Research article

Stability analysis of SARS-CoV-2/HTLV-I coinfection dynamics model

  • Received: 17 October 2022 Revised: 12 December 2022 Accepted: 19 December 2022 Published: 30 December 2022
  • MSC : 34D20, 34D23, 37N25, 92B05

  • Although some patients with coronavirus disease 2019 (COVID-19) develop only mild symptoms, fatal complications have been observed among those with underlying diseases. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative of COVID-19. Human T-cell lymphotropic virus type-I (HTLV-I) infection can weaken the immune system even in asymptomatic carriers. The objective of the present study is to formulate a new mathematical model to describe the co-dynamics of SARS-CoV-2 and HTLV-I in a host. We first investigate the properties of the model's solutions, and then we calculate all equilibria and study their global stability. The global asymptotic stability is examined by constructing Lyapunov functions. The analytical findings are supported via numerical simulation. Comparison between the solutions of the SARS-CoV-2 mono-infection model and SARS-CoV-2/HTLV-I coinfection model is given. Our proposed model suggest that the presence of HTLV-I suppresses the immune response, enhances the SARS-CoV-2 infection and, consequently, may increase the risk of COVID-19. Our developed coinfection model can contribute to understanding the SARS-CoV-2 and HTLV-I co-dynamics and help to select suitable treatment strategies for COVID-19 patients who are infected with HTLV-I.

    Citation: A. M. Elaiw, A. S. Shflot, A. D. Hobiny. Stability analysis of SARS-CoV-2/HTLV-I coinfection dynamics model[J]. AIMS Mathematics, 2023, 8(3): 6136-6166. doi: 10.3934/math.2023310

    Related Papers:

  • Although some patients with coronavirus disease 2019 (COVID-19) develop only mild symptoms, fatal complications have been observed among those with underlying diseases. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative of COVID-19. Human T-cell lymphotropic virus type-I (HTLV-I) infection can weaken the immune system even in asymptomatic carriers. The objective of the present study is to formulate a new mathematical model to describe the co-dynamics of SARS-CoV-2 and HTLV-I in a host. We first investigate the properties of the model's solutions, and then we calculate all equilibria and study their global stability. The global asymptotic stability is examined by constructing Lyapunov functions. The analytical findings are supported via numerical simulation. Comparison between the solutions of the SARS-CoV-2 mono-infection model and SARS-CoV-2/HTLV-I coinfection model is given. Our proposed model suggest that the presence of HTLV-I suppresses the immune response, enhances the SARS-CoV-2 infection and, consequently, may increase the risk of COVID-19. Our developed coinfection model can contribute to understanding the SARS-CoV-2 and HTLV-I co-dynamics and help to select suitable treatment strategies for COVID-19 patients who are infected with HTLV-I.



    加载中


    [1] World Health Organization (WHO), Coronavirus disease (COVID-19): weekly epidemiological update, 2022. Available from: https://pesquisa.bvsalud.org/portal/resource/pt/who-334188.
    [2] World Health Organization (WHO), COVID-19 vaccine tracker, 2020. Available from: https://covid19.trackvaccines.org/agency/who/.
    [3] T. Enomoto, T. Shiroyama, H. Hirata, S. Amiya, Y. Adachi, T. Niitsu, et al., COVID-19 in a human T-cell lymphotropic virus type-1 carrier, Clin. Case Rep., 10 (2022), e05463. https://doi.org/10.1002/ccr3.5463 doi: 10.1002/ccr3.5463
    [4] X. Zhu, Y. Ge, T. Wu, K. Zhao, Y. Chen, B. Wu, et al., Co-infection with respiratory pathogens among COVID-2019 cases, Virus Res., 285 (2020), 198005. https://doi.org/10.1016/j.virusres.2020.198005 doi: 10.1016/j.virusres.2020.198005
    [5] P. S. Aghbash, N. Eslami, M. Shirvaliloo, H. B. Baghi, Viral coinfections in COVID-19, J. Med. Virol., 93 (2021), 5310–5322. https://doi.org/10.1002/jmv.27102 doi: 10.1002/jmv.27102
    [6] M. D. Nowak, E. M. Sordillo, M. R. Gitman, A. E. Paniz Mondolfi, Coinfection in SARS-CoV-2 infected patients: Where are influenza virus and rhinovirus/enterovirus? J. Med. Virol., 92 (2020), 1699–1700. https://doi.org/10.1002/jmv.25953 doi: 10.1002/jmv.25953
    [7] E. A. Hernandez-Vargas, E. Wilk, L. Canini, F. R. Toapanta, S. C. Binder, A. Uvarovskii, et al., Effects of aging on influenza virus infection dynamics, J. Virol., 88 (2014), 4123–4131. https://doi.org/10.1128/JVI.03644-13 doi: 10.1128/JVI.03644-13
    [8] R. V. Luckheeram, R. Zhou, A. D. Verma, B. Xia, CD4$^{+}$T Cells: Differentiation and functions, J. Immunol. Res., 2012 (2012), 925135. https://doi.org/10.1155/2012/925135 doi: 10.1155/2012/925135
    [9] D. Wodarz, C. R. M. Bangham, Evolutionary dynamics of HTLV-I, J. Mol. Evol., 50 (2000), 448–455. https://doi.org/10.1007/s002390010047 doi: 10.1007/s002390010047
    [10] World Health Organization (WHO), Human T-lymphotropic virus type 1, 2022. Available from: https://who.int/news-room/fact-sheets/detail/human-t-lymphotropic-virus-type-1
    [11] F. A. Proietti, A. B. F. Carneiro-Proietti, B. C. Catalan-Soares, E. L. Murphy, Global epidemiology of HTLV-I infection and associated diseases, Oncogene, 24 (2005), 6058–6068. https://doi.org/10.1038/sj.onc.1208968 doi: 10.1038/sj.onc.1208968
    [12] R. Hosoba, S. Makita, M. Shiotsuka, O. Kobayashi, K. Nakano, M. Muroya, et al., COVID-19 pneumonia in a patient with adult T-cell leukemia-lymphoma, J. Clin. Exp. Hematop., 60 (2020), 174–178. https://doi.org/10.3960/jslrt.20030 doi: 10.3960/jslrt.20030
    [13] E. A. Hernandez Vargas, J. Velasco-Hernandez, In-host modelling of COVID-19 in humans, Annu. Rev. Control, 50 (2020), 448–456. https://doi.org/10.1016/j.arcontrol.2020.09.006 doi: 10.1016/j.arcontrol.2020.09.006
    [14] C. Li, J. Xu, J. Liu, Y. Zhou, The within-host viral kinetics of SARS-CoV-2, Math. Biosci. Eng., 17 (2020), 2853–2861. https://doi.org/10.3934/mbe.2020159 doi: 10.3934/mbe.2020159
    [15] R. Ke, C. Zitzmann, D. D. Ho, R. M. Ribeiro, A. S. Perelson, In vivo kinetics of SARS-CoV-2 infection and its relationship with a person's infectiousness, Proc. Natl. Acad. Sci. USA, 118 (2021), e2111477118. https://doi.org/10.1073/pnas.2111477118 doi: 10.1073/pnas.2111477118
    [16] A. Gonçalves, J. Bertrand, R. Ke, E. Comets, X. De Lamballerie, D. Malvy, et al., Timing of antiviral treatment initiation is critical to reduce SARS-CoV-2 viral load, CPT Pharmacomet. Syst., 9 (2020), 509–514. https://doi.org/10.1002/psp4.12543 doi: 10.1002/psp4.12543
    [17] S. Wang, Y. Pan, Q. Wang, H. Miao, A. N. Brown, L. Rong, Modeling the viral dynamics of SARS-CoV-2 infection, Math. Biosci., 328 (2020), 108438. https://doi.org/10.1016/j.mbs.2020.108438 doi: 10.1016/j.mbs.2020.108438
    [18] I. Ghosh, Within host dynamics of SARS-CoV-2 in humans: Modeling immune responses and antiviral treatments, SN Comput. Sci., 2 (2021), 482. https://doi.org/10.1007/s42979-021-00919-8 doi: 10.1007/s42979-021-00919-8
    [19] K. Hattaf, N. Yousfi, Dynamics of SARS-CoV-2 infection model with two modes of transmission and immune response, Math. Biosci. Eng., 17 (2020), 5326–5340. https://doi.org/10.3934/mbe.2020288 doi: 10.3934/mbe.2020288
    [20] A. E. S. Almocera, G. Quiroz, E. A. Hernandez-Vargas, Stability analysis in COVID-19 within-host model with immune response, Commun. Nonlinear Sci., 95 (2021), 105584. https://doi.org/10.1016/j.cnsns.2020.105584 doi: 10.1016/j.cnsns.2020.105584
    [21] J. Mondal, P. Samui, A. N. Chatterjee, Dynamical demeanour of SARS-CoV-2 virus undergoing immune response mechanism in COVID-19 pandemic, Eur. Phys. J. Spec. Top., 231 (2022), 3357–3370. https://doi.org/10.1140/epjs/s11734-022-00437-5 doi: 10.1140/epjs/s11734-022-00437-5
    [22] S. Chowdhury, J. Chowdhury, S. Ahmed, P. Agarwal, I. Badruddin, S. Kamangar, Mathematical modelling of COVID-19 disease dynamics: Interaction between immune system and SARS-CoV-2 within host, AIMS Math., 7 (2022), 2618–2633. https://doi.org/10.3934/math.2022147 doi: 10.3934/math.2022147
    [23] P. Abuin, A. Anderson, A. Ferramosca, E. A. Hernandez-Vargas, A. H. Gonzalez, Characterization of SARS-CoV-2 dynamics in the host, Annu. Rev. Control, 50 (2020), 457–468. https://doi.org/10.1016/j.arcontrol.2020.09.008 doi: 10.1016/j.arcontrol.2020.09.008
    [24] B. Chhetri, V. M. Bhagat, D. K. K. Vamsi, V. S. Ananth, D. B. Prakash, R. Mandale, et al., Within-host mathematical modeling on crucial inflammatory mediators and drug interventions in COVID-19 identifies combination therapy to be most effective and optimal, Alex. Eng. J., 60 (2021), 2491–2512. https://doi.org/10.1016/j.aej.2020.12.011 doi: 10.1016/j.aej.2020.12.011
    [25] A. M. Elaiw, A. J. Alsaedi, A. D. Al Agha, A. D. Hobiny, Global stability of a humoral immunity COVID-19 model with logistic growth and delays, Mathematics, 10 (2022), 1857. https://doi.org/10.3390/math10111857 doi: 10.3390/math10111857
    [26] A. ul Rehman, R. Singh, P. Agarwal, Modeling, analysis and prediction of new variants of covid-19 and dengue co-infection on complex network, Chaos Soliton. Fract., 150 (2021), 111008. https://doi.org/10.1016/j.chaos.2021.111008 doi: 10.1016/j.chaos.2021.111008
    [27] M. M. Ojo, T. O. Benson, O. J. Peter, E. F. D. Goufo, Nonlinear optimal control strategies for a mathematical model of COVID-19 and influenza co-infection, Physica A, 607 (2022), 128173. https://doi.org/10.1016/j.physa.2022.128173 doi: 10.1016/j.physa.2022.128173
    [28] N. Ringa, M. L. Diagne, H. Rwezaura, A. Omame, S. Y. Tchoumi, J. M. Tchuenche, HIV and COVID-19 co-infection: A mathematical model and optimal control, Informatics in Medicine Unlocked, 31 (2022), 100978. https://doi.org/10.1016/j.imu.2022.100978 doi: 10.1016/j.imu.2022.100978
    [29] A. Omame, M. Abbas, C. P. Onyenegecha, Backward bifurcation and optimal control in a co-infection model for SARS-CoV-2 and ZIKV, Results Phys., 37 (2022), 105481. https://doi.org/10.1016/j.rinp.2022.105481 doi: 10.1016/j.rinp.2022.105481
    [30] A. Omame, M. Abbas, A. Abdel-Aty, Assessing the impact of SARS-CoV-2 infection on the dynamics of dengue and HIV via fractional derivatives, Chaos Soliton. Fract., 162 (2022), 112427. https://doi.org/10.1016/j.chaos.2022.112427 doi: 10.1016/j.chaos.2022.112427
    [31] K. G. Mekonen, L. L. Obsu, Mathematical modeling and analysis for the co-infection of COVID-19 and tuberculosis, Heliyon, 8 (2022), e11195. https://doi.org/10.1016/j.heliyon.2022.e11195 doi: 10.1016/j.heliyon.2022.e11195
    [32] A. G. C. Pérez, D. A. Oluyori, A model for COVID-19 and bacterial pneumonia coinfection with community- and hospital-acquired infections, Math. Model. Numer. Simul. Appl., 2 (2022), 197–210. https://doi.org/10.53391/mmnsa.2022.016 doi: 10.53391/mmnsa.2022.016
    [33] A. M. Elaiw, A. D. Al Agha, Global dynamics of SARS-CoV-2/cancer model with immune responses, Appl. Math. Comput., 408 (2021), 126364. https://doi.org/10.1016/j.amc.2021.126364 doi: 10.1016/j.amc.2021.126364
    [34] Y. Zhou, M. Huang, Y. Jiang, X. Zou, Data-driven mathematical modeling and dynamical analysis for SARS-CoV-2 coinfection with bacteria, Int. J. Bifurcat. Chaos, 31 (2021), 2150163. https://doi.org/10.1142/S0218127421501637 doi: 10.1142/S0218127421501637
    [35] A. M. Elaiw, A. D. Al Agha, S. A. Azoz, E. Ramadan, Global analysis of within-host SARS-CoV-2/HIV coinfection model with latency, Eur. Phys. J. Plus, 137 (2022), 174. https://doi.org/10.1140/epjp/s13360-022-02387-2 doi: 10.1140/epjp/s13360-022-02387-2
    [36] A. D. Al Agha, A. M. Elaiw, S. A. Azoz, E. Ramadan, Stability analysis of within-host SARS-CoV-2/HIV coinfection model, Math. Method. Appl. Sci., 45 (2022), 11403–11422. https://doi.org/10.1002/mma.8457 doi: 10.1002/mma.8457
    [37] A. D. Al Agha, A. M. Elaiw, Global dynamics of SARS-CoV-2/malaria model with antibody immune response, Math. Biosci. Eng., 19 (2022), 8380–8410. https://doi.org/10.3934/mbe.2022390 doi: 10.3934/mbe.2022390
    [38] A. M. Elaiw, A. D. Al Agha, Global stability of a reaction-diffusion Malaria/COVID-19 coinfection dynamics model, Mathematics, 10 (2022), 4390. https://doi.org/10.3390/math10224390 doi: 10.3390/math10224390
    [39] A. M. Elaiw, R. S. Alsulami, A. D. Hobiny, Modeling and stability analysis of within-host IAV/SARS-CoV-2 coinfection with antibody immunity, Mathematics, 10 (2022), 4382. https://doi.org/10.3390/math10224382 doi: 10.3390/math10224382
    [40] L. Pinky, H. M. Dobrovolny, SARS-CoV-2 coinfections: Could influenza and the common cold be beneficial? J. Med. Virol., 92 (2020), 2623–2630. https://doi.org/10.1002/jmv.26098 doi: 10.1002/jmv.26098
    [41] B. J. Nath, K. Dehingia, V. N. Mishra, Y. Chu, H. K. Sarmah, Mathematical analysis of a within-host model of SARS-CoV-2, Adv. Differ. Equ., 2021 (2021), 113. https://doi.org/10.1186/s13662-021-03276-1 doi: 10.1186/s13662-021-03276-1
    [42] N. I. Stilianakis, J. Seydel, Modeling the T-cell dynamics and pathogenesis of HTLV-I infection, Bull. Math. Biol., 61 (1999), 935–947. https://doi.org/10.1006/bulm.1999.0117 doi: 10.1006/bulm.1999.0117
    [43] X. Pan, Y. Chen, H. Shu, Rich dynamics in a delayed HTLV-I infection model: Stability switch, multiple stable cycles, and torus, J. Math. Anal. Appl., 479 (2019), 2214–2235. https://doi.org/10.1016/j.jmaa.2019.07.051 doi: 10.1016/j.jmaa.2019.07.051
    [44] H. Gomez-Acevedo, M. Y. Li, S. Jacobson, Multistability in a model for CTL response to HTLV-I infection and its implications to HAM/TSP development and prevention, Bull. Math. Biol., 72 (2010), 681–696. https://doi.org/10.1007/s11538-009-9465-z doi: 10.1007/s11538-009-9465-z
    [45] Y. Wang, J. Liu, J. M. Heffernan, Viral dynamics of an HTLV-I infection model with intracellular delay and CTL immune response delay, J. Math. Anal. Appl., 459 (2018), 506–527. https://doi.org/10.1016/j.jmaa.2017.10.027 doi: 10.1016/j.jmaa.2017.10.027
    [46] F. Li, W. Ma, Dynamics analysis of an HTLV-1 infection model with mitotic division of actively infected cells and delayed CTL immune response, Math. Method. Appl. Sci., 41 (2018), 3000–3017. https://doi.org/10.1002/mma.4797 doi: 10.1002/mma.4797
    [47] S. Li, Y. Zhou, Backward bifurcation of an HTLV-I model with immune response, Discrete Cont. Dyn. B, 21 (2016), 863–881. https://doi.org/10.3934/dcdsb.2016.21.863 doi: 10.3934/dcdsb.2016.21.863
    [48] M. Y. Li, A. G. Lim, Modelling the role of Tax expression in HTLV-IPersistence in vivo, Bull. Math. Biol., 73 (2011), 3008–3029. https://doi.org/10.1007/s11538-011-9657-1 doi: 10.1007/s11538-011-9657-1
    [49] A. G. Lim, P. K. Maini, HTLV-I infection: A dynamic struggle between viral persistence and host immunity, J. Theor. Biol., 352 (2014), 92–108. https://doi.org/10.1016/j.jtbi.2014.02.022 doi: 10.1016/j.jtbi.2014.02.022
    [50] S. Khajanchi, S. Bera, T. K. Roy, Mathematical analysis of the global dynamics of a HTLV-I infection model, considering the role of cytotoxic T-lymphocytes, Math. Comput. Simulat., 180 (2021), 354–378. https://doi.org/10.1016/j.matcom.2020.09.009 doi: 10.1016/j.matcom.2020.09.009
    [51] P. Katri, S. Ruan, Dynamics of human T-cell lymphotropic virus I (HTLV-I) infection of CD4$^{+}$T-cells, C. R. Biol., 327 (2004), 1009–1016. https://doi.org/10.1016/j.crvi.2004.05.011 doi: 10.1016/j.crvi.2004.05.011
    [52] Y. Wang, J. Liu, Global stability for delay-dependent HTLV-I model with CTL immune response, In: AIP Conference Proceedings, 1738 (2016), 480074. https://doi.org/10.1063/1.4952310
    [53] S. Bera, S. Khajanchi, T. K. Roy, Dynamics of an HTLV-I infection model with delayed CTLs immune response, Appl. Math. Comput., 430 (2022), 127206. https://doi.org/10.1016/j.amc.2022.127206 doi: 10.1016/j.amc.2022.127206
    [54] W. Wang, W. Ma, Global dynamics of a reaction and diffusion model for an HTLV-I infection with mitotic division of actively infected cells, J. Appl. Anal. Comput., 7 (2017), 899–930. https://doi.org/10.11948/2017057 doi: 10.11948/2017057
    [55] A. M. Elaiw, A. S. Shflot, A. D. Hobiny, Stability analysis of general delayed HTLV-I dynamics model with mitosis and CTL immunity, Math. Biosci. Eng., 19 (2022), 12693–12729. https://doi.org/10.3934/mbe.2022593 doi: 10.3934/mbe.2022593
    [56] A. M. Elaiw, N. H. AlShamrani, Analysis of a within-host HIV/HTLV-I co-infection model with immunity, Virus Res., 295 (2021), 198204. https://doi.org/10.1016/j.virusres.2020.198204 doi: 10.1016/j.virusres.2020.198204
    [57] A. M. Elaiw, N. H. AlShamrani, HTLV/HIV dual infection: Modeling and analysis, Mathematics, 9 (2021), 51. https://doi.org/10.3390/math9010051 doi: 10.3390/math9010051
    [58] N. Bellomo, D. Burini, N. Outada, Multiscale models of Covid-19 with mutations and variants, Netw. Heterog. Media, 17 (2022), 293–310. https://doi.org/10.3934/nhm.2022008 doi: 10.3934/nhm.2022008
    [59] H. L. Smith, P. Waltman, The theory of the chemostat: Dynamics of microbial competition, Cambridge University Press, 1995.
    [60] A. Korobeinikov, Global properties of basic virus dynamics models, Bull. Math. Biol., 66 (2004), 879–883. https://doi.org/10.1016/j.bulm.2004.02.001 doi: 10.1016/j.bulm.2004.02.001
    [61] A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, Bull. Math. Biol., 69 (2007), 1871–1886. https://doi.org/10.1007/s11538-007-9196-y doi: 10.1007/s11538-007-9196-y
    [62] H. K. Khalil, Nonlinear systems, Prentice Hall, 2002.
    [63] A. S. Perelson, D. E. Kirschner, R. De Boer, Dynamics of HIV infection of CD4$^{+}$T cells, Math. Biosci., 114 (1993), 81–125. https://doi.org/10.1016/0025-5564(93)90043-A doi: 10.1016/0025-5564(93)90043-A
    [64] M. Prakash, R. Rakkiyappan, A. Manivannan, J. Cao, Dynamical analysis of antigen-driven T-cell infection model with multiple delays, Appl. Math. Comput., 354 (2019), 266–281. https://doi.org/10.1016/j.amc.2019.02.050 doi: 10.1016/j.amc.2019.02.050
    [65] B. Asquith, C. R. M. Bangham, Quantifying HTLV-I dynamics, Immunol. Cell Biol., 85 (2007), 280–286. https://doi.org/10.1038/sj.icb.7100050 doi: 10.1038/sj.icb.7100050
    [66] N. Bellomo, D. Burini, N. Outada, Pandemics of mutating virus and society: a multi-scale active particles approach, Philos. Trans. A. Math. Phys. Eng. Sci., 380 (2022), 20210161. https://doi.org/10.1098/rsta.2021.0161 doi: 10.1098/rsta.2021.0161
    [67] A. N. Chatterjee, F. Al Basir, M. A. Almuqrin, J. Mondal, I. Khan, SARS-CoV-2 infection with lytic and nonlytic immune responses: A fractional order optimal control theoretical study, Results Phys., 26 (2021), 104260. https://doi.org/10.1016/j.rinp.2021.104260 doi: 10.1016/j.rinp.2021.104260
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1513) PDF downloads(108) Cited by(4)

Article outline

Figures and Tables

Figures(6)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog