Research article Special Issues

Global dynamics of deterministic-stochastic dengue infection model including multi specific receptors via crossover effects

  • Received: 22 August 2022 Revised: 25 November 2022 Accepted: 12 December 2022 Published: 04 January 2023
  • MSC : 46S40, 47H10, 54H25

  • Dengue viruses have distinct viral regularities due to the their serotypes. Dengue can be aggravated from a simple fever in an acute infection to a presumably fatal secondary pathogen. This article investigates a deterministic-stochastic secondary dengue viral infection (SDVI) model including logistic growth and a nonlinear incidence rate through the use of piecewise fractional differential equations. This framework accounts for the fact that the dengue virus can penetrate various kinds of specific receptors. Because of the supplementary infection, the system comprises both heterologous and homologous antibody. For the deterministic case, we determine the invariant region and threshold for the aforesaid model. Besides that, we demonstrate that the suggested stochastic SDVI model yields a global and non-negative solution. Taking into consideration effective Lyapunov candidates, the sufficient requirements for the presence of an ergodic stationary distribution of the solution to the stochastic SDVI model are generated. This report basically utilizes a novel idea of piecewise differentiation and integration. This method aids in the acquisition of mechanisms, including crossover impacts. Graphical illustrations of piecewise modeling techniques for chaos challenges are demonstrated. A piecewise numerical scheme is addressed. For various cases, numerical simulations are presented.

    Citation: Saima Rashid, Fahd Jarad, Sobhy A. A. El-Marouf, Sayed K. Elagan. Global dynamics of deterministic-stochastic dengue infection model including multi specific receptors via crossover effects[J]. AIMS Mathematics, 2023, 8(3): 6466-6503. doi: 10.3934/math.2023327

    Related Papers:

  • Dengue viruses have distinct viral regularities due to the their serotypes. Dengue can be aggravated from a simple fever in an acute infection to a presumably fatal secondary pathogen. This article investigates a deterministic-stochastic secondary dengue viral infection (SDVI) model including logistic growth and a nonlinear incidence rate through the use of piecewise fractional differential equations. This framework accounts for the fact that the dengue virus can penetrate various kinds of specific receptors. Because of the supplementary infection, the system comprises both heterologous and homologous antibody. For the deterministic case, we determine the invariant region and threshold for the aforesaid model. Besides that, we demonstrate that the suggested stochastic SDVI model yields a global and non-negative solution. Taking into consideration effective Lyapunov candidates, the sufficient requirements for the presence of an ergodic stationary distribution of the solution to the stochastic SDVI model are generated. This report basically utilizes a novel idea of piecewise differentiation and integration. This method aids in the acquisition of mechanisms, including crossover impacts. Graphical illustrations of piecewise modeling techniques for chaos challenges are demonstrated. A piecewise numerical scheme is addressed. For various cases, numerical simulations are presented.



    加载中


    [1] World Health Organisation, Dengue and dengue haemorrhagic fever, 2013.
    [2] Johns Hopkins Bloomberg School of Public Health, Global warming would foster spread of dengue fever into some temperate regions, 1998.
    [3] S. B. Halstead, Pathogenesis of dengue: Challenges to molecular biology, Science, 239 (1988), 476–481. https://doi.org/10.1126/science.3277268 doi: 10.1126/science.3277268
    [4] R. V. Gibbons, D. W. Vaughn, Dengue: An escalating problem, Br. Med. J., 324 (2002), 1563–1566. https://doi.org/10.1136/bmj.324.7353.1563 doi: 10.1136/bmj.324.7353.1563
    [5] World Health Organisation, Dengue-guidelines for diagnosis, treatment, prevention and control, 2009.
    [6] B. R. Murphy, S. S. Whitehead, Immune response to dengue virus and prospects for a vaccine, Annu. Rev. Immunol., 29 (2011), 587–619. https://doi.org/10.1146/annurev-immunol-031210-101315 doi: 10.1146/annurev-immunol-031210-101315
    [7] M. Derouich, A. Boutayeb, Dengue fever: Mathematical modeling and computer simulation, Appl. Math. Comput., 177 (2006), 528–544. https://doi.org/10.1016/j.amc.2005.11.031 doi: 10.1016/j.amc.2005.11.031
    [8] S. M. Garba, A. B. Gumel, M. R. Abu Baker, Backward bifurcations in dengue transmission dynamics, Math. Biosci., 215 (2008), 11–25. https://doi.org/10.1016/j.mbs.2008.05.002 doi: 10.1016/j.mbs.2008.05.002
    [9] N. Nuraini, E. Soewono, K. A. Sidarto, A mathematical model of dengue internal transmission process, J. Indonesia Math. Soc., 13 (2007), 123–132. https://doi.org/10.22342/jims.13.1.79 doi: 10.22342/jims.13.1.79
    [10] N. Nuraini, H. Tasman, E. Soewono, K. A. Sidarto, A with-in host dengue infection model with immune response, Math. Comput. Model., 49 (2009), 1148–1155. https://doi.org/10.1016/j.mcm.2008.06.016 doi: 10.1016/j.mcm.2008.06.016
    [11] B. R. Murphy, S. S. Whitehead, Immune response to dengue virus and prospects for a vaccine, Annu. Rev. Immunol., 29 (2011), 587–619. https://doi.org/10.1146/annurev-immunol-031210-101315 doi: 10.1146/annurev-immunol-031210-101315
    [12] H. Bielefeldt-Ohmann, Pathogenesis of dengue virus disease: Missing pieces in the jigsaw, Trends Microbiol., 5 (1997), 409–413. https://doi.org/10.1016/S0966-842X(97)01126-8 doi: 10.1016/S0966-842X(97)01126-8
    [13] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
    [14] Z. Yu, A. Sohail, T. A. Nofal, J. Manuel, R. S. Tavares, Explainability of neural network clustering in interpreting the Covid-19 emergency data, Fractals, 30 (2022), 2240122. https://doi.org/10.1142/S0218348X22401223 doi: 10.1142/S0218348X22401223
    [15] G. Fei, Y. Cheng, W. L. Ma, C. Chen, S. Wen, G. M. Hu, Real-time detection of COVID-19 events from Twitter: A spatial-temporally Bursty-Aware method, IEEE Trans. Comp. Soc. Sys., 2022. https://doi.org/10.1109/TCSS.2022.3169742
    [16] T. Abdeljawad, On delta and nabla Caputo fractional differences and dual identities, Discrete Dyn. Nat. Soc., 2013. https://doi.org/10.1155/2013/406910
    [17] M. Caputo, Linear model of dissipation whose Q is almost frequency independent II, Geophy. J. Inter., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
    [18] T. Abdeljawad, Fractional operators with exponential kernels and a Lyapunov type inequality, Adv. Diff. Equ., 2017 (2017), 313. https://doi.org/10.1186/s13662-017-1285-0 doi: 10.1186/s13662-017-1285-0
    [19] T. Abdeljawad, Q. M. Al-Mdallal, Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwall's inequality, J. Comput. Appl. Math., 339 (2015), 218–230. https://doi.org/10.1016/j.cam.2017.10.021 doi: 10.1016/j.cam.2017.10.021
    [20] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [21] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Thermal Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [22] J. Sabatier, Fractional-order derivatives defined by continuous kernels: Are they really too restrictive, Fractal Fract., 4 (2020), 40. https://doi.org/10.3390/fractalfract4030040 doi: 10.3390/fractalfract4030040
    [23] G. C. Wu, Z. G. Deng, D. Baleanu, D. Q. Zeng, New variable-order fractional chaotic systems for fast image encryption, Chaos, 29 (2019). https://doi.org/10.1063/1.5096645
    [24] A. Atangana, S. I. Araz, New concept in calculus: Piecewise differential and integral operators, Chaos Solit. Fract., 145 (2021), 110638. https://doi.org/10.1016/j.chaos.2020.110638 doi: 10.1016/j.chaos.2020.110638
    [25] H. Al-Sulami, M. El-Shahed, J. J. Nieto, W. Shammakh1, On Fractional order dengue epidemic model, Math. Prob. Eng., 2014 (2014), 456537. https://doi.org/10.1155/2014/456537 doi: 10.1155/2014/456537
    [26] Fatmawati, M. A. Khan, C. Alfiniyah, E. Alzahrani, Analysis of dengue model with fractal-fractional Caputo-Fabrizio operator, Adv. Diff. Equ., 2020 (2020), 422. https://doi.org/10.1186/s13662-020-02881-w doi: 10.1186/s13662-020-02881-w
    [27] A. M. A. El-Sayed, A. A. M. Arafa, I. M. Hanafy, M. I. Gouda, A fractional order model of dengue fever with awareness effect: Numerical solutions and asymptotic stability analysis, Progr. Fract. Diff. Appl., 8 (2022), 267–274. https://doi.org/10.18576/pfda/080206 doi: 10.18576/pfda/080206
    [28] P. Tanvi, G. Gujarati, G. Ambika, Virus antibody dynamics in primary and secondary dengue infections, J. Math. Bio., 2014. https://doi.org/10.1007/s00285-013-0749-4
    [29] S. K. Sasmal, Y. Takeuchi, S. Nakaoka, T-Cell mediated adaptive immunity and antibody-dependent enhancement in secondary dengue infection, J. Theor. Bio., 470 (2019), 50–63. https://doi.org/10.1016/j.jtbi.2019.03.010 doi: 10.1016/j.jtbi.2019.03.010
    [30] S. Rashid, F. Jarad, A. K. Alsharidi, Numerical investigation of fractional-order cholera epidemic model with transmission dynamics via fractal-fractional operator technique, Chaos Solit. Fract., 162 (2022), 112477. https://doi.org/10.1016/j.chaos.2022.112477 doi: 10.1016/j.chaos.2022.112477
    [31] A. Atangana, S. Rashid, Analysis of a deterministic-stochastic oncolytic M1 model involving immune response via crossover behavior: Ergodic stationary distribution and extinction, AIMS Mathematics, 8 (2022), 3236–3268. https://doi.org/10.3934/math.2023167 doi: 10.3934/math.2023167
    [32] S. Rashid, F. Jarad, Stochastic dynamics of the fractal-fractional Ebola epidemic model combining a fear and environmental spreading mechanism, AIMS Mathematics, 8 (2023), 3634–3675. https://doi.org/10.3934/math.2023183 doi: 10.3934/math.2023183
    [33] M. Al-Qureshi, S. Rashid, F. Jarad, M. S. Alharthi, Dynamical behavior of a stochastic highly pathogenic avian influenza A (HPAI) epidemic model via piecewise fractional differential technique, AIMS Mathematics, 8 (2023), 1737–1756. https://doi.org/10.3934/math.2023089 doi: 10.3934/math.2023089
    [34] M. Borisov, G. Dimitriu, P. Rashkov, Modelling the host immune response to mature and immature dengue viruses, Bull. Math. Bio., 81 (2019), 4951–4976. https://doi.org/10.1007/s11538-019-00664-3 doi: 10.1007/s11538-019-00664-3
    [35] E. Bonyah, M. L. Juga, C. W. Chukwu, Fatmawati, A fractional order dengue fever model in the context of protected travelers, Alexandria Eng. J., 61 (2022), 927–936. https://doi.org/10.1016/j.aej.2021.04.070 doi: 10.1016/j.aej.2021.04.070
    [36] Fatmawati, R. Jan, M. A. Khan, Y. Khan, S. Ullah, A new model of dengue fever in terms of fractional derivative, Math. Biosci. Eng., 10 (2020), 5267–5287. https://doi.org/10.3934/mbe.2020285 doi: 10.3934/mbe.2020285
    [37] M. A. Khan, Fatmawati, Dengue infection modeling and its optimal control analysis in East Java, Indonesia, Heliyon, 7 (2021). https://doi.org/10.1016/j.heliyon.2021.e06023
    [38] M. A. Alshaikh, E. Kh. Elnahary, A. M. Elaiw, Stability of a secondary dengue viral infection model with multi-target cells, Alexandria Eng. J., 2022. https://doi.org/10.1016/j.aej.2021.12.050
    [39] S. Rashid, M. K. Iqbal, A. M. Alshehri, R. Ahraf, F. Jarad, A comprehensive analysis of the stochastic fractal-fractional tuberculosis model via Mittag-Leffler kernel and white noise, Results Phys., 39 (2022), 105764. https://doi.org/10.1016/j.rinp.2022.105764 doi: 10.1016/j.rinp.2022.105764
    [40] C. Y. Ji, D. Q. Jiang, Treshold behavior of a stochastic SIR model, Appl. Math. Model., 38 (2014), 5067–5079. https://doi.org/10.1016/j.apm.2014.03.037 doi: 10.1016/j.apm.2014.03.037
    [41] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [42] Q. Liu, D. Q. Jiang, T. Hayat, B. Ahmad, Stationary distribution and extinction of a stochastic SIRI epidemic model with relapse, Stoch. Anal. Appl., 36 (2018), 138–151. https://doi.org/10.1080/07362994.2017.1378897 doi: 10.1080/07362994.2017.1378897
    [43] A. Friedman, Stochastic differential equations and applications, In: Stochastic Differential Equations, Berlin, Heidelberg: Springer, 2010. https://doi.org/10.1007/978-3-642-11079-5_2
    [44] X. R. Mao, Stochastic differential equations and applications, Chichester: Horwood Publishing, 1997.
    [45] R. Khasminskii, Stochastic stability of differential equations, Berlin, Heidelberg: Springer, 2012. https://doi.org/10.1007/978-3-642-23280-0
    [46] F. A. Rihan, H. J. Alsakaji, Analysis of a stochastic HBV infection model with delayed immune response. Math. Biosci. Eng., 18 (2021), 5194–5220. https://doi.org/10.3934/mbe.2021264
    [47] Y. T. Luo, S. T. Tang, Z. D. Teng, L. Zhang, Global dynamics in a reaction-diffusion multi-group SIR epidemic model with nonlinear incidence, Nonlinear Anal. Real., 50 (2019), 365–385. https://doi.org/10.1016/j.nonrwa.2019.05.008 doi: 10.1016/j.nonrwa.2019.05.008
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1333) PDF downloads(84) Cited by(9)

Article outline

Figures and Tables

Figures(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog