Research article

Stability analysis of SARS-CoV-2/HTLV-I coinfection dynamics model

  • Received: 17 October 2022 Revised: 12 December 2022 Accepted: 19 December 2022 Published: 30 December 2022
  • MSC : 34D20, 34D23, 37N25, 92B05

  • Although some patients with coronavirus disease 2019 (COVID-19) develop only mild symptoms, fatal complications have been observed among those with underlying diseases. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative of COVID-19. Human T-cell lymphotropic virus type-I (HTLV-I) infection can weaken the immune system even in asymptomatic carriers. The objective of the present study is to formulate a new mathematical model to describe the co-dynamics of SARS-CoV-2 and HTLV-I in a host. We first investigate the properties of the model's solutions, and then we calculate all equilibria and study their global stability. The global asymptotic stability is examined by constructing Lyapunov functions. The analytical findings are supported via numerical simulation. Comparison between the solutions of the SARS-CoV-2 mono-infection model and SARS-CoV-2/HTLV-I coinfection model is given. Our proposed model suggest that the presence of HTLV-I suppresses the immune response, enhances the SARS-CoV-2 infection and, consequently, may increase the risk of COVID-19. Our developed coinfection model can contribute to understanding the SARS-CoV-2 and HTLV-I co-dynamics and help to select suitable treatment strategies for COVID-19 patients who are infected with HTLV-I.

    Citation: A. M. Elaiw, A. S. Shflot, A. D. Hobiny. Stability analysis of SARS-CoV-2/HTLV-I coinfection dynamics model[J]. AIMS Mathematics, 2023, 8(3): 6136-6166. doi: 10.3934/math.2023310

    Related Papers:

    [1] Siting Yu, Jingjing Peng, Zengao Tang, Zhenyun Peng . Iterative methods to solve the constrained Sylvester equation. AIMS Mathematics, 2023, 8(9): 21531-21553. doi: 10.3934/math.20231097
    [2] Nunthakarn Boonruangkan, Pattrawut Chansangiam . Convergence analysis of a gradient iterative algorithm with optimal convergence factor for a generalized Sylvester-transpose matrix equation. AIMS Mathematics, 2021, 6(8): 8477-8496. doi: 10.3934/math.2021492
    [3] Jin-Song Xiong . Generalized accelerated AOR splitting iterative method for generalized saddle point problems. AIMS Mathematics, 2022, 7(5): 7625-7641. doi: 10.3934/math.2022428
    [4] Jiaxin Lan, Jingpin Huang, Yun Wang . An E-extra iteration method for solving reduced biquaternion matrix equation AX+XB=C. AIMS Mathematics, 2024, 9(7): 17578-17589. doi: 10.3934/math.2024854
    [5] Kanjanaporn Tansri, Pattrawut Chansangiam . Gradient-descent iterative algorithm for solving exact and weighted least-squares solutions of rectangular linear systems. AIMS Mathematics, 2023, 8(5): 11781-11798. doi: 10.3934/math.2023596
    [6] Yinlan Chen, Min Zeng, Ranran Fan, Yongxin Yuan . The solutions of two classes of dual matrix equations. AIMS Mathematics, 2023, 8(10): 23016-23031. doi: 10.3934/math.20231171
    [7] Wenxiu Guo, Xiaoping Lu, Hua Zheng . A two-step iteration method for solving vertical nonlinear complementarity problems. AIMS Mathematics, 2024, 9(6): 14358-14375. doi: 10.3934/math.2024698
    [8] Wen-Ning Sun, Mei Qin . On maximum residual block Kaczmarz method for solving large consistent linear systems. AIMS Mathematics, 2024, 9(12): 33843-33860. doi: 10.3934/math.20241614
    [9] Kanjanaporn Tansri, Sarawanee Choomklang, Pattrawut Chansangiam . Conjugate gradient algorithm for consistent generalized Sylvester-transpose matrix equations. AIMS Mathematics, 2022, 7(4): 5386-5407. doi: 10.3934/math.2022299
    [10] Yang Cao, Quan Shi, Sen-Lai Zhu . A relaxed generalized Newton iteration method for generalized absolute value equations. AIMS Mathematics, 2021, 6(2): 1258-1275. doi: 10.3934/math.2021078
  • Although some patients with coronavirus disease 2019 (COVID-19) develop only mild symptoms, fatal complications have been observed among those with underlying diseases. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative of COVID-19. Human T-cell lymphotropic virus type-I (HTLV-I) infection can weaken the immune system even in asymptomatic carriers. The objective of the present study is to formulate a new mathematical model to describe the co-dynamics of SARS-CoV-2 and HTLV-I in a host. We first investigate the properties of the model's solutions, and then we calculate all equilibria and study their global stability. The global asymptotic stability is examined by constructing Lyapunov functions. The analytical findings are supported via numerical simulation. Comparison between the solutions of the SARS-CoV-2 mono-infection model and SARS-CoV-2/HTLV-I coinfection model is given. Our proposed model suggest that the presence of HTLV-I suppresses the immune response, enhances the SARS-CoV-2 infection and, consequently, may increase the risk of COVID-19. Our developed coinfection model can contribute to understanding the SARS-CoV-2 and HTLV-I co-dynamics and help to select suitable treatment strategies for COVID-19 patients who are infected with HTLV-I.



    Fractional calculus deals with the equations which involve integrals and derivatives of fractional orders. The history of fractional calculus begins from the history of calculus. The role of fractional integral operators is very vital in the applications of this subject in other fields. Several well known phenomenas and their solutions are presented in fractional calculus which can not be studied in ordinary calculus. Inequalities are useful tools in mathematical modelling of real world problems, they also appear as constraints to initial/boundary value problems. Fractional integral/derivative inequalities are of great importance in the study of fractional differential models and fractional dynamical systems. In recent years study of fractional integral/derivative inequalities accelerate very fastly. Many well known classical inequalities have been generalized by using classical and newly defined integral operators in fractional calculus. For some recent work on fractional integral inequalities we refer the readers to [1,2,3,4,5,6] and references therein.

    Our goal in this paper is to apply generalize Riemann-Liouville fractional integrals using a monotonically increasing function. The Hadamard inequalities are proved for these integral operators using strongly (α,m)-convex functions. Also error bounds of well known Hadamard inequalities are obtained by using two fractional integral identities. In connection with the results of this paper, we give generalizations and refinements of some well known results added recently in the literature of mathematical inequalities.

    Next, we like to give some definitions and established results which are necessary and directly associated with the findings of this paper.

    Definition 1. [7] A function f:[0,+)R is said to be strongly (α,m)-convex function with modulus c0, where (α,m)[0,1]2, if

    f(xt+m(1t)y)tαf(x)+m(1tα)f(y)cmtα(1tα)|yx|2, (1.1)

    holds x,y[0,+) and t[0,1].

    The well-known Hadamard inequality is a very nice geometrical interpretation of convex functions defined on the real line, it is stated as follows:

    Theorem 1. The following inequality holds:

    f(x+y2)1yxyxf(v)dvf(x)+f(y)2, (1.2)

    for convex function f:IR, where I is an interval and x,yI, x<y.

    The definition of Riemann-Liouville fractional integrals is given as follows:

    Definition 2. Let fL1[a,b]. Then left-sided and right-sided Riemann-Liouville fractional integrals of a function f of order μ where (μ)>0 are defined by

    Iμa+f(x)=1Γ(μ)xa(xt)μ1f(t)dt,x>a, (1.3)

    and

    Iμbf(x)=1Γ(μ)bx(tx)μ1f(t)dt,x<b. (1.4)

    The following theorems provide two Riemann-Liouville fractional versions of the Hadamard inequality for convex functions.

    Theorem 2. [8] Let f:[a,b]R be a positive function with 0a<b and fL1[a,b]. If f is a convex function on [a,b], then the following fractional integral inequality holds:

    f(a+b2)Γ(μ+1)2(ba)μ[Iμa+f(b)+Iμbf(a)]f(a)+f(b)2, (1.5)

    with μ>0.

    Theorem 3. [9] Under the assumption of Theorem 2, the following fractional integral inequality holds:

    f(a+b2)2μ1Γ(μ+1)(ba)μ[Iμ(a+b2)+f(b)+Iμ(a+b2)f(a)]f(a)+f(b)2, (1.6)

    with μ>0.

    Theorem 4. [8] Let f:[a,b]R be a differentiable mapping on (a,b) with a<b. If |f| is convex on [a,b], then the following fractional integral inequality holds:

    |f(a)+f(b)2Γ(μ+1)2(ba)μ[Iμa+f(b)+Iμbf(a)]|ba2(μ+1)(112μ)[|f(a)|+|f(b)|]. (1.7)

    The k-analogue of Riemann-Liouville fractional integrals is defined as follows:

    Definition 3. [10] Let fL1[a,b]. Then k-fractional Riemann-Liouville integrals of order μ where (μ)>0, k>0, are defined by

    kIμa+f(x)=1kΓk(μ)xa(xt)μk1f(t)dt,x>a, (1.8)

    and

    kIμbf(x)=1kΓk(μ)bx(tx)μk1f(t)dt,x<b, (1.9)

    where Γk(.) is defined as [11]

    Γk(μ)=0tμ1etkkdt.

    The k-fractional versions of Hadamard type inequalities (1.5)–(1.7) are given in the following theorems.

    Theorem 5. [12] Let f:[a,b]R be a positive function with 0a<b. If f is a convex function on [a,b], then the following inequalities for k-fractional integrals hold:

    f(a+b2)Γk(μ+k)2(ba)μk[kIμa+f(b)+kIμbf(a)]f(a)+f(b)2. (1.10)

    Theorem 6. [13] Under the assumption of Theorem 5, the following fractional integral inequality holds:

    f(a+b2)2μk1Γk(μ+k)(ba)μk[kIμ(a+b2)+f(b)+kIμ(a+b2)f(a)]f(a)+f(b)2. (1.11)

    Theorem 7. [12] Let f:[a,b]R be a differentiable mapping on (a,b) with 0a<b. If |f| is convex on [a,b], then the following inequality for k-fractional integrals holds:

    |f(a)+f(b)2Γk(μ+k)2(ba)μk[kIμa+f(b)+kIμbf(a)]|ba2(μk+1)(112μk)[|f(a)|+|f(b)|]. (1.12)

    In the following, we give the definition of generalized Riemann-Liouville fractional integrals by a monotonically increasing function.

    Definition 4. [14] Let fL1[a,b]. Also let ψ be an increasing and positive monotone function on (a,b], having a continuous derivative ψ on (a,b). The left-sided and right-sided fractional integrals of a function f with respect to another function ψ on [a,b] of order μ where (μ)>0 are defined by

    Iμ,ψa+f(x)=1Γ(μ)xaψ(t)(ψ(x)ψ(t))μ1f(t)dt,x>a, (1.13)

    and

    Iμ,ψbf(x)=1Γ(μ)bxψ(t)(ψ(t)ψ(x))μ1f(t)dt,x<b. (1.14)

    The k-analogue of generalized Riemann-Liouville fractional integrals is defined as follows:

    Definition 5 [4] Let fL1[a,b]. Also let ψ be an increasing and positive monotone function on (a,b], having a continuous derivative ψ on (a,b). The left-sided and right-sided fractional integrals of a function f with respect to another function ψ on [a,b] of order μ where (μ)>0, k>0, are defined by

    kIμ,ψa+f(x)=1kΓk(μ)xaψ(t)(ψ(x)ψ(t))μk1f(t)dt,x>a, (1.15)

    and

    kIμ,ψbf(x)=1kΓk(μ)bxψ(t)(ψ(t)ψ(x))μk1f(t)dt,x<b. (1.16)

    For more details of above defined fractional integrals, we refer the readers to see [15,16].

    Rest of the paper is organized as follows: In Section 2, we find Hadamard type inequalities for generalized Riemann-Liouville fractional integrals with the help of strongly (α,m)-convex functions. The consequences of these inequalities are listed in remarks. Also some new fractional integral inequalities for convex functions, strongly convex functions and strongly m-convex functions are deduced in the form of corollaries. In Section 3, the error bounds of Hadamard type fractional inequalities are established via two fractional integral identities.

    Theorem 8. Let f:[a,b]R be a positive function with 0a<mb and fL1[a,b]. Also suppose that f is strongly (α,m)-convex function on [a,b] with modulus c0, ψ is positive strictly increasing function having continuous derivative ψ on (a,b). If [a,b]Range(ψ), k>0 and (α,m)(0,1]2, then the following k-fractional integral inequality holds:

    f(a+mb2)+cm(2α1)22α(μ+k)(μ+2k)[μ(μ+k)(ba)2+2k2(ammb)2+2μk(ba)(ammb)]Γk(μ+k)2α(mba)μk[kIμ,ψψ1(a)+(fψ)(ψ1(mb))+(2α1)mμk+1kIμ,ψψ1(b)(fψ)(ψ1(am))][f(a)+m(2α1)f(b)]μ2α(μ+kα)+mkαμ(f(b)+m(2α1)f(am2))2α(μ2+μαk)cmkαμ[(ba)2+m(2α1)(bam2)2]2α(μ+αk)(μ+2αk), (2.1)

    with μ>0.

    Proof. Since f is strongly (α,m)-convex function, for x,y[a,b] we have

    f(x+my2)f(x)+m(2α1)f(y)2αcm(2α1)|yx|222α. (2.2)

    By setting x=at+m(1t)b, y=am(1t)+bt and integrating the resulting inequality after multiplying with tμk1, we get

    kμf(a+mb2)12α[10f(at+m(1t)b)tμk1dt+m(2α1)10f(am(1t)+bt)tμk1dt]cm(2α1)22αμ(μ+k)(μ+2k)[μk(μ+k)(ba)2+2k3(ammb)2+2k2μ(ba)(ammb)]. (2.3)

    Now, let u[a,b] such that ψ(u)=at+m(1t)b, that is, t=mbψ(u)mba and let v[a,b] such that ψ(v)=am(1t)+bt, that is, t=ψ(v)ambam in (2.3), then multiplying μk after applying Definition 5, we get the following inequality:

    f(a+mb2)Γk(μ+k)2α(mba)μk[kIμ,ψψ1(a)+(fψ)(ψ1(mb))+mμk+1(2α1)kIμ,ψψ1(b)(fψ)(ψ1(am))]cm(2α1)22α(μ+k)(μ+2k)[μ(ba)2+2k2(ammb)2+2μk(ba)(ammb)]. (2.4)

    Hence by rearranging the terms, the first inequality is established. On the other hand, f is strongly (α,m)-convex function, for t[0,1], we have the following inequality:

    f(at+m(1t)b)+m(2α1)f(am(1t)+bt)tα[f(a)+m(2α1)f(b)]+m(1tα)[f(b)+m(2α1)f(am2)]cmtα(1tα)[(ba)2+m(2α1)(bam2)2]. (2.5)

    Multiplying inequality (2.5) with tμk1 on both sides and then integrating over the interval [0,1], we get

    10tμk1f(ta+m(1t)b)dt+m(2α1)10tμk1f(am(1t)+tb)dt(f(a)+m(2α1)f(b))(kμ+kα)+m(f(b)+m(2α1)f(am2))k2αμ2+μαkcmαk2[(ba)2+m(2α1)(bam2)2](μ+αk)(μ+2αk). (2.6)

    Again taking ψ(u)=at+m(1t)b that is t=mbψ(u)mba and ψ(v)=am(1t)+bt that is t=ψ(v)ambam in (2.6), then by applying Definition 5, the second inequality can be obtained.

    Remark 1. Under the assumption of Theorem 8, by fixing parameters one can achieve the following outcomes:

    (i) If α=m=1 in (2.1), then the inequality stated in [17,Theorem 9] can be obtained.

    (ii) If α=m=1, ψ=I and c=0 in (2.1), then Theorem 5 can be obtained.

    (iii) If α=k=m=1, ψ=I and c=0 in (2.1), then Theorem 2 can be obtained.

    (iv) If α=k=m=1 and ψ=I in (2.1), then the inequality stated in [18,Theorem 2.1] can be obtained.

    (v) If α=μ=k=m=1, ψ=I and c=0 in (2.1), then the Hadamard inequality can be obtained.

    (vi) If α=m=1 and c=0 in (2.1), then the inequality stated in [19,Theorem 1] can be obtained.

    (vii) If α=m=k=1 and c=0 in (2.1), then the inequality stated in [20,Theorem 2.1] can be obtained.

    (viii) If α=k=1 and ψ=I in (2.1), then the inequality stated in [21,Theorem 6] can be obtained.

    (ix) If α=μ=m=k=1 and ψ=I in (2.1), then the inequality stated in [22,Theorem 6] can be obtained.

    (x) If α=k=1, ψ=I and c=0 in (2.1), then the inequality stated in [23,Theorem 2.1] can be obtained.

    (xi) If k=1 and ψ=I in (2.1), then the inequality stated in [24,Theorem 4] can be obtained.

    Corollary 1. Under the assumption of Theorem 8 with c=0 in (2.1), the following fractional integral inequality holds:

    f(a+mb2)Γk(μ+k)2α(mba)μk[kIμ,ψψ1(a)+(fψ)(ψ1(mb))+(2α1)mμk+1kIμ,ψψ1(b)(fψ)(ψ1(am))][f(a)+m(2α1)f(b)]μ2α(μ+kα)+mμαk(f(b)+m(2α1)f(am2))2α(μ2+μαk).

    Corollary 2. Under the assumption of Theorem 8 with k=1 in (2.1), the following fractional integral inequality holds:

    f(a+mb2)+cmμ(2α1)22αμ(μ+1)(μ+2)[μ(μ+1)(ba)2+2(ammb)2+2μ(ba)(ammb)]Γ(μ+1)2α(mba)μ[Iμ,ψψ1(a)+(fψ)(ψ1(mb))+(2α1)mμ+1Iμ,ψψ1(b)(fψ)(ψ1(am))][f(a)+m(2α1)f(b)]μ2α(μ+α)+m(f(b)+m(2α1)f(am2))αμ2α(μ2+μα)cmαμ[(ba)2+m(2α1)(bam2)2]2α(μ+α)(μ+2α).

    Corollary 3. Under the assumption of Theorem 8 with ψ=I in (2.1), the following fractional integral inequality holds:

    f(a+mb2)+cm(2α1)22α(μ+k)(μ+2k)[μ(μ+k)(ba)2+2k2(ammb)2+2μk(ba)(ammb)]Γk(μ+k)2α(mba)μk[kIμa+f(mb)+(2α1)mμk+1kIμbf(am)][f(a)+m(2α1)f(b)]μ2α(μ+kα)+mkαμ(f(b)+m(2α1)f(am2))2α(μ2+μαk)cmkαμ[(ba)2+m(2α1)(bam2)2]2α(μ+αk)(μ+2αk).

    Theorem 9. Under the assumption of Theorem 8, the following k-fractional integral inequality holds:

    f(a+mb2)+cmμ(2α1)22α+2(μ+2k)[μ(μ+k)(ba)2+(ammb)2(μ2+5kμ+8k2)+2μ(μ+3k)(ba)×(ammb)]2μkαΓk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1(2α1)kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]μ[f(a)+m(2α1)f(b)]22α(αk+μ)+m(2α(μ+αk)μ)22α(μ+αk)(f(b)+m(2α1)f(am2))cmμ[2α(μ+2αk)(μ+αk)]23α(μ+αk)(μ+2αk)((ba)2+m(bam2)2), (2.7)

    with μ>0.

    Proof. Let x=at2+m(2t2)b, y=am(2t2)+bt2 in (2.2) and integrating the resulting inequality over [0,1] after multiplying with tμk1, we get

    kμf(a+mb2)12α[10f(at2+m(2t2)b)tμk1dt+m(2α1)10f(am(2t2)+bt2)tμk1dt]cm(2α1)22α+2(μ+2k)[μ(μ+k)(ba)2k+k(ammb)2(μ2+5kμ+8k2)+2μ(ba)(ammb)(μ+3k)k]. (2.8)

    Let u[a,b], so that ψ(u)=at2+m(2t2)b, that is, t=2(mbψ(u))mba and v[a,b], so that ψ(v)=am(2t2)+bt2, that is, t=2(ψ(v)am)bam in (2.8), then by applying Definition 5, we get

    f(a+mb2)2μkΓk(μ+k)2α(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1(2α1)kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]cmμ(2α1)22α4(μ+2k)[μ(μ+k)(ba)2+(ammb)2(μ2+5kμ+8k2)+2μ(ba)(ammb)(μ+3k)]. (2.9)

    Hence by rearranging terms, the first inequality is established. Since f is strongly (α,m)-convex function with modulus c0, for t[0,1], we have following inequality

    f(at2+m(2t2)b)+m(2α1)f(am(2t2)+bt2)(t2)α[f(a)+m(2α1)f(b)]+m(2αtα2α)[f(b)+m(2α1)f(am2)]cmtα(2αtα)[(ba)2+m(bam2)2]22α. (2.10)

    Multiplying (2.10) with tμk1 on both sides and integrating over [0,1], we get

    10f(at2+m(2t2)b)tμk1dt+m(2α1)10f(am(2t2)+bt2)tμk1dtk[f(a)+m(2α1)f(b)]2α(αk+μ)+mk(2α(μ+αk)μ)2αμ(μ+αk)(f(b)+m(2α1)f(am2))cmk(2α(μ+2αk)(μ+αk))22α((ba)2+m(bam2)2). (2.11)

    Again taking ψ(u)=at2+m(2t2)b, that is, t=2(mbψ(v))mba and so that ψ(v)=am(2t2)+bt2, that is, t=2(ψ(v)am)bam in (2.11), then by applying Definition 5, the second inequality can be obtained.

    Remark 2. Under the assumption of Theorem 9, one can achieve the following outcomes:

    (i) If α=m=1 in (2.7), then the inequality stated in [17,Theorem 10] can be obtained.

    (ii) If α=m=k=1, ψ=I and c=0 in (2.7), then Theorem 3 can be obtained.

    (iii) If α=μ=m=k=1, ψ=I and c=0 in (2.7), then Hadamard inequality can be obtained.

    (iv) If α=m=1, ψ=I and c=0 in (2.7), then the inequality stated in [13,Theorem 2.1] can be obtained.

    (v) If α=m=1 and c=0 in (2.7), then the inequality stated in [17,corrollary 5] can be obtained.

    (vi) If α=k=1 and ψ=I in (2.7), then the inequality stated in [21,Theorem 7] can be obtained.

    (vii) If k=1 and ψ=I in (2.7), then the inequality stated in [24,Theorem 5] can be obtained.

    (viii) If α=m=k=1 and c=0 in (2.7), then the inequality stated in [25,Lemma 1] can be obtained.

    Corollary 4. Under the assumption of Theorem 9 with c=0 in (2.7), the following fractional integral inequality holds:

    f(a+mb2)2μkαΓk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1(2α1)kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]μ[f(a)+m(2α1)f(b)]22α(αk+μ)+m(2α(μ+αk)μ)22α(μ+αk)(f(b)+m(2α1)f(am2)).

    Corollary 5. Under the assumption of Theorem 9 with k=1 in (2.7), the following fractional integral inequality holds:

    f(a+mb2)+cmμ(2α1)22α+2(μ+1)(μ+2)[μ(μ+1)(ba)2+(ammb)2(μ2+5μ+8)+2μ(μ+3)(ba)(ammb)]2μαΓ(μ+1)(mba)μ[Iμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμ+1(2α1)Iμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]μ[f(a)+m(2α1)f(b)]22α(α+μ)+m[2α(μ+α)μ]22α(μ+α)(f(b)+m(2α1)f(am2))cmμ(2α(μ+2α)(μ+α))23α(μ+α)(μ+2α)×[(ba)2+m(bam2)2].

    Corollary 6. Under the assumption of Theorem 9 with ψ=I in (2.7), the following fractional integral inequality holds:

    f(a+mb2)+cmμ(2α1)22α+2(μ+2k)[μ(μ+k)(ba)2+(ammb)2(μ2+5kμ+8k2)+2μ(ba)(μ+3k)(ammb)]2μkαΓk(μ+k)(mba)μk[kIμ(a+mb2)+f(mb))+mμk+1(2α1)kIμ(a+mb2m)f(am)]μ[f(a)+m(2α1)f(b)]22α(αk+μ)+m(2α(μ+αk)μ)22α(μ+αk)(f(b)+m(2α1)f(am2))cmμ[2α(μ+2αk)(μ+αk)]23α(μ+αk)(μ+2αk)((ba)2+m(bam2)2).

    In this section, we find the error estimations of Hadamard type fractional inequalities for strongly (α,m)-convex functions by using (1.15) and (1.16) that gives the refinements of already proved estimations. The following lemma is useful to prove the next results.

    Lemma 1. Let a<b and f:[a,b]R be a differentiable mapping on (a,b). Also, suppose that fL[a,b], ψ is positive strictly increasing function, having a continuous derivative ψ on (a,b). If [a,b]Range(ψ), k>0, then the following identity holds for generalized fractional integral operators:

    f(a)+f(b)2Γk(μ+k)2(ba)μk[kIμ,ψψ1(a)+(fψ)(ψ1(b))+kIμ,ψψ1(b)(fψ)(ψ1(a)]=ba210[(1t)μktμk]f(ta+(1t)b)dt. (3.1)

    Proof. We cosider the right hand side of (3.1) as follows:

    10((1t)αktμk)f(ta+(1t)b)dt=10(1t)μk1f(ta+(1t)b)dt10tμk1f(ta+(1t)b)dt=I1I2 (3.2)

    Integrating by parts we get

    I1=10(1t)μk1f(ta+(1t)b)dt=f(b)baμk(ba)10(1t)μk1f(ta+(1t)b)dt

    We have v[a,b] such that ψ(v)=ta+(1t)b, with this substitution one can have

    I1=f(b)baμk(ba)ψ1(b)ψ1(a)(ψ(v)aba)μk1(fψ(v))baψ(v)dv=f(b)baΓk(μ+k)(ba)μk+1Iμ,ψψ1(b)(fψ)(ψ1(a)). (3.3)

    Similarly one can get after a little computation

    I2=f(a)ba+Γk(μ+k)(ba)μk+1Iμ,ψψ1(a)+(fψ)(ψ1(b)). (3.4)

    Using (3.3) and (3.4) in (3.2), (3.1) can be obtained.

    Remark 3. (i) If k=1 and ψ=I in (3.1), then the equality stated in [8,Lemma 2] can be obtained.

    (ii) For μ=k=1 and ψ=I in (3.1), then the equality stated in [28,Lemma 2.1] can be obtained.

    Theorem 10. Let f:[a,b]R be a differentiable mapping on (a,b) with 0a<b. Also suppose that |f| is strongly (α,m)-convex with modulus c0, ψ is positive strictly increasing function having continuous derivative ψ on (a,b). If [a,b]Range(ψ), k>0 and (α,m)(0,1]2, then the following k-fractional integral inequality holds:

    |f(a)+f(b)2Γk(μ+k)2(ba)μk[kIμ,ψψ1(a)+(fψ)(ψ1(b))+kIμ,ψψ1(b)(fψ)(ψ1(a))]|ba2[|f(a)|(2B(12;α+1,μk+1)+1(12)α+μkα+μk+1B(α+1,μk+1))+m|f(bm)|×(2(1(12)μk)μk+1+(12)1+μk+αμk+1+α2B(12;α+1,μk+1)1(12)1+μk+αμk+1+α+B(α+1,μk+1))cm(bma)22(2B(12;α+1,μk+1)2α4α2˜F1(1+2α,μk,2(1+α);12)+1(12)μk+αμk+1+αB(α+1,μk+1)1(12)μk+2αμk+1+2α+B(2α+1,μk+1))], (3.5)

    with μ>0 and 2˜F1(1+2α,μk,2(1+α);12) is regularized hypergeometric function.

    Proof. By Lemma 1, it follows that

    |f(a)+f(b)2Γk(μ+k)2(ba)μk[kIμ,ψψ1(a)+(fψ)(ψ1(b))+kIμ,ψψ1(b)(fψ)(ψ1(b)]|ba210|(1t)μktμk||f(ta+(1t)b|)dt. (3.6)

    Since |f| is strongly (α,m)-convex function on [a,b] and t[0,1], we have

    |f(ta+(1t)b)|tα|f(a)|+m(1tα)|f(bm)|cmtα(1tα)(bma)2. (3.7)

    Therefore (3.6) implies the following inequality

    |f(a)+f(b)2Γk(μ+k)2(ba)μk[kIμ,ψψ1(a)+(fψ)(ψ1(b))+kIμ,ψψ1(b)(fψ)(ψ1(b)]|ba210|(1t)μktμk|(tα|f(a)|+m(1tα)|f(bm)|cmtα(1tα)(bma)2]dtba2[|f(a)|(120tα((1t)μktμk)dt+112tα(tμk(1t)μk)dt)+m|f(bm)|(120(1tα)((1t)μktμk)dt+112(1tα)(tμk(1t)μk)dt)cm(bma)2(120tα(1tα)((1t)μktμk)dt+112tα(1tα)(tμk(1t)μk)dt)]. (3.8)

    In the following, we compute integrals appearing on the right side of the above inequality

    120tα((1t)μktμk)dt+112tα(tμk(1t)μk)dt=2B(12;α+1,μk+1)+1(12)α+μkα+μk+1B(α+1,μk+1). (3.9)
    120(1tα)((1t)μktμk)dt+112(1tα)(tμk(1t)μk)dt.=2(1(12)μk)μk+1+(12)1+μk+αμk+1+α2B(12;α+1,μk+1)1(12)1+μk+αμk+1+α+B(α+1,μk+1). (3.10)
    112tα(1tα)((1t)μktμk)dt+112tα(1tα)(tμk(1t)μk)dt=2B(12;α+1,μk+1)(12)1+μk+αμk+1+α2α4α2˜F1(1+2α,μk,2(1+α);12)+(12)1+μk+2αμk+1+2α+1(12)1+μk+αμk+1+αB(α+1,μk+1)1(12)1+μk+2αμk+1+2α+B(2α+1,μk+1). (3.11)

    Using (3.9), (3.10) and (3.11) in (3.8), we get the required inequality (3.5).

    Remark 4. Under the assumption of Theorem 10, one can achieve the following outcomes:

    (i) If α=m=1 in (3.5), then the inequality stated in [17,Theorem 11] can be obtained.

    (ii) If α=m=1 and c=0 in (3.5), then the inequality stated in [17,Corollary 10] can be obtained.

    (iii) If α=m=1, ψ=I and c=0 in (3.5), then Theorem 7 can be obtained.

    (iv) If α=m=k=1, ψ=I and c=0 in (3.5), then Theorem 4 can be obtained.

    (v) If α=k=1 and ψ=I in (3.5), then the inequality stated in [21,Theorem 8] can be obtained.

    (vi) If α=μ=m=k=1 and ψ=I in (3.5), then the inequality stated in [26,Corollary 6] can be obtained.

    Corollary 7. Under the assumption of Theorem 10 with c=0 in (3.5), the following inequality holds:

    |f(a)+f(b)2Γk(μ+k)2(ba)μk[kIμ,ψψ1(a)+(fψ)(ψ1(b))+kIμ,ψψ1(b)(fψ)(ψ1(a))]|ba2[|f(a)|(2B(12;α+1,μk+1)+1(12)α+μkα+μk+1B(α+1,μk+1))+m|f(bm)|×(2(1(12)μk)μk+1+(12)1+μk+αμk+1+α2B(12;α+1,μk+1)1(12)1+μk+αμk+1+α+B(α+1,μk+1))].

    Corollary 8. Under the assumption of Theorem 10 with k=m=1 and c=0 in (3.5), the following inequality holds:

    |f(a)+f(b)2Γ(μ+1)2(ba)μ[Iμ,ψψ1(a)+(fψ)(ψ1(b))+Iμ,ψψ1(b)(fψ)(ψ1(a))]|ba2[|f(a)|(2B(12;α+1,μ+1)+1(12)α+μα+μ+1B(α+1,μ+1))+|f(b)|×(2(1(12)μ)μ+1+(12)1+μ+αμ+1+α2B(12;α+1,μ+1)1(12)1+μ+αμ+1+α+B(α+1,μ+1))].

    Corollary 9. Under the assumption of Theorem 10 with ψ=I in (3.5), the following inequality holds:

    |f(a)+f(b)2Γk(μ+k)2(ba)μk[kIμa+f(b)+kIμbf(a)]|ba2[|f(a)|(2B(12;α+1,μk+1)+1(12)α+μkα+μk+1B(α+1,μk+1))+m|f(bm)|(2(1(12)μk)μk+1+(12)1+μk+αμk+1+α2B(12;α+1,μk+1)1(12)1+μk+αμk+1+α+B(α+1,μk+1))]c(ba)3(2B(12;α+1,μk+1)2α4α2˜F1(1+2α,μk,2(1+α);12)+1(12)μk+αμk+1+αB(α+1,μk+1)1(12)μk+2αμk+1+2α+B(2α+1,μk+1))].

    For next two results, we need the following lemma.

    Lemma 2. [26] Let f:[a,b]R be a differentiable mapping on (a,b) such that fL[a,b], ψ is positive increasing function having continuous derivative ψ on (a,b). If [a,b]Range(ψ), k>0 and m(0,1], then the following integral identity for fractional integral holds:

    2μk1Γk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]=mba4[10tμkf(at2+m(2t2)b)dt10tμkf(am(2t2)+bt2)dt]. (3.12)

    Theorem 11. Let f:[a,b]R be a differentiable mapping on (a,b) such that fŁ[a,b]. Also suppose that |f|q is strongly (α,m)-convex function on [a,b] for q1, ψ is an increasing and positive monotone function on (a,b], having a continuous derivative ψ on (a,b). If [a,b]Range(ψ), k>0 and (α,m)(0,1]2, then the following k-fractional integral inequality holds:

    |2μk1Γk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba22+1q(μk+1)(μk+2)1q[(21αk|f(a)|q(μk+1)(μk+2)αk+μ+k+21αmk|f(b)|q(μk+1)(μk+2)(2α(αk+μ+k)(μ+k)(μ+k)(αk+μ+k))212αcm(ba)2(μk+1)(μk+2)×(2α(2αk+μ+k)(αk+μ+k)(kα+μ+k)(2αk+μ+k)))1q+(21αkm|f(am2)|q(μk+1)(μk+2)(2α(αk+μ+k)(μ+k)(μ+k)(αk+μ+k))+21αk(μk+1)(μk+2)|f(b)|qαk+μ+k212αcm(μk+1)(μk+2)(bam2)2(2α(2αk+μ+k)(αk+μ+k)(kα+μ+k)(2αk+μ+k)))1q], (3.13)

    with μ>0.

    Proof. Applying Lemma 2 and strongly (α,m)-convexity of |f|, (for q=1), we have

    |2μk1Γk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba4[10|tμkf(at2+m(2t2)b)|dt+10|tμkf(am(2t2)+bt2)dt|]mba4[(|f(a)|+|f(b)|2α)10tμk+αdt+m(|f(b)|+|f(am2)|)2α10(2αtα)tμkdtcm((ba)2+(bam2)2)22α10tμk+α(2αtα)dt]mba4[k[|f(a)|+|f(b)|]2α(μ+αk+k)+mk[2α(αk+μ+k)(μ+k)](μ+k)(αk+μ+k)×(|f(b)|+|f(am2)|)cmk[2α(2αk+μ+k)(αk+μ+k)]22α(αk+μ+k)(2αk+μ+k)((ba)2+(bam2)2)].

    Now for q>1, we proceed as follows: From Lemma 2 and using power mean inequality, we get

    |2μk1Γk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba4(10tμkdt)11q[(10tμk|f(at2+m(2t2)b)|qdt)1q+(10tμk|f(am(2t2)+bt2)|qdt)1q]mba4(μk+1)1p[(|f(a)|q2α10tα+μkdt+m|f(b)|q2α10(2αtα)tμkdtcm(ba)222α10(2αtα)tμk+αdt)1q+(m|f(am2)|2α10(2αtα)tμkdt+|f(b)|q2α10tα+μkdtcm(bam2)222α10(2αtα)tμk+αdt)1q]mba4(μk+1)1p[(k|f(a)|q2α(αk+μ+k)+mk|f(b)|q[2α(αk+μ+k)(μ+k)]2α(μ+k)(αk+μ+k)cmk(ba)2[2α(2αk+μ+k)(αk+μ+k)]22α(kα+μ+k)(2αk+μ+k))1q+(mk|f(am2)|q[2α(αk+μ+k)(μ+k)]2α(μ+k)(αk+μ+k)+k|f(b)|q2α(kα+μ+k)cmk(bam2)2[2α(2αk+μ+k)(αk+μ+k)]22α(kα+μ+k)(2αk+μ+k))1q]mba22+1q(μk+1)(μk+2)1q[(2k|f(a)|q(μk+1)(μk+2)2α(αk+μ+k)+21αmk|f(b)|q(μk+1)(μk+2)(2α(αk+μ+k)(μ+k)(μ+k)(αk+μ+k))212αcm(ba)2(μk+1)(μk+2)(2α(2αk+μ+k)(αk+μ+k)(kα+μ+k)(2αk+μ+k)))1q+(21αkm|f(am2)|q(μk+1)(μk+2)2α(αk+μ+k)(μ+k)(μ+k)(αk+μ+k)+2k(μk+1)(μk+2)|f(b)|q2α(αk+μ+k)2cm(μk+1)(μk+2)(bam2)222α2α(2αk+μ+k)(αk+μ+k)(kα+μ+k)(2αk+μ+k))1q].

    This completes the proof.

    Remark 5. Under the assumption of Theorem 11, one can achieve the following outcomes:

    (i) If α=m=1 in (3.13), then the inequality stated in [17,Theorem 12] can be obtained.

    (ii) If α=k=1 and ψ=I in (3.13), then the inequality stated in [21,Theorem 10] can be obtained.

    (iii) If α=k=1, ψ=I and c=0 in (3.13), then the inequality stated in [27,Theorem 2.4] can be obtained.

    (iv) If α=m=1, ψ=I and c=0 in (3.13), then the inequality stated in [13,Theorem 3.1] can be obtained.

    (v) If α=m=k=1, ψ=I and c=0 in (3.13), then the inequality stated in [9,Theorem 5] can be obtained.

    (vi) If α=μ=k=m=q=1 and ψ=I in (3.13), then the inequality stated in [26,Corollary 8] can be obtained.

    (vii) If α=μ=k=m=q=1, ψ=I and c=0 in (3.13), then the inequality stated in [28,Theorem 2.2] can be obtained.

    Corollary 10. Under the assumption of Theorem 11 with c=0 in (3.13), the following inequality holds:

    |2μk1Γk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba22+1q(μk+1)(μk+2)1q[(21αk|f(a)|q(μk+1)(μk+2)αk+μ+k+21αmk|f(b)|q(μk+1)(μk+2)(2α(αk+μ+k)(μ+k)(μ+k)(αk+μ+k)))1q+(21αkm|f(am2)|q(μk+1)(μk+2)×(2α(αk+μ+k)(μ+k)(μ+k)(αk+μ+k))+21αk(μk+1)(μk+2)|f(b)|qαk+μ+k)1q].

    Corollary 11. Under the assumption of Theorem 11 with k=1 in (3.13), the following inequality holds:

    |2μ1Γ(μ+1)(mba)μ[Iμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμ+1Iμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba22+1q(μ+1)(μ+2)1q[(21α|f(a)|q(μ+1)(μ+2)α+μ+1+21αm|f(b)|q(μ+1)(μ+2)×(2α(α+μ+1)(μ+1)(μ+1)(α+μ+1))212αcm(ba)2(μ+1)(μ+2)(2α(2α+μ+1)(α+μ+1)(α+μ+1)(2α+μ+1)))1q+(21αm|f(am2)|q(μ+1)(μ+2)(2α(α+μ+1)(μ+1)(μ+1)(α+μ+1))+21α(μ+1)(μ+2)|f(b)|qα+μ+1212αcm(μ+1)(μ+2)(bam2)2(2α(2α+μ+1)(α+μ+1)(α+μ+1)(2α+μ+1)))1q].

    Corollary 12. Under the assumption of Theorem 11 with ψ=I in (3.13), the following inequality holds:

    |2μk1Γk(μ+k)(mba)μk[kIμ(a+mb2)+f(mb)+mμk+1kIμ(a+mb2m)f(am)]12[f(a+mb2)+mf(a+mb2m)]|mba22+1q(μk+1)(μk+2)1q[(21αk|f(a)|q(μk+1)(μk+2)αk+μ+k+21αmk|f(b)|q(μk+1)(μk+2)×(2α(αk+μ+k)(μ+k)(μ+k)(αk+μ+k))212αcm(ba)2(μk+1)(μk+2)(2α(2αk+μ+k)(αk+μ+k)(kα+μ+k)(2αk+μ+k)))1q+(21αkm|f(am2)|q(μk+1)(μk+2)(2α(αk+μ+k)(μ+k)(μ+k)(αk+μ+k))+21αk(μk+1)(μk+2)|f(b)|qαk+μ+k212αcm(μk+1)(μk+2)(bam2)2(2α(2αk+μ+k)(αk+μ+k)(kα+μ+k)(2αk+μ+k)))1q].

    Theorem 12. Let f:IR be a differentiable mapping on (a,b) with a<b. Also suppose that |f|q is strongly (α,m)-convex function for q>1, ψ is positive increasing function having continuous derivative ψ on (a,b). If [a,b]Range(ψ), k>0 and (α,m)(0,1]2, then the following fractional integral inequality holds:

    |2μk1Γk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba421p(μpk+1)1p[((|f(a)|(22αα+1)1q+|f(b)|(2αm[2α(1+α)1]1+α)1q)q222αcm(ba)2(1α+2α(1+2α)(1+α)(1+2α)))1q+((|f(am2)|(22αm[2α(1+α)1]1+α)1q+(22αα+1)1q|f(b)|)q222αcm(bam2)2(1(1+α)+2α(1+2α)(1+α)(1+2α)))1q], (3.14)

    with μ>0 and 1p+1q=1.

    Proof. By applying Lemma 2 and using the property of modulus, we get

    |2μk1Γk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba4[10|tμkf(at2+m(2t2)b)|dt+10|tμkf(am(2t2)+bt2)|dt].

    Now applying Hölder's inequality for integrals, we get

    |2μk1Γk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba4(μpk+1)1p[(10|f(at2+m(2t2)b)|qdt)1q+(10|f(am(2t2)+bt2)|qdt)1q].

    Using strongly (α,m)-convexity of |f|q, we get

    |2μk1Γk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba4(μpk+1)1p[(|f(a)|q2α10tαdt+m|f(b)|q2α10(2αtα)dtcm(ba)222α10tα(2αtα)dt)1q+(m|f(am2)|q2α10(2αtα)dt+|f(b)|q2α10tαdtcm(bam2)222α10tα(2αtα)dt)1q]=mba4(μpk+1)1p[(|f(a)|q2α(α+1)+m|f(b)|q[2α(1+α)1]2α(1+α)cm(ba)222α(1(1+α)+2α(1+2α)(1+α)(1+2α)))1q+(m|f(am2)|q[2α(1+α)1]2α(1+α)+|f(b)|q2α(α+1)cm(bam2)222α(1α+2α(1+2α)(1+α)(1+2α)))1q]mba421p(μpk+1)1p[(22α|f(a)|q(α+1)+22αm|f(b)|q[2α(1+α)1]1+α222αcm(ba)2(1α+2α(1+2α)(1+α)(1+2α)))1q+(22αm|f(am2)|q[2α(1+α)1](1+α)+22α|f(b)|qα+1222αcm(bam2)2(1α+2α(1+2α)(1+α)(1+2α)))1q]mba421p(μpk+1)1p[((|f(a)|(22αα+1)1q+|f(b)|(22αm[2α(1+α)1]1+α)1q)q222αcm(ba)2(1α+2α(1+2α)(1+α)(1+2α)))1q+((|f(am2)|×(22αm[2α(1+α)1]1+α)1q+(22αα+1)1q|f(b)|)q222αcm(bam2)2(1(1+α)+2α(1+2α)(1+α)(1+2α)))1q].

    Here, we have used the fact aq+bq(a+b)q, for q>1, a,b0. This completes the proof.

    Remark 6. Under the assumption of Theorem 12, one can achieve the following outcomes:

    (i) If α=m=1 in (3.14), then the inequality stated in [17,Theorem 13] can be obtained.

    (ii) If α=k=1 and ψ=I in (3.14), then the inequality stated in [21,Theorem 10] can be obtained.

    (iii) If α=k=1, ψ=I and c=0 in (3.14), then the inequality stated in [27,Theorem 2.7] can be obtained.

    (iv) If α=m=1, ψ=I and c=0 in (3.14), then the inequality stated in [13,Theorem 2.7] can be obtained.

    (v) If α=μ=k=m=1, ψ=I and c=0 in (3.14), then the inequality stated in [29,Theorem 2.4] can be obtained.

    Corollary 13. Under the assumption of Theorem 12 with c=0 in 3.14, the following inequality holds:

    |2μk1Γk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba421p(μpk+1)1p[|f(a)|(22αα+1)1q+|f(b)|(22αm[2α(1+α)1]1+α)1q+(|f(am2)|(22αm[2α(1+α)1]1+α)1q+(22αα+1)1q|f(b)|)].

    Corollary 14. Under the assumption of Theorem 12 with k=1 in (3.14), the following inequality holds:

    |2μ1Γ(μ+1)(mba)μ[Iμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμ+1Iμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba421p(μp+1)1p[((|f(a)|(22αα+1)1q+|f(b)|(2αm[2α(1+α)1]1+α)1q)q222αcm(ba)2(1α+2α(1+2α)(1+α)(1+2α)))1q+((|f(am2)|(22αm[2α(1+α)1]1+α)1q+(22αα+1)1q|f(b)|)q222αcm(bam2)2(1(1+α)+2α(1+2α)(1+α)(1+2α)))1q].

    Corollary 15. Under the assumption of Theorem 12 with ψ=I in (3.14), the following inequality holds:

    |2μk1Γk(μ+k)(mba)μk[kIμ(a+mb2)+f(mb)+mμk+1kIμ(a+mb2m)f(am)]12[f(a+mb2)+mf(a+mb2m)]|mba421p(μpk+1)1p[((|f(a)|(22αα+1)1q+|f(b)|(22αm[2α(1+α)1]1+α)1q)q222αcm(ba)2×(1α+2α(1+2α)(1+α)(1+2α)))1q+((|f(am2)|(22αm[2α(1+α)1]1+α)1q+(22αα+1)1q|f(b)|)q222αcm(bam2)2(1(1+α)+2α(1+2α)(1+α)(1+2α)))1q].

    Some new versions of the Hadamard type inequalities are established for strongly (α,m)-convex functions via the generalized Riemann-Liouville fractional integrals. We have obtained new generalizations as well as proved estimations of such inequalities for strongly (α,m)-convex functions. We conclude that findings of this study give the refinements as well as generalization of several fractional inequalities for convex, strongly convex and strongly m-convex functions. The reader can further deduce inequalities for Riemann-Liouville fractional integrals.

    Authors do not have conflict of interest.



    [1] World Health Organization (WHO), Coronavirus disease (COVID-19): weekly epidemiological update, 2022. Available from: https://pesquisa.bvsalud.org/portal/resource/pt/who-334188.
    [2] World Health Organization (WHO), COVID-19 vaccine tracker, 2020. Available from: https://covid19.trackvaccines.org/agency/who/.
    [3] T. Enomoto, T. Shiroyama, H. Hirata, S. Amiya, Y. Adachi, T. Niitsu, et al., COVID-19 in a human T-cell lymphotropic virus type-1 carrier, Clin. Case Rep., 10 (2022), e05463. https://doi.org/10.1002/ccr3.5463 doi: 10.1002/ccr3.5463
    [4] X. Zhu, Y. Ge, T. Wu, K. Zhao, Y. Chen, B. Wu, et al., Co-infection with respiratory pathogens among COVID-2019 cases, Virus Res., 285 (2020), 198005. https://doi.org/10.1016/j.virusres.2020.198005 doi: 10.1016/j.virusres.2020.198005
    [5] P. S. Aghbash, N. Eslami, M. Shirvaliloo, H. B. Baghi, Viral coinfections in COVID-19, J. Med. Virol., 93 (2021), 5310–5322. https://doi.org/10.1002/jmv.27102 doi: 10.1002/jmv.27102
    [6] M. D. Nowak, E. M. Sordillo, M. R. Gitman, A. E. Paniz Mondolfi, Coinfection in SARS-CoV-2 infected patients: Where are influenza virus and rhinovirus/enterovirus? J. Med. Virol., 92 (2020), 1699–1700. https://doi.org/10.1002/jmv.25953 doi: 10.1002/jmv.25953
    [7] E. A. Hernandez-Vargas, E. Wilk, L. Canini, F. R. Toapanta, S. C. Binder, A. Uvarovskii, et al., Effects of aging on influenza virus infection dynamics, J. Virol., 88 (2014), 4123–4131. https://doi.org/10.1128/JVI.03644-13 doi: 10.1128/JVI.03644-13
    [8] R. V. Luckheeram, R. Zhou, A. D. Verma, B. Xia, CD4+T Cells: Differentiation and functions, J. Immunol. Res., 2012 (2012), 925135. https://doi.org/10.1155/2012/925135 doi: 10.1155/2012/925135
    [9] D. Wodarz, C. R. M. Bangham, Evolutionary dynamics of HTLV-I, J. Mol. Evol., 50 (2000), 448–455. https://doi.org/10.1007/s002390010047 doi: 10.1007/s002390010047
    [10] World Health Organization (WHO), Human T-lymphotropic virus type 1, 2022. Available from: https://who.int/news-room/fact-sheets/detail/human-t-lymphotropic-virus-type-1
    [11] F. A. Proietti, A. B. F. Carneiro-Proietti, B. C. Catalan-Soares, E. L. Murphy, Global epidemiology of HTLV-I infection and associated diseases, Oncogene, 24 (2005), 6058–6068. https://doi.org/10.1038/sj.onc.1208968 doi: 10.1038/sj.onc.1208968
    [12] R. Hosoba, S. Makita, M. Shiotsuka, O. Kobayashi, K. Nakano, M. Muroya, et al., COVID-19 pneumonia in a patient with adult T-cell leukemia-lymphoma, J. Clin. Exp. Hematop., 60 (2020), 174–178. https://doi.org/10.3960/jslrt.20030 doi: 10.3960/jslrt.20030
    [13] E. A. Hernandez Vargas, J. Velasco-Hernandez, In-host modelling of COVID-19 in humans, Annu. Rev. Control, 50 (2020), 448–456. https://doi.org/10.1016/j.arcontrol.2020.09.006 doi: 10.1016/j.arcontrol.2020.09.006
    [14] C. Li, J. Xu, J. Liu, Y. Zhou, The within-host viral kinetics of SARS-CoV-2, Math. Biosci. Eng., 17 (2020), 2853–2861. https://doi.org/10.3934/mbe.2020159 doi: 10.3934/mbe.2020159
    [15] R. Ke, C. Zitzmann, D. D. Ho, R. M. Ribeiro, A. S. Perelson, In vivo kinetics of SARS-CoV-2 infection and its relationship with a person's infectiousness, Proc. Natl. Acad. Sci. USA, 118 (2021), e2111477118. https://doi.org/10.1073/pnas.2111477118 doi: 10.1073/pnas.2111477118
    [16] A. Gonçalves, J. Bertrand, R. Ke, E. Comets, X. De Lamballerie, D. Malvy, et al., Timing of antiviral treatment initiation is critical to reduce SARS-CoV-2 viral load, CPT Pharmacomet. Syst., 9 (2020), 509–514. https://doi.org/10.1002/psp4.12543 doi: 10.1002/psp4.12543
    [17] S. Wang, Y. Pan, Q. Wang, H. Miao, A. N. Brown, L. Rong, Modeling the viral dynamics of SARS-CoV-2 infection, Math. Biosci., 328 (2020), 108438. https://doi.org/10.1016/j.mbs.2020.108438 doi: 10.1016/j.mbs.2020.108438
    [18] I. Ghosh, Within host dynamics of SARS-CoV-2 in humans: Modeling immune responses and antiviral treatments, SN Comput. Sci., 2 (2021), 482. https://doi.org/10.1007/s42979-021-00919-8 doi: 10.1007/s42979-021-00919-8
    [19] K. Hattaf, N. Yousfi, Dynamics of SARS-CoV-2 infection model with two modes of transmission and immune response, Math. Biosci. Eng., 17 (2020), 5326–5340. https://doi.org/10.3934/mbe.2020288 doi: 10.3934/mbe.2020288
    [20] A. E. S. Almocera, G. Quiroz, E. A. Hernandez-Vargas, Stability analysis in COVID-19 within-host model with immune response, Commun. Nonlinear Sci., 95 (2021), 105584. https://doi.org/10.1016/j.cnsns.2020.105584 doi: 10.1016/j.cnsns.2020.105584
    [21] J. Mondal, P. Samui, A. N. Chatterjee, Dynamical demeanour of SARS-CoV-2 virus undergoing immune response mechanism in COVID-19 pandemic, Eur. Phys. J. Spec. Top., 231 (2022), 3357–3370. https://doi.org/10.1140/epjs/s11734-022-00437-5 doi: 10.1140/epjs/s11734-022-00437-5
    [22] S. Chowdhury, J. Chowdhury, S. Ahmed, P. Agarwal, I. Badruddin, S. Kamangar, Mathematical modelling of COVID-19 disease dynamics: Interaction between immune system and SARS-CoV-2 within host, AIMS Math., 7 (2022), 2618–2633. https://doi.org/10.3934/math.2022147 doi: 10.3934/math.2022147
    [23] P. Abuin, A. Anderson, A. Ferramosca, E. A. Hernandez-Vargas, A. H. Gonzalez, Characterization of SARS-CoV-2 dynamics in the host, Annu. Rev. Control, 50 (2020), 457–468. https://doi.org/10.1016/j.arcontrol.2020.09.008 doi: 10.1016/j.arcontrol.2020.09.008
    [24] B. Chhetri, V. M. Bhagat, D. K. K. Vamsi, V. S. Ananth, D. B. Prakash, R. Mandale, et al., Within-host mathematical modeling on crucial inflammatory mediators and drug interventions in COVID-19 identifies combination therapy to be most effective and optimal, Alex. Eng. J., 60 (2021), 2491–2512. https://doi.org/10.1016/j.aej.2020.12.011 doi: 10.1016/j.aej.2020.12.011
    [25] A. M. Elaiw, A. J. Alsaedi, A. D. Al Agha, A. D. Hobiny, Global stability of a humoral immunity COVID-19 model with logistic growth and delays, Mathematics, 10 (2022), 1857. https://doi.org/10.3390/math10111857 doi: 10.3390/math10111857
    [26] A. ul Rehman, R. Singh, P. Agarwal, Modeling, analysis and prediction of new variants of covid-19 and dengue co-infection on complex network, Chaos Soliton. Fract., 150 (2021), 111008. https://doi.org/10.1016/j.chaos.2021.111008 doi: 10.1016/j.chaos.2021.111008
    [27] M. M. Ojo, T. O. Benson, O. J. Peter, E. F. D. Goufo, Nonlinear optimal control strategies for a mathematical model of COVID-19 and influenza co-infection, Physica A, 607 (2022), 128173. https://doi.org/10.1016/j.physa.2022.128173 doi: 10.1016/j.physa.2022.128173
    [28] N. Ringa, M. L. Diagne, H. Rwezaura, A. Omame, S. Y. Tchoumi, J. M. Tchuenche, HIV and COVID-19 co-infection: A mathematical model and optimal control, Informatics in Medicine Unlocked, 31 (2022), 100978. https://doi.org/10.1016/j.imu.2022.100978 doi: 10.1016/j.imu.2022.100978
    [29] A. Omame, M. Abbas, C. P. Onyenegecha, Backward bifurcation and optimal control in a co-infection model for SARS-CoV-2 and ZIKV, Results Phys., 37 (2022), 105481. https://doi.org/10.1016/j.rinp.2022.105481 doi: 10.1016/j.rinp.2022.105481
    [30] A. Omame, M. Abbas, A. Abdel-Aty, Assessing the impact of SARS-CoV-2 infection on the dynamics of dengue and HIV via fractional derivatives, Chaos Soliton. Fract., 162 (2022), 112427. https://doi.org/10.1016/j.chaos.2022.112427 doi: 10.1016/j.chaos.2022.112427
    [31] K. G. Mekonen, L. L. Obsu, Mathematical modeling and analysis for the co-infection of COVID-19 and tuberculosis, Heliyon, 8 (2022), e11195. https://doi.org/10.1016/j.heliyon.2022.e11195 doi: 10.1016/j.heliyon.2022.e11195
    [32] A. G. C. Pérez, D. A. Oluyori, A model for COVID-19 and bacterial pneumonia coinfection with community- and hospital-acquired infections, Math. Model. Numer. Simul. Appl., 2 (2022), 197–210. https://doi.org/10.53391/mmnsa.2022.016 doi: 10.53391/mmnsa.2022.016
    [33] A. M. Elaiw, A. D. Al Agha, Global dynamics of SARS-CoV-2/cancer model with immune responses, Appl. Math. Comput., 408 (2021), 126364. https://doi.org/10.1016/j.amc.2021.126364 doi: 10.1016/j.amc.2021.126364
    [34] Y. Zhou, M. Huang, Y. Jiang, X. Zou, Data-driven mathematical modeling and dynamical analysis for SARS-CoV-2 coinfection with bacteria, Int. J. Bifurcat. Chaos, 31 (2021), 2150163. https://doi.org/10.1142/S0218127421501637 doi: 10.1142/S0218127421501637
    [35] A. M. Elaiw, A. D. Al Agha, S. A. Azoz, E. Ramadan, Global analysis of within-host SARS-CoV-2/HIV coinfection model with latency, Eur. Phys. J. Plus, 137 (2022), 174. https://doi.org/10.1140/epjp/s13360-022-02387-2 doi: 10.1140/epjp/s13360-022-02387-2
    [36] A. D. Al Agha, A. M. Elaiw, S. A. Azoz, E. Ramadan, Stability analysis of within-host SARS-CoV-2/HIV coinfection model, Math. Method. Appl. Sci., 45 (2022), 11403–11422. https://doi.org/10.1002/mma.8457 doi: 10.1002/mma.8457
    [37] A. D. Al Agha, A. M. Elaiw, Global dynamics of SARS-CoV-2/malaria model with antibody immune response, Math. Biosci. Eng., 19 (2022), 8380–8410. https://doi.org/10.3934/mbe.2022390 doi: 10.3934/mbe.2022390
    [38] A. M. Elaiw, A. D. Al Agha, Global stability of a reaction-diffusion Malaria/COVID-19 coinfection dynamics model, Mathematics, 10 (2022), 4390. https://doi.org/10.3390/math10224390 doi: 10.3390/math10224390
    [39] A. M. Elaiw, R. S. Alsulami, A. D. Hobiny, Modeling and stability analysis of within-host IAV/SARS-CoV-2 coinfection with antibody immunity, Mathematics, 10 (2022), 4382. https://doi.org/10.3390/math10224382 doi: 10.3390/math10224382
    [40] L. Pinky, H. M. Dobrovolny, SARS-CoV-2 coinfections: Could influenza and the common cold be beneficial? J. Med. Virol., 92 (2020), 2623–2630. https://doi.org/10.1002/jmv.26098 doi: 10.1002/jmv.26098
    [41] B. J. Nath, K. Dehingia, V. N. Mishra, Y. Chu, H. K. Sarmah, Mathematical analysis of a within-host model of SARS-CoV-2, Adv. Differ. Equ., 2021 (2021), 113. https://doi.org/10.1186/s13662-021-03276-1 doi: 10.1186/s13662-021-03276-1
    [42] N. I. Stilianakis, J. Seydel, Modeling the T-cell dynamics and pathogenesis of HTLV-I infection, Bull. Math. Biol., 61 (1999), 935–947. https://doi.org/10.1006/bulm.1999.0117 doi: 10.1006/bulm.1999.0117
    [43] X. Pan, Y. Chen, H. Shu, Rich dynamics in a delayed HTLV-I infection model: Stability switch, multiple stable cycles, and torus, J. Math. Anal. Appl., 479 (2019), 2214–2235. https://doi.org/10.1016/j.jmaa.2019.07.051 doi: 10.1016/j.jmaa.2019.07.051
    [44] H. Gomez-Acevedo, M. Y. Li, S. Jacobson, Multistability in a model for CTL response to HTLV-I infection and its implications to HAM/TSP development and prevention, Bull. Math. Biol., 72 (2010), 681–696. https://doi.org/10.1007/s11538-009-9465-z doi: 10.1007/s11538-009-9465-z
    [45] Y. Wang, J. Liu, J. M. Heffernan, Viral dynamics of an HTLV-I infection model with intracellular delay and CTL immune response delay, J. Math. Anal. Appl., 459 (2018), 506–527. https://doi.org/10.1016/j.jmaa.2017.10.027 doi: 10.1016/j.jmaa.2017.10.027
    [46] F. Li, W. Ma, Dynamics analysis of an HTLV-1 infection model with mitotic division of actively infected cells and delayed CTL immune response, Math. Method. Appl. Sci., 41 (2018), 3000–3017. https://doi.org/10.1002/mma.4797 doi: 10.1002/mma.4797
    [47] S. Li, Y. Zhou, Backward bifurcation of an HTLV-I model with immune response, Discrete Cont. Dyn. B, 21 (2016), 863–881. https://doi.org/10.3934/dcdsb.2016.21.863 doi: 10.3934/dcdsb.2016.21.863
    [48] M. Y. Li, A. G. Lim, Modelling the role of Tax expression in HTLV-IPersistence in vivo, Bull. Math. Biol., 73 (2011), 3008–3029. https://doi.org/10.1007/s11538-011-9657-1 doi: 10.1007/s11538-011-9657-1
    [49] A. G. Lim, P. K. Maini, HTLV-I infection: A dynamic struggle between viral persistence and host immunity, J. Theor. Biol., 352 (2014), 92–108. https://doi.org/10.1016/j.jtbi.2014.02.022 doi: 10.1016/j.jtbi.2014.02.022
    [50] S. Khajanchi, S. Bera, T. K. Roy, Mathematical analysis of the global dynamics of a HTLV-I infection model, considering the role of cytotoxic T-lymphocytes, Math. Comput. Simulat., 180 (2021), 354–378. https://doi.org/10.1016/j.matcom.2020.09.009 doi: 10.1016/j.matcom.2020.09.009
    [51] P. Katri, S. Ruan, Dynamics of human T-cell lymphotropic virus I (HTLV-I) infection of CD4+T-cells, C. R. Biol., 327 (2004), 1009–1016. https://doi.org/10.1016/j.crvi.2004.05.011 doi: 10.1016/j.crvi.2004.05.011
    [52] Y. Wang, J. Liu, Global stability for delay-dependent HTLV-I model with CTL immune response, In: AIP Conference Proceedings, 1738 (2016), 480074. https://doi.org/10.1063/1.4952310
    [53] S. Bera, S. Khajanchi, T. K. Roy, Dynamics of an HTLV-I infection model with delayed CTLs immune response, Appl. Math. Comput., 430 (2022), 127206. https://doi.org/10.1016/j.amc.2022.127206 doi: 10.1016/j.amc.2022.127206
    [54] W. Wang, W. Ma, Global dynamics of a reaction and diffusion model for an HTLV-I infection with mitotic division of actively infected cells, J. Appl. Anal. Comput., 7 (2017), 899–930. https://doi.org/10.11948/2017057 doi: 10.11948/2017057
    [55] A. M. Elaiw, A. S. Shflot, A. D. Hobiny, Stability analysis of general delayed HTLV-I dynamics model with mitosis and CTL immunity, Math. Biosci. Eng., 19 (2022), 12693–12729. https://doi.org/10.3934/mbe.2022593 doi: 10.3934/mbe.2022593
    [56] A. M. Elaiw, N. H. AlShamrani, Analysis of a within-host HIV/HTLV-I co-infection model with immunity, Virus Res., 295 (2021), 198204. https://doi.org/10.1016/j.virusres.2020.198204 doi: 10.1016/j.virusres.2020.198204
    [57] A. M. Elaiw, N. H. AlShamrani, HTLV/HIV dual infection: Modeling and analysis, Mathematics, 9 (2021), 51. https://doi.org/10.3390/math9010051 doi: 10.3390/math9010051
    [58] N. Bellomo, D. Burini, N. Outada, Multiscale models of Covid-19 with mutations and variants, Netw. Heterog. Media, 17 (2022), 293–310. https://doi.org/10.3934/nhm.2022008 doi: 10.3934/nhm.2022008
    [59] H. L. Smith, P. Waltman, The theory of the chemostat: Dynamics of microbial competition, Cambridge University Press, 1995.
    [60] A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879–883. https://doi.org/10.1016/j.bulm.2004.02.001 doi: 10.1016/j.bulm.2004.02.001
    [61] A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 69 (2007), 1871–1886. https://doi.org/10.1007/s11538-007-9196-y doi: 10.1007/s11538-007-9196-y
    [62] H. K. Khalil, Nonlinear systems, Prentice Hall, 2002.
    [63] A. S. Perelson, D. E. Kirschner, R. De Boer, Dynamics of HIV infection of CD4+T cells, Math. Biosci., 114 (1993), 81–125. https://doi.org/10.1016/0025-5564(93)90043-A doi: 10.1016/0025-5564(93)90043-A
    [64] M. Prakash, R. Rakkiyappan, A. Manivannan, J. Cao, Dynamical analysis of antigen-driven T-cell infection model with multiple delays, Appl. Math. Comput., 354 (2019), 266–281. https://doi.org/10.1016/j.amc.2019.02.050 doi: 10.1016/j.amc.2019.02.050
    [65] B. Asquith, C. R. M. Bangham, Quantifying HTLV-I dynamics, Immunol. Cell Biol., 85 (2007), 280–286. https://doi.org/10.1038/sj.icb.7100050 doi: 10.1038/sj.icb.7100050
    [66] N. Bellomo, D. Burini, N. Outada, Pandemics of mutating virus and society: a multi-scale active particles approach, Philos. Trans. A. Math. Phys. Eng. Sci., 380 (2022), 20210161. https://doi.org/10.1098/rsta.2021.0161 doi: 10.1098/rsta.2021.0161
    [67] A. N. Chatterjee, F. Al Basir, M. A. Almuqrin, J. Mondal, I. Khan, SARS-CoV-2 infection with lytic and nonlytic immune responses: A fractional order optimal control theoretical study, Results Phys., 26 (2021), 104260. https://doi.org/10.1016/j.rinp.2021.104260 doi: 10.1016/j.rinp.2021.104260
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1825) PDF downloads(114) Cited by(7)

Figures and Tables

Figures(6)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog