Research article Special Issues

Mathematical modeling of the COVID-19 epidemic with fear impact

  • Received: 04 October 2022 Revised: 17 November 2022 Accepted: 24 November 2022 Published: 04 January 2023
  • MSC : 37B25, 37N25, 92B05

  • Many studies have shown that faced with an epidemic, the effect of fear on human behavior can reduce the number of new cases. In this work, we consider an SIS-B compartmental model with fear and treatment effects considering that the disease is transmitted from an infected person to a susceptible person. After model formulation and proving some basic results as positiveness and boundedness, we compute the basic reproduction number $ \mathcal R_0 $ and compute the equilibrium points of the model. We prove the local stability of the disease-free equilibrium when $ \mathcal R_0 < 1 $. We study then the condition of occurrence of the backward bifurcation phenomenon when $ \mathcal R_0\leq1 $. After that, we prove that, if the saturation parameter which measures the effect of the delay in treatment for the infected individuals is equal to zero, then the backward bifurcation disappears and the disease-free equilibrium is globally asymptotically stable. We then prove, using the geometric approach, that the unique endemic equilibrium is globally asymptotically stable whenever the $ \mathcal R_0 > 1 $. We finally perform several numerical simulations to validate our analytical results.

    Citation: Ashraf Adnan Thirthar, Hamadjam Abboubakar, Aziz Khan, Thabet Abdeljawad. Mathematical modeling of the COVID-19 epidemic with fear impact[J]. AIMS Mathematics, 2023, 8(3): 6447-6465. doi: 10.3934/math.2023326

    Related Papers:

  • Many studies have shown that faced with an epidemic, the effect of fear on human behavior can reduce the number of new cases. In this work, we consider an SIS-B compartmental model with fear and treatment effects considering that the disease is transmitted from an infected person to a susceptible person. After model formulation and proving some basic results as positiveness and boundedness, we compute the basic reproduction number $ \mathcal R_0 $ and compute the equilibrium points of the model. We prove the local stability of the disease-free equilibrium when $ \mathcal R_0 < 1 $. We study then the condition of occurrence of the backward bifurcation phenomenon when $ \mathcal R_0\leq1 $. After that, we prove that, if the saturation parameter which measures the effect of the delay in treatment for the infected individuals is equal to zero, then the backward bifurcation disappears and the disease-free equilibrium is globally asymptotically stable. We then prove, using the geometric approach, that the unique endemic equilibrium is globally asymptotically stable whenever the $ \mathcal R_0 > 1 $. We finally perform several numerical simulations to validate our analytical results.



    加载中


    [1] K. Bjørkdahl, B. Carlsen, Fear of the fear of the flu: Assumptions about media effects in the 2009 pandemic, Sci. Commun., 39 (2017), 291–410. https://doi.org/10.1177/1075547017709792 doi: 10.1177/1075547017709792
    [2] I. Ghosh, P. K. Tiwari, S. Samanta, I. M. Elmojtaba, N. Al-Salti, J. Chattopadhyay, A simple SI-type model for HIV/AIDS with media and self-imposed psychological fear, Math. Biosci., 306 (2018), 160–169. https://doi.org/10.1016/j.mbs.2018.09.014 doi: 10.1016/j.mbs.2018.09.014
    [3] The World Bank, Fertility rate, total (births per woman)-Hong Kong SAR, china, 2018. Available from: https://data.worldbank.org
    [4] J. Hiscott, M. Alexandridi, M. Muscolini, E. Tassone, E. Palermo, M. Soultsioti, et al., The global impact of the coronavirus pandemic, Cytokine Growth Factor. Rev., 53 (2020), 1–9. https://doi.org/10.1016/j.cytogfr.2020.05.010 doi: 10.1016/j.cytogfr.2020.05.010
    [5] R. Glaser, T. F. Robles, J. Sheridan, W. B. Malarkey, J. K. KiecoltGlaser, Mild depressive symptoms are associated with amplified and prolonged inflammatory responses after influenza virus vaccination in older adults, Arch. Gen. Psychiatry, 60 (2003), 1009–1014. https://doi.org/10.1001/archpsyc.60.10.1009 doi: 10.1001/archpsyc.60.10.1009
    [6] K. Roosa, Y. Lee, R. Y. Luo, A. Kirpich, R. Rothenberg, J. M. Hyman, et al., Short-term forecasts of the COVID-19 epidemic in Guangdong and Zhejiang, China: February 13–23, 2020, J. Clin. Med., 9 (2020), 596. https://doi.org/10.3390/jcm9020596 doi: 10.3390/jcm9020596
    [7] N. Nuraini, K. Khairudin, M. Apri, Modeling simulation of COVID-19 in Indonesia based on early endemic data, Commun. Biomathematical Sci., 3 (2020). http://doi.org/10.5614/cbms.2020.3.1.1
    [8] R. C. Das, Forecasting incidences of COVID-19 using Box-Jenkins method for the period July 12-Septembert 11, 2020: A study on highly affected countries, Chaos Solitons Fractals, 140 (2020), 110248. https://doi.org/10.1016/j.chaos.2020.110248 doi: 10.1016/j.chaos.2020.110248
    [9] A. Ajbar, R. T. Alqahtani, Bifurcation analysis of a SEIR epidemic system with governmental action and individual reaction, Adv. Difference Equ., 2020 (2020), 541. https://doi.org/10.1186/s13662-020-02997-z doi: 10.1186/s13662-020-02997-z
    [10] M. Sher, K. Shah, Z. A. Khan, H. Khan, A. Khan, Computational and theoretical modeling of the transmission dynamics of novel COVID-19 under Mittag-Leffler Power law, Alex. Eng. J., 59 (2020), 3133–3147. https://doi.org/10.1016/j.aej.2020.07.014 doi: 10.1016/j.aej.2020.07.014
    [11] M. A. Dokuyucu, E. Celik, Analyzing a novel coronavirus model (COVID-19) in the sense of Caputo-Fabrizio fractional operator, Appl. Comput. Math. Ean Int. J., 20 (2021), 49–69.
    [12] M. A. Khan, A. Atangana, E. Alzahrani, Fatmawati, The dynamics of COVID-19 with quarantined and isolation, Adv. Difference Equ., 2020 (2020), 425. https://doi.org/10.1186/s13662-020-02882-9 doi: 10.1186/s13662-020-02882-9
    [13] S. K. Panda, Applying fixed point methods and fractional operators in the modelling of novel coronavirus 2019-nCoV/SARS-CoV-2, Results Phys., 19 (2020), 103433. https://doi.org/10.1016/j.rinp.2020.103433 doi: 10.1016/j.rinp.2020.103433
    [14] H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Solitons Fractals, 144 (2021), 110668. https://doi.org/10.1016/j.chaos.2021.110668 doi: 10.1016/j.chaos.2021.110668
    [15] C. Maji, Impact of media-induced fear on the control of COVID-19 outbreak: A mathematical study, Int. J. Differ. Equ., 2021 (2021), 2129490. https://doi.org/10.1155/2021/2129490 doi: 10.1155/2021/2129490
    [16] S. C. Mpeshe, N. Nyerere, Modeling the dynamics of coronavirus disease pandemic coupled with fear epidemics, Comput. Math. Methods Med., 2021 (2021), 6647425. https://doi.org/10.1155/2021/6647425 doi: 10.1155/2021/6647425
    [17] L. L. Zhou, S. Ampon-Wireko, X. L. Xu, P. E. Quansah, E. Larnyo, Media attention and vaccine hesitancy: Examining the mediating effects of fear of covid-19 and the moderating role of trust in leadership, Plos one, 17 (2022), e0263610. https://doi.org/10.1371/journal.pone.0263610 doi: 10.1371/journal.pone.0263610
    [18] S. V. Scarpino, G. Petri, On the predictability of infectious disease outbreaks, Nat. Commun., 10 (2019), 898. https://doi.org/10.1038/s41467-019-08616-0 doi: 10.1038/s41467-019-08616-0
    [19] A. I. K. Butt, W. Ahmad, M. Rafiq, D. Baleanu, Numerical analysis of Atangana-Baleanu fractional model to understand the propagation of a novel corona virus pandemic, Alex. Eng. J., 61 (2022), 7007–7027. https://doi.org/10.1016/j.aej.2021.12.042 doi: 10.1016/j.aej.2021.12.042
    [20] X. Zhang, X. N. Liu, Backward bifurcation of an epidemic model with saturated treatment function, J. Math. Anal. Appl., 348 (2008), 433–443. https://doi.org/10.1016/j.jmaa.2008.07.042 doi: 10.1016/j.jmaa.2008.07.042
    [21] W. Walter, Ordinary Differential Equations, Springer, 1998.
    [22] F. Sulayman, F. A. Abdullah, M. H. Mohd, An sveire model of tuberculosis to assess the effect of an imperfect vaccine and other exogenous factors, Mathematics, 9 (2021), 327. https://doi.org/10.3390/math9040327 doi: 10.3390/math9040327
    [23] X. Y. Zhou, X. Y. Shi, J. Cui, Stability and backward bifurcation on a cholera epidemic model with saturated recovery rate, Math. Methods Appl. Sci., 40 (2017), 1288–1306. https://doi.org/10.1002/mma.4053 doi: 10.1002/mma.4053
    [24] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/s0025-5564(02)00108-6 doi: 10.1016/s0025-5564(02)00108-6
    [25] H. Abboubakar, J. C. Kamgang, L. N. Nkamba, D. Tieudjo, Bifurcation thresholds and optimal control in transmission dynamics of arboviral diseases, J. Math. Biol., 76 (2018), 379–427.
    [26] Z. S. Shuai, P. van den Driessche, Global stability of infectious disease models using Lyapunov functions, SIAM J. Appl. Math., 73 (2013), 1513–1532. https://doi.org/10.1137/120876642 doi: 10.1137/120876642
    [27] J. P. La Salle, The stability of dynamical systems, In: CBMS-NSF regional conference series in applied mathematics, 1976. https://doi.org/10.1137/1.9781611970432
    [28] M. Y. Li, J. S. Muldowney, A geometric approach to global-stability problems, SIAM J. Math. Anal., 27 (1996), 1070–1083. https://doi.org/10.1137/S0036141094266449 doi: 10.1137/S0036141094266449
    [29] M. Y. Li, J. S. Muldowney, Global stability for the SEIR model in epidemiology, Math. Biosci., 125 (1995), 155–164. https://doi.org/10.1016/0025-5564(95)92756-5 doi: 10.1016/0025-5564(95)92756-5
    [30] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, 2002.
    [31] W. A. Coppel, Stability and Asymptotic Behavior of Differential Equations, D. C. Heath, 1965.
    [32] Y. K. Xie, Z. Wang, A ratio-dependent impulsive control of an siqs epidemic model with non-linear incidence, Appl. Math. Comput., 423 (2022), 127018. https://doi.org/10.1016/j.amc.2022.127018 doi: 10.1016/j.amc.2022.127018
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1922) PDF downloads(155) Cited by(25)

Article outline

Figures and Tables

Figures(9)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog