\mathbf{j}_{1}, \end{cases} \end{eqnarray} (4.8)
    \begin{eqnarray} \begin{cases} d\mathbf{s}_{1}(\mathbf{t}) = \big(\vartheta_{1}-\delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}-\gamma_{1}\mathbf{s}_{1}\big)+\wp_{1}\mathbf{s}_{1}(\mathbf{t})d\mathcal{B}_{1}(\mathbf{t}), \\d\mathbf{x}_{1}(\mathbf{t}) = \big( = \vartheta_{2}-\delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}-\gamma_{2}\mathbf{s}_{1}\big)+\wp_{2}\mathbf{x}_{1}(\mathbf{t})d\mathcal{B}_{2}(\mathbf{t}), \\ d\mathbf{u}_{1}(\mathbf{t}) = \big(\delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}-\chi_{1}\mathbf{u}_{1}\big)+\wp_{3}\mathbf{u}_{1}(\mathbf{t})d\mathcal{B}_{3}(\mathbf{t}), \; \; if\; \; \mathbb{T}_{2}\leq \mathbf{t}\leq\mathbb{T}, \\d\mathbf{r}_{1}(\mathbf{t}) = \big(\delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}-\chi_{2}\mathbf{r}_{1}\big)+\wp_{4}\mathbf{r}_{1}(\mathbf{t})d\mathcal{B}_{4}(\mathbf{t}), \\ d\mathbf{v}_{1}(\mathbf{t}) = \big(\zeta_{1}\mathbf{u}_{1}+\zeta_{2}\mathbf{r}_{1}-\varphi \mathbf{v}_{1}-\omega_{1}\mathbf{v}_{1}\mathbf{m}_{1}-\omega_{2}\mathbf{v}_{1}\mathbf{j}_{1}\big)+\wp_{5}\mathbf{v}_{1}(\mathbf{t})d\mathcal{B}_{5}(\mathbf{t}), \\ d\mathbf{m}_{1}(\mathbf{t}) = \big( = \chi_{1}\mathbf{v}_{1}\mathbf{m}_{1}-\rho_{1}\mathbf{m}_{1}\big)+\wp_{6}\mathbf{m}_{1}(\mathbf{t})d\mathcal{B}_{6}(\mathbf{t}), \\ d\mathbf{j}_{1}(\mathbf{t}) = \big( = \chi_{2}\mathbf{v}_{1}\mathbf{j}_{1}-\rho_{2}\mathbf{j}_{1}\big)+\wp_{7}\mathbf{j}_{1}(\mathbf{t})d\mathcal{B}_{7}(\mathbf{t}).\end{cases} \end{eqnarray} (4.9)

    Here, we apply the technique described in [24] for the scenario of the Caputo-Fabrizio derivative to analyze quantitatively the piecewise structuredescribed by (4.7)–(4.9). We commence the technique as follows:

    \begin{eqnarray} \begin{cases} \frac{d\Omega_{\ell}(\mathbf{t})}{d\mathbf{t}} = \Lambda(\mathbf{t}, \Omega_{\ell}).\; \Omega_{\ell}(0) = \Omega_{\ell, 0}, \; \ell = 1, 2, ..., \mathfrak{n}\; if\; \mathbf{t}\in[0, \mathbb{T}_{1}], \\ \, _{\mathbb{T}_{1}}^{CF}\mathbf{D}_{\mathbf{t}}^{\beta}\Omega_{\ell}(\mathbf{t}) = \Lambda(\mathbf{t}, \Omega_{\ell}), \; \Omega_{\ell}(\mathbb{T}_{1}) = \Omega_{\ell, 1}, \; if\; \mathbf{t}\in[\mathbb{T}_{1}, \mathbb{T}_{2}], \\ d\Omega_{\ell}(\mathbf{t}) = \Lambda(\mathbf{t}, \Omega_{\ell})d\mathbf{t}+\wp_{\ell}\Omega_{\ell}d\mathcal{B}_{\ell}(\mathbf{t}), \; \Omega_{\ell}(\mathbb{T}_{2}) = \Omega_{\ell, 2}, \; if\; \mathbf{t}\in[\mathbb{T}_{2}, \mathbb{T}]. \end{cases} \end{eqnarray} (4.10)

    It follows that

    \Omega_{\ell}^{\mathbf{r}} = \\ \begin{cases}\Omega_{\ell}(0)+\sum\limits_{\mathbf{p} = 2}^{\mathbf{r}}\Big\{\frac{23}{12}\Lambda({\mathbf{t}}_{\mathbf{p}}, \Omega^{\mathbf{p}})\Delta \mathbf{t}-\frac{4}{3}\Lambda({\mathbf{t}}_{\mathbf{p}-1}, \Omega^{\mathbf{p}-1})\Delta \mathbf{t}+\frac{5}{12}\Lambda({\mathbf{t}}_{\mathbf{p}-2}, \Omega^{\mathbf{p}-2})\Delta \mathbf{t}\Big\}, \; \; \mathbf{t}\in[0, \mathbb{T_{1}}].\\ \Omega_{\ell}(\mathbb{T}_{1})+\frac{1-\beta}{\mathbb{M}(\beta)}\Lambda({\mathbf{t}}_{\mathfrak{n}}, \Omega^{\mathfrak{n}})+\frac{\beta}{\mathbb{M}(\beta)}\sum\limits_{\mathbf{p} = 2}^{\mathbf{r}}\Big\{\frac{5}{12}\Lambda({\mathbf{t}}_{\mathbf{p}-2}, \Omega^{\mathbf{p}-2})\Delta \mathbf{t}-\frac{4}{3}\Lambda({\mathbf{t}}_{\mathbf{p}-1}, \Omega^{\mathbf{p}-1})\Delta \mathbf{t}\\\quad+\frac{23}{12}\Lambda({\mathbf{t}}_{\mathbf{p}}, \Omega^{\mathbf{p}})\Delta \mathbf{t}\Big\}, \; \; \mathbf{t}\in[\mathbb{T}_{1}, \mathbb{T}_{2}], \\ \Omega_{\ell}(\mathbb{T}_{2})+\sum\limits_{\mathbf{p} = \mathbf{r}+3}^{\mathfrak{n}}\Big\{\frac{5}{12}\Lambda({\mathbf{t}}_{\mathbf{p}-2}, \Omega^{\mathbf{p}-2})\Delta \mathbf{t}-\frac{4}{3}\Lambda({\mathbf{t}}_{\mathbf{p}-1}, \Omega^{\mathbf{p}-1})\Delta \mathbf{t}+\frac{23}{12}\Lambda({\mathbf{t}}_{\mathbf{p}}, \Omega^{\mathbf{p}})\Delta \mathbf{t}\Big\} \\\quad+\sum\limits_{\mathbf{p} = \mathbf{r}+3}^{\mathfrak{n}}\Big\{\frac{5}{12}\big(\mathcal{B}({\mathbf{t}}_{\mathbf{p}-1})-\mathcal{B}({\mathbf{t}}_{\mathbf{p}-2})\big)\wp\Omega^{\mathbf{p}-2}- \frac{4}{3}\big(\mathcal{B}({\mathbf{t}}_{\mathbf{p}})-\mathcal{B}({\mathbf{t}}_{\mathbf{p}-1})\big)\wp\Omega^{\mathbf{p}-1}\\\quad+\frac{23}{12}\big(\mathcal{B}({\mathbf{t}}_{\mathbf{p}+1})-\mathcal{B}({\mathbf{t}}_{\mathbf{p}})\big)\wp\Omega^{\mathbf{p}}\Big\}, \; \; \mathbf{t}\in[\mathbb{T}_{2}, \mathbb{T}].\end{cases} (4.11)

    Here, we will concentrate on the dynamic behavior of SDVI spreading, which demonstrates three main phases for a certain region, including the classical, GML law and lastly, stochastic causes. If we define \mathbb{T} as the final time when a secondary epidemic appears, the mathematical configuration will be constituted in the first round employing the classical derivative application, followed by the Mittag-Leffler kernel in the second step and finally the stochastic environment in subsequent periods. In this regard, the mathematical model utilized to describe this phenomenon is as follows:

    \begin{eqnarray} \begin{cases} \frac{d\mathbf{s}_{1}}{d\mathbf{t}} = \vartheta_{1}-\delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}-\gamma_{1}\mathbf{s}_{1}, \\\frac{d\mathbf{x}_{1}}{d\mathbf{t}} = \vartheta_{2}-\delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}-\gamma_{2}\mathbf{s}_{1}, \\ \frac{d\mathbf{u}_{1}}{d\mathbf{t}} = \delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}-\chi_{1}\mathbf{u}_{1}, \; \; if\; \; 0\leq \mathbf{t}\leq\mathbb{T}_{1}, \\\frac{d\mathbf{r}_{1}}{d\mathbf{t}} = \delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}-\chi_{2}\mathbf{r}_{1}, \\ \frac{d\mathbf{v}_{1}}{d\mathbf{t}} = \zeta_{1}\mathbf{u}_{1}+\zeta_{2}\mathbf{r}_{1}-\varphi \mathbf{v}_{1}-\omega_{1}\mathbf{v}_{1}\mathbf{m}_{1}-\omega_{2}\mathbf{v}_{1}\mathbf{j}_{1}, \\ \frac{d\mathbf{m}_{1}}{d\mathbf{t}} = \chi_{1}\mathbf{v}_{1}\mathbf{m}_{1}-\rho_{1}\mathbf{m}_{1}, \\ \frac{d\mathbf{j}_{1}}{d\mathbf{t}} = \chi_{2}\mathbf{v}_{1}\mathbf{j}_{1}-\rho_{2}\mathbf{j}_{1}, \end{cases} \end{eqnarray} (4.12)
    \begin{eqnarray} \begin{cases} \, _{0}^{ABC}\mathbf{D}_{\mathbf{t}}^{\varpi}\mathbf{s}_{1}(\mathbf{t}) = \vartheta_{1}-\delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}-\gamma_{1}\mathbf{s}_{1}, \\\, _{0}^{ABC}\mathbf{D}_{\mathbf{t}}^{\varpi}\mathbf{x}_{1}(\mathbf{t}) = \vartheta_{2}-\delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}-\gamma_{2}\mathbf{s}_{1}, \\ \, _{0}^{ABC}\mathbf{D}_{\mathbf{t}}^{\varpi}\mathbf{u}_{1}(\mathbf{t}) = \delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}-\chi_{1}\mathbf{u}_{1}, \; \; if\; \; \mathbb{T}_{1}\leq \mathbf{t}\leq\mathbb{T}_{2}, \\\, _{0}^{ABC}\mathbf{D}_{\mathbf{t}}^{\varpi}\mathbf{r}_{1}(\mathbf{t}) = \delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}-\chi_{2}\mathbf{r}_{1}, \\ \, _{0}^{ABC}\mathbf{D}_{\mathbf{t}}^{\varpi}\mathbf{v}_{1}(\mathbf{t}) = \zeta_{1}\mathbf{u}_{1}+\zeta_{2}\mathbf{r}_{1}-\varphi \mathbf{v}_{1}-\omega_{1}\mathbf{v}_{1}\mathbf{m}_{1}-\omega_{2}\mathbf{v}_{1}\mathbf{j}_{1}, \\ \, _{0}^{ABC}\mathbf{D}_{\mathbf{t}}^{\varpi}\mathbf{m}_{1}(\mathbf{t}) = \chi_{1}\mathbf{v}_{1}\mathbf{m}_{1}-\rho_{1}\mathbf{m}_{1}, \\ \, _{0}^{ABC}\mathbf{D}_{\mathbf{t}}^{\varpi}\mathbf{j}_{1}(\mathbf{t}) = \chi_{2}\mathbf{v}_{1}\mathbf{j}_{1}-\rho_{2}\mathbf{j}_{1}, \end{cases} \end{eqnarray} (4.13)
    \begin{eqnarray} \begin{cases} d\mathbf{s}_{1}(\mathbf{t}) = \big(\vartheta_{1}-\delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}-\gamma_{1}\mathbf{s}_{1}\big)+\wp_{1}\mathbf{s}_{1}(\mathbf{t})d\mathcal{B}_{1}(\mathbf{t}), \\d\mathbf{x}_{1}(\mathbf{t}) = \big( = \vartheta_{2}-\delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}-\gamma_{2}\mathbf{s}_{1}\big)+\wp_{2}\mathbf{x}_{1}(\mathbf{t})d\mathcal{B}_{2}(\mathbf{t}), \\ d\mathbf{u}_{1}(\mathbf{t}) = \big(\delta_{1}\mathbf{s}_{1}\mathbf{v}_{1}-\chi_{1}\mathbf{u}_{1}\big)+\wp_{3}\mathbf{u}_{1}(\mathbf{t})d\mathcal{B}_{3}(\mathbf{t}), \; \; if\; \; \mathbb{T}_{2}\leq \mathbf{t}\leq\mathbb{T}, \\d\mathbf{r}_{1}(\mathbf{t}) = \big(\delta_{2}\mathbf{x}_{1}\mathbf{v}_{1}-\chi_{2}\mathbf{r}_{1}\big)+\wp_{4}\mathbf{r}_{1}(\mathbf{t})d\mathcal{B}_{4}(\mathbf{t}), \\ d\mathbf{v}_{1}(\mathbf{t}) = \big(\zeta_{1}\mathbf{u}_{1}+\zeta_{2}\mathbf{r}_{1}-\varphi \mathbf{v}_{1}-\omega_{1}\mathbf{v}_{1}\mathbf{m}_{1}-\omega_{2}\mathbf{v}_{1}\mathbf{j}_{1}\big)+\wp_{5}\mathbf{v}_{1}(\mathbf{t})d\mathcal{B}_{5}(\mathbf{t}), \\ d\mathbf{m}_{1}(\mathbf{t}) = \big( = \chi_{1}\mathbf{v}_{1}\mathbf{m}_{1}-\rho_{1}\mathbf{m}_{1}\big)+\wp_{6}\mathbf{m}_{1}(\mathbf{t})d\mathcal{B}_{6}(\mathbf{t}), \\ d\mathbf{j}_{1}(\mathbf{t}) = \big( = \chi_{2}\mathbf{v}_{1}\mathbf{j}_{1}-\rho_{2}\mathbf{j}_{1}\big)+\wp_{7}\mathbf{j}_{1}(\mathbf{t})d\mathcal{B}_{7}(\mathbf{t}).\end{cases} \end{eqnarray} (4.14)

    Here, we apply the technique described in [24] for the scenario of the Atanagan-Baleanu-Caputo derivative to analyze quantitatively the piecewise structure described by (4.12)–(4.14). We commence the technique as follows:

    \begin{eqnarray*} \begin{cases} \frac{d\Omega_{\ell}(\mathbf{t})}{d\mathbf{t}} = \Lambda(\mathbf{t}, \Omega_{\ell}).\; \Omega_{\ell}(0) = \Omega_{\ell, 0}, \; \ell = 1, 2, ..., \mathfrak{n}\; if\; \mathbf{t}\in[0, \mathbb{T}_{1}], \\ \, _{\mathbb{T}_{1}}^{ABC}\mathbf{D}_{\mathbf{t}}^{\beta}\Omega_{\ell}(\mathbf{t}) = \Lambda(\mathbf{t}, \Omega_{\ell}), \; \Omega_{\ell}(\mathbb{T}_{1}) = \Omega_{\ell, 1}, \; if\; \mathbf{t}\in[\mathbb{T}_{1}, \mathbb{T}_{2}], \\ d\Omega_{\ell}(\mathbf{t}) = \Lambda(\mathbf{t}, \Omega_{\ell})d\mathbf{t}+\wp_{\ell}\Omega_{\ell}d\mathcal{B}_{\ell}(\mathbf{t}), \; \Omega_{\ell}(\mathbb{T}_{2}) = \Omega_{\ell, 2}, \; if\; \mathbf{t}\in[\mathbb{T}_{2}, \mathbb{T}]. \end{cases} \end{eqnarray*}

    It follows that

    \begin{eqnarray*} \Omega_{\ell}^{\mathbf{r}} = \begin{cases}\Omega_{\ell}(0)+\sum\limits_{\mathbf{p} = 2}^{\mathbf{r}}\Big\{\frac{23}{12}\Lambda({\mathbf{t}}_{\mathbf{p}}, \Omega^{\mathbf{p}})\Delta \mathbf{t}-\frac{4}{3}\Lambda({\mathbf{t}}_{\mathbf{p}-1}, \Omega^{\mathbf{p}-1})\Delta \mathbf{t}+\frac{5}{12}\Lambda({\mathbf{t}}_{\mathbf{p}-2}, \Omega^{\mathbf{p}-2})\Delta \mathbf{t}\Big\}, \; \; \mathbf{t}\in[0, \mathbb{T_{1}}].\\ \Omega_{\ell}(\mathbb{T}_{1})+\frac{\beta}{ABC(\beta)}\Lambda({\mathbf{t}}_{\mathfrak{n}}, \Omega^{\mathfrak{n}})+\frac{\beta(\Delta \mathbf{t})^{\beta-1}}{ABC(\beta)\Gamma(\beta+1)}\sum\limits_{\mathbf{p} = 2}^{\mathbf{r}}\Lambda({\mathbf{t}}_{\mathbf{p}-2}, \Omega^{\mathbf{p}-2})\Xi_{1}\\\quad+ \frac{\beta(\Delta \mathbf{t})^{\beta-1}}{ABC(\beta)\Gamma(\beta+2)}\sum\limits_{\mathbf{p} = 2}^{\mathbf{r}}\Big\{\Lambda({\mathbf{t}}_{\mathbf{p}-1}, \Omega^{\mathbf{p}-1})-\Lambda({\mathbf{t}}_{\mathbf{p}-2}, \Omega^{\mathbf{p}-2})\Big\}\Xi_{2}\\\quad+\frac{\beta(\Delta \mathbf{t})^{\beta-1}}{2ABC(\beta)\Gamma(\beta+3)}\sum\limits_{\mathbf{p} = 2}^{\mathbf{r}}\Big\{\Lambda({\mathbf{t}}_{\mathbf{p}}, \Omega^{\mathbf{p}})-2\Lambda({\mathbf{t}}_{\mathbf{p}-1}, \Omega^{\mathbf{p}-1})+\Lambda({\mathbf{t}}_{\mathbf{p}-2}, \Omega^{\mathbf{p}-2})\Big\}\Xi_{3}, \; \; \mathbf{t}\in[\mathbb{T}_{1}, \mathbb{T}_{2}], \\ \Omega_{\ell}(\mathbb{T}_{2})+\sum\limits_{\mathbf{p} = \mathbf{r}+3}^{\mathfrak{n}}\Big\{\frac{5}{12}\Lambda({\mathbf{t}}_{\mathbf{p}-2}, \Omega^{\mathbf{p}-2})\Delta \mathbf{t}-\frac{4}{3}\Lambda({\mathbf{t}}_{\mathbf{p}-1}, \Omega^{\mathbf{p}-1})\Delta \mathbf{t}+\frac{23}{12}\Lambda({\mathbf{t}}_{\mathbf{p}}, \Omega^{\mathbf{p}})\Delta \mathbf{t}\Big\} \\\quad+\sum\limits_{\mathbf{p} = \mathbf{r}+3}^{\mathfrak{n}}\Big\{\frac{5}{12}\big(\mathcal{B}({\mathbf{t}}_{\mathbf{p}-1})-\mathcal{B}({\mathbf{t}}_{\mathbf{p}-2})\big)\wp\Omega^{\mathbf{p}-2}- \frac{4}{3}\big(\mathcal{B}({\mathbf{t}}_{\mathbf{p}})-\mathcal{B}({\mathbf{t}}_{\mathbf{p}-1})\big)\wp\Omega^{\mathbf{p}-1}\\\quad+\frac{23}{12}\big(\mathcal{B}({\mathbf{t}}_{\mathbf{p}+1})-\mathcal{B}({\mathbf{t}}_{\mathbf{p}})\big)\wp\Omega^{\mathbf{p}}\Big\}, \; \; \mathbf{t}\in[\mathbb{T}_{2}, \mathbb{T}], \end{cases} \end{eqnarray*}

    where \Xi_{1}, \Xi_{2} and \Xi_{3} are stated as before in (4.4)–(4.6).

    This part comprises numerical computations that demonstrate the simulated predictions via the notable technique proposed by Atangana and Araz [24]. We utilize the stochastic piecewise fractional DE method to obtain the stochastic version of the designed system by employing the power-kernel described by (4.1)–(4.3), exponential decay kernel described by (4.7) and (4.8) and GML kernel described by (4.12)–(4.14) for simulation analysis, as shown below. Suppose that \vartheta_{1} = 10, \; \vartheta_{2} = 6, \; \gamma_{1} = 0.01, \; \gamma_{2} = 0.01, \; \varsigma_{1} = 0.5, \; \varsigma_{2} = 0.3, \; \zeta_{1} = 10, \; \zeta_{2} = 5, \; \varphi = 3, \; \omega_{1} = 0.3, \; \omega_{2} = 0.1, \; \rho_{1} = 0.1, \; \rho_{2} = 0.1, \; \delta_{1} = \delta_{2} = 0.00005, \; \chi_{1} = 0.0005 and \chi_{2} = 0.001 with random intensities \wp_{1} = \wp_{2} = \wp_{3} = \wp_{4} = \wp_{5} = \wp_{6} = \wp_{7} = 0.01. Moreover, we assumed the ICs as \mathbf{s}_{1}(0) = 0.1, \; \mathbf{x}_{1}(0) = 0.1, \; \mathbf{u}_{1}(0) = 0.1, \; \mathbf{r}_{1}(0) = 0.1, \; \mathbf{v}_{1}(0) = 0.1, \; \mathbf{m}_{1}(0) = 0.2\; and\; \mathbf{j}_{1}(0) = 0.5. We can instantly compute the threshold parameter \mathbb{R}_{0}^{s} = 0.258 < 1 and the solution of the model (2.2) must comply with Theorem 3.3.

    Depending on the above discussion, we took into account the model parameters and accompanying noise concentrations of the dynamical system (4.1)–(4.9) for Figure 1 by utilizing the deterministic-stochastic approach with crossover impacts. The estimate illustrates and validates eradication, and it demonstrates that the stochastic framework (2.2) is stochastically asymptotically stable in the prescribed environments. Figure 1 demonstrates that the simulation of Theorem 3.2 and its deterministic counterpart have analogous features. Both model solutions congregate at the disease-free equilibrium point of (2.1). This means that the illness becomes exterminated when such a prescribed requirement is satisfied, i.e., the number of affected patients will decrease tremendously, whereas susceptible individuals will remain.

    Figure 1.  Deterministic-stochastic dynamic behavior of SDVI model cohorts (4.1)–(4.3), as obtained by using the power-kernel with fractional-order \beta = 0.95 and low random intensities.

    Analogously, in Figure 2, we presume another case for the system's parameters to fix intensities of white noise (stated above) through the use of the exponential decay kernel, which also reveals an irreversible or steady dispersion and quantitatively appeases the theorem's "stationary distribution" declaration. According to modeling, the deterministic-stochastic model (4.7)–(4.9) will oscillate for a long time around the correlating deterministic model's specific regional steady state given by (2.1). Because the low noise concentration of the virus will persist, the mean volatility all around the outbreak steady state is minimal. In the long term, both frameworks result in similarities and differences between the stochastic model (2.2) and its deterministic counterpart described by (2.1).

    Figure 2.  Deterministic-stochastic dynamic behavior of SDVI model cohorts (4.7)–(4.9), as obtained by using the exponential decay-kernel with fractional-order \beta = 0.95 and low random intensities.

    Figure 3 represents the deterministic-stochastic dynamics of the SDVI described by (4.12)–(4.14) considering the piecewise fractional DEs with the system parameters and low random intensities. The dynamics of the Atanagana-Baleanu Caputo fractional derivative can predict the dynamics in a better way than the power-kernel and exponential decay kernel. Thus, we furthermore illustrate that the stochastic approach described by (2.2) has a unique stationary distribution only when the random intensities are small enough and the threshold parameter \mathbb{R}_{0}^{s} > 1.

    Figure 3.  Deterministic-stochastic dynamic behavior of SDVI model cohorts (4.12)–(4.14), as obtained by using GML kernel with fractional-order \beta = 0.95 and low random intensities.

    Figures 46 shows the phase portrait of the deterministic-stochastic behavior utilizing the GML kernel influence by the crossover effects with varying random intensities \wp_{1} = 0.01, \; \wp_{2} = 0.02, \; \wp_{3} = 0.03, \; \wp_{4} = 0.04, \; \wp_{5} = 0.05, \; \wp_{6} = 0.06\; and\; \wp_{7} = 0.07. Nonetheless, while the crossover qualities of the Mittag-Leffler kernel have been recognized as potent analytical techniques for depicting major difficulties, it is important to recognize that only underlying complications continuing to pursue the crossover residences of this kernel can be modeled with certain restrictions, as is present in legitimate challenges; this kernel will not be capable of demonstrating the time where the crossover occurred. Admittedly, serious concerns exemplifying multiple procedures mean that the GML cannot be recreated by using the Atangana-Baleanu derivative. The investigation is not constricted to the conceptual scheme for the SDVI model, as it can be extended to several other vector-borne diseases, including Rift Valley fever, yellow fever and Zika, to discuss the piecewise deterministic-stochastic behavior related to dynamical systems.

    Figure 4.  Phase portrait of deterministic-stochastic dynamic behavior of SDVI model cohorts (4.12)–(4.14), as obtained by using GML kernel with fractional-order \beta = 0.95 and low random intensities.
    Figure 5.  Phase portrait of deterministic-stochastic dynamic behavior of SDVI model cohorts (4.12)--(4.14), as obtained by using GML kernel with fractional-order \beta = 0.95 and low random intensities.
    Figure 6.  Phase portrait of deterministic-stochastic dynamic behavior of SDVI model cohorts (4.12)–(4.14), as obtained by using GML kernel with fractional-order \beta = 0.95 and low random intensities.

    Many real-world phenomena are not deterministic but include stochastic consequences, which allows for a more precise prediction of their highly infectious evolution. In this research, we developed a viral model to describe the deterministic-stochastic effects of secondary dengue viral infection through the use of multiple target cells. In the framework, we have used both heterologous and homologous immune cells. We tested the fundamental features of solutions, such as the feasibility and invariant region. We determined the threshold parameters for both deterministic and stochastic simulations, respectively. More accurately, we have verified the following result:

    \mathbb{R}_{0}^{s} = \frac{\zeta_{1}\zeta_{2}\vartheta_{1}\vartheta_{2}\delta_{1}\delta_{2}}{(\frac{\wp_{1}^{2}}{2}-\gamma_{1})(\frac{\wp_{2}^{2}}{2}-\gamma_{2})(\frac{\wp_{3}^{2}}{2}-\varsigma_{1})(\frac{\wp_{4}^{2}}{2}-\varsigma_{2})(\frac{\wp_{5}^{2}}{2}+\varphi)^{2}}.

    Then, for any initial setting (\mathbf{s}_{1}(0), \mathbf{x}_{1}(0), \mathbf{u}_{1}(0), \mathbf{r}_{1}(0), \mathbf{v}_{1}(0), \mathbf{m}_{1}(0), \mathbf{j}_{1}(0))\in\mathbb{R}_{+}^{7}, the scheme (2.2) has a unique ESD \pi(.). We clearly see the adverse effect of noise concentration on virus transmission. The extermination of dengue virus infection in people grows in tandem with the extent of the noise in the vulnerable community. Accordingly, the persistence of the virus declines as the noise level increases. We contend that, while the GML kernel, exponential-decay kernel and power kernel have been revealed to be capable of depicting several crossover behaviors, their strengths to do so may be curtailed due to the intricacy of existence. Furthermore, numerous serious concerns exist about crossover behaviors that have yet to be illustrated by the Mittag-Leffler, the exponential or the power law kernel, so any mathematical formula based on these derivatives will be unable to exemplify such behavior. Some key features of piecewise concepts are described in the proposed model, and a numerical mechanism has been proposed. We are convinced that this theory will lead to opportunities for additional exploration of biological impacts, including time delay [46] and reaction-diffusion [47].

    The authors declare that they have no competing interests.



    [1] World Health Organisation, Dengue and dengue haemorrhagic fever, 2013.
    [2] Johns Hopkins Bloomberg School of Public Health, Global warming would foster spread of dengue fever into some temperate regions, 1998.
    [3] S. B. Halstead, Pathogenesis of dengue: Challenges to molecular biology, Science, 239 (1988), 476–481. https://doi.org/10.1126/science.3277268 doi: 10.1126/science.3277268
    [4] R. V. Gibbons, D. W. Vaughn, Dengue: An escalating problem, Br. Med. J., 324 (2002), 1563–1566. https://doi.org/10.1136/bmj.324.7353.1563 doi: 10.1136/bmj.324.7353.1563
    [5] World Health Organisation, Dengue-guidelines for diagnosis, treatment, prevention and control, 2009.
    [6] B. R. Murphy, S. S. Whitehead, Immune response to dengue virus and prospects for a vaccine, Annu. Rev. Immunol., 29 (2011), 587–619. https://doi.org/10.1146/annurev-immunol-031210-101315 doi: 10.1146/annurev-immunol-031210-101315
    [7] M. Derouich, A. Boutayeb, Dengue fever: Mathematical modeling and computer simulation, Appl. Math. Comput., 177 (2006), 528–544. https://doi.org/10.1016/j.amc.2005.11.031 doi: 10.1016/j.amc.2005.11.031
    [8] S. M. Garba, A. B. Gumel, M. R. Abu Baker, Backward bifurcations in dengue transmission dynamics, Math. Biosci., 215 (2008), 11–25. https://doi.org/10.1016/j.mbs.2008.05.002 doi: 10.1016/j.mbs.2008.05.002
    [9] N. Nuraini, E. Soewono, K. A. Sidarto, A mathematical model of dengue internal transmission process, J. Indonesia Math. Soc., 13 (2007), 123–132. https://doi.org/10.22342/jims.13.1.79 doi: 10.22342/jims.13.1.79
    [10] N. Nuraini, H. Tasman, E. Soewono, K. A. Sidarto, A with-in host dengue infection model with immune response, Math. Comput. Model., 49 (2009), 1148–1155. https://doi.org/10.1016/j.mcm.2008.06.016 doi: 10.1016/j.mcm.2008.06.016
    [11] B. R. Murphy, S. S. Whitehead, Immune response to dengue virus and prospects for a vaccine, Annu. Rev. Immunol., 29 (2011), 587–619. https://doi.org/10.1146/annurev-immunol-031210-101315 doi: 10.1146/annurev-immunol-031210-101315
    [12] H. Bielefeldt-Ohmann, Pathogenesis of dengue virus disease: Missing pieces in the jigsaw, Trends Microbiol., 5 (1997), 409–413. https://doi.org/10.1016/S0966-842X(97)01126-8 doi: 10.1016/S0966-842X(97)01126-8
    [13] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
    [14] Z. Yu, A. Sohail, T. A. Nofal, J. Manuel, R. S. Tavares, Explainability of neural network clustering in interpreting the Covid-19 emergency data, Fractals, 30 (2022), 2240122. https://doi.org/10.1142/S0218348X22401223 doi: 10.1142/S0218348X22401223
    [15] G. Fei, Y. Cheng, W. L. Ma, C. Chen, S. Wen, G. M. Hu, Real-time detection of COVID-19 events from Twitter: A spatial-temporally Bursty-Aware method, IEEE Trans. Comp. Soc. Sys., 2022. https://doi.org/10.1109/TCSS.2022.3169742
    [16] T. Abdeljawad, On delta and nabla Caputo fractional differences and dual identities, Discrete Dyn. Nat. Soc., 2013. https://doi.org/10.1155/2013/406910
    [17] M. Caputo, Linear model of dissipation whose Q is almost frequency independent II, Geophy. J. Inter., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
    [18] T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Adv. Diff. Equ., 2017 (2017), 313. https://doi.org/10.1186/s13662-017-1285-0 doi: 10.1186/s13662-017-1285-0
    [19] T. Abdeljawad, Q. M. Al-Mdallal, Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwall's inequality, J. Comput. Appl. Math., 339 (2015), 218–230. https://doi.org/10.1016/j.cam.2017.10.021 doi: 10.1016/j.cam.2017.10.021
    [20] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [21] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Thermal Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [22] J. Sabatier, Fractional-order derivatives defined by continuous kernels: Are they really too restrictive, Fractal Fract., 4 (2020), 40. https://doi.org/10.3390/fractalfract4030040 doi: 10.3390/fractalfract4030040
    [23] G. C. Wu, Z. G. Deng, D. Baleanu, D. Q. Zeng, New variable-order fractional chaotic systems for fast image encryption, Chaos, 29 (2019). https://doi.org/10.1063/1.5096645
    [24] A. Atangana, S. I. Araz, New concept in calculus: Piecewise differential and integral operators, Chaos Solit. Fract., 145 (2021), 110638. https://doi.org/10.1016/j.chaos.2020.110638 doi: 10.1016/j.chaos.2020.110638
    [25] H. Al-Sulami, M. El-Shahed, J. J. Nieto, W. Shammakh1, On Fractional order dengue epidemic model, Math. Prob. Eng., 2014 (2014), 456537. https://doi.org/10.1155/2014/456537 doi: 10.1155/2014/456537
    [26] Fatmawati, M. A. Khan, C. Alfiniyah, E. Alzahrani, Analysis of dengue model with fractal-fractional Caputo-Fabrizio operator, Adv. Diff. Equ., 2020 (2020), 422. https://doi.org/10.1186/s13662-020-02881-w doi: 10.1186/s13662-020-02881-w
    [27] A. M. A. El-Sayed, A. A. M. Arafa, I. M. Hanafy, M. I. Gouda, A fractional order model of dengue fever with awareness effect: Numerical solutions and asymptotic stability analysis, Progr. Fract. Diff. Appl., 8 (2022), 267–274. https://doi.org/10.18576/pfda/080206 doi: 10.18576/pfda/080206
    [28] P. Tanvi, G. Gujarati, G. Ambika, Virus antibody dynamics in primary and secondary dengue infections, J. Math. Bio., 2014. https://doi.org/10.1007/s00285-013-0749-4
    [29] S. K. Sasmal, Y. Takeuchi, S. Nakaoka, T-Cell mediated adaptive immunity and antibody-dependent enhancement in secondary dengue infection, J. Theor. Bio., 470 (2019), 50–63. https://doi.org/10.1016/j.jtbi.2019.03.010 doi: 10.1016/j.jtbi.2019.03.010
    [30] S. Rashid, F. Jarad, A. K. Alsharidi, Numerical investigation of fractional-order cholera epidemic model with transmission dynamics via fractal-fractional operator technique, Chaos Solit. Fract., 162 (2022), 112477. https://doi.org/10.1016/j.chaos.2022.112477 doi: 10.1016/j.chaos.2022.112477
    [31] A. Atangana, S. Rashid, Analysis of a deterministic-stochastic oncolytic M1 model involving immune response via crossover behavior: Ergodic stationary distribution and extinction, AIMS Mathematics, 8 (2022), 3236–3268. https://doi.org/10.3934/math.2023167 doi: 10.3934/math.2023167
    [32] S. Rashid, F. Jarad, Stochastic dynamics of the fractal-fractional Ebola epidemic model combining a fear and environmental spreading mechanism, AIMS Mathematics, 8 (2023), 3634–3675. https://doi.org/10.3934/math.2023183 doi: 10.3934/math.2023183
    [33] M. Al-Qureshi, S. Rashid, F. Jarad, M. S. Alharthi, Dynamical behavior of a stochastic highly pathogenic avian influenza A (HPAI) epidemic model via piecewise fractional differential technique, AIMS Mathematics, 8 (2023), 1737–1756. https://doi.org/10.3934/math.2023089 doi: 10.3934/math.2023089
    [34] M. Borisov, G. Dimitriu, P. Rashkov, Modelling the host immune response to mature and immature dengue viruses, Bull. Math. Bio., 81 (2019), 4951–4976. https://doi.org/10.1007/s11538-019-00664-3 doi: 10.1007/s11538-019-00664-3
    [35] E. Bonyah, M. L. Juga, C. W. Chukwu, Fatmawati, A fractional order dengue fever model in the context of protected travelers, Alexandria Eng. J., 61 (2022), 927–936. https://doi.org/10.1016/j.aej.2021.04.070 doi: 10.1016/j.aej.2021.04.070
    [36] Fatmawati, R. Jan, M. A. Khan, Y. Khan, S. Ullah, A new model of dengue fever in terms of fractional derivative, Math. Biosci. Eng., 10 (2020), 5267–5287. https://doi.org/10.3934/mbe.2020285 doi: 10.3934/mbe.2020285
    [37] M. A. Khan, Fatmawati, Dengue infection modeling and its optimal control analysis in East Java, Indonesia, Heliyon, 7 (2021). https://doi.org/10.1016/j.heliyon.2021.e06023
    [38] M. A. Alshaikh, E. Kh. Elnahary, A. M. Elaiw, Stability of a secondary dengue viral infection model with multi-target cells, Alexandria Eng. J., 2022. https://doi.org/10.1016/j.aej.2021.12.050
    [39] S. Rashid, M. K. Iqbal, A. M. Alshehri, R. Ahraf, F. Jarad, A comprehensive analysis of the stochastic fractal-fractional tuberculosis model via Mittag-Leffler kernel and white noise, Results Phys., 39 (2022), 105764. https://doi.org/10.1016/j.rinp.2022.105764 doi: 10.1016/j.rinp.2022.105764
    [40] C. Y. Ji, D. Q. Jiang, Treshold behavior of a stochastic SIR model, Appl. Math. Model., 38 (2014), 5067–5079. https://doi.org/10.1016/j.apm.2014.03.037 doi: 10.1016/j.apm.2014.03.037
    [41] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [42] Q. Liu, D. Q. Jiang, T. Hayat, B. Ahmad, Stationary distribution and extinction of a stochastic SIRI epidemic model with relapse, Stoch. Anal. Appl., 36 (2018), 138–151. https://doi.org/10.1080/07362994.2017.1378897 doi: 10.1080/07362994.2017.1378897
    [43] A. Friedman, Stochastic differential equations and applications, In: Stochastic Differential Equations, Berlin, Heidelberg: Springer, 2010. https://doi.org/10.1007/978-3-642-11079-5_2
    [44] X. R. Mao, Stochastic differential equations and applications, Chichester: Horwood Publishing, 1997.
    [45] R. Khasminskii, Stochastic stability of differential equations, Berlin, Heidelberg: Springer, 2012. https://doi.org/10.1007/978-3-642-23280-0
    [46] F. A. Rihan, H. J. Alsakaji, Analysis of a stochastic HBV infection model with delayed immune response. Math. Biosci. Eng., 18 (2021), 5194–5220. https://doi.org/10.3934/mbe.2021264
    [47] Y. T. Luo, S. T. Tang, Z. D. Teng, L. Zhang, Global dynamics in a reaction-diffusion multi-group SIR epidemic model with nonlinear incidence, Nonlinear Anal. Real., 50 (2019), 365–385. https://doi.org/10.1016/j.nonrwa.2019.05.008 doi: 10.1016/j.nonrwa.2019.05.008
  • This article has been cited by:

    1. Saima Rashid, Sher Zaman Hamidi, Saima Akram, Muhammad Aon Raza, S. K. Elagan, Beida Mohsen Tami Alsubei, Theoretical and mathematical codynamics of nonlinear tuberculosis and COVID-19 model pertaining to fractional calculus and probabilistic approach, 2024, 14, 2045-2322, 10.1038/s41598-024-59261-7
    2. Munirah Aljuaid, Mahmoud Ali Bakhit, Composition operators from harmonic \mathcal{H}^{\infty} space into harmonic Zygmund space, 2023, 8, 2473-6988, 23087, 10.3934/math.20231175
    3. V. Suganya, S. Padmasekaran, S. Dickson, Stability analysis of a dynamic cancer mathematical model with the impact of smoking and alcohol consumption, 2024, 30, 1405-213X, 10.1007/s40590-024-00599-3
    4. Yu-Ming Chu, Saima Rashid, Shazia Karim, Aasma Khalid, S. K. Elagan, Deterministic-stochastic analysis of fractional differential equations malnutrition model with random perturbations and crossover effects, 2023, 13, 2045-2322, 10.1038/s41598-023-41861-4
    5. Hanan S. Gafel, Saima Rashid, Sayed K. Elagan, Novel codynamics of the HIV-1/HTLV-Ⅰ model involving humoral immune response and cellular outbreak: A new approach to probability density functions and fractional operators, 2023, 8, 2473-6988, 28246, 10.3934/math.20231446
    6. Saima Rashid, Sher Zaman Hamidi, Muhammad Aon Raza, Rafia Shafique, Assayel Sultan Alsubaie, Sayed K. Elagan, Robustness and exploration between the interplay of the nonlinear co-dynamics HIV/AIDS and pneumonia model via fractional differential operators and a probabilistic approach, 2024, 14, 2045-2322, 10.1038/s41598-024-65329-1
    7. Aeshah A. Raezah, A.M. Elaiw, M.A. Alshaikh, Global stability of secondary DENV infection models with non-specific and strain-specific CTLs, 2024, 10, 24058440, e25391, 10.1016/j.heliyon.2024.e25391
    8. Puntipa Pongsumpun, Jiraporn Lamwong, I-Ming Tang, Puntani Pongsumpun, A modified optimal control for the mathematical model of dengue virus with vaccination, 2023, 8, 2473-6988, 27460, 10.3934/math.20231405
    9. Ayse Peker Dobie, Alper Bayrakal, Mehmet Erman Or, Ayse Humeyra Bilge, Antonio Ortega-Pacheco, Dynamics of Feline Coronavirus and FIP: A Compartmental Modeling Approach, 2023, 2023, 2090-8113, 10.1155/2023/2721907
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1732) PDF downloads(88) Cited by(9)

Figures and Tables

Figures(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog