Consider a linear system $ Ax = b $ where the coefficient matrix $ A $ is rectangular and of full-column rank. We propose an iterative algorithm for solving this linear system, based on gradient-descent optimization technique, aiming to produce a sequence of well-approximate least-squares solutions. Here, we consider least-squares solutions in a full generality, that is, we measure any related error through an arbitrary vector norm induced from weighted positive definite matrices $ W $. It turns out that when the system has a unique solution, the proposed algorithm produces approximated solutions converging to the unique solution. When the system is inconsistent, the sequence of residual norms converges to the weighted least-squares error. Our work includes the usual least-squares solution when $ W = I $. Numerical experiments are performed to validate the capability of the algorithm. Moreover, the performance of this algorithm is better than that of recent gradient-based iterative algorithms in both iteration numbers and computational time.
Citation: Kanjanaporn Tansri, Pattrawut Chansangiam. Gradient-descent iterative algorithm for solving exact and weighted least-squares solutions of rectangular linear systems[J]. AIMS Mathematics, 2023, 8(5): 11781-11798. doi: 10.3934/math.2023596
Consider a linear system $ Ax = b $ where the coefficient matrix $ A $ is rectangular and of full-column rank. We propose an iterative algorithm for solving this linear system, based on gradient-descent optimization technique, aiming to produce a sequence of well-approximate least-squares solutions. Here, we consider least-squares solutions in a full generality, that is, we measure any related error through an arbitrary vector norm induced from weighted positive definite matrices $ W $. It turns out that when the system has a unique solution, the proposed algorithm produces approximated solutions converging to the unique solution. When the system is inconsistent, the sequence of residual norms converges to the weighted least-squares error. Our work includes the usual least-squares solution when $ W = I $. Numerical experiments are performed to validate the capability of the algorithm. Moreover, the performance of this algorithm is better than that of recent gradient-based iterative algorithms in both iteration numbers and computational time.
[1] | W. D. James, Applied numerical linear algebra, Philadelphia: Society for Industrial and Applied Mathematics, 1997. |
[2] | P. J. Olver, C. Shakiban, Applied linear algebra, New York: Springer, 2018. |
[3] | D. M. Young, Iterative solution of large linear systems, New York: Academic Press, 1971. |
[4] | P. Albrechtt, M. P. Klein, Extrapolated iterative methods for linear systems, SIAM J. Numer. Anal., 21 (1984), 192–201. https://doi.org/10.1137/0721014 doi: 10.1137/0721014 |
[5] | A. J. Hughes-Hallett, The convergence of accelerated overrelaxation iterations, Math. Comput., 47 (1986), 219–223. |
[6] | Y. Saad, Iterative methods for sparse linear systems, 2 Eds., Philadelphia: Society for Industrial and Applied Mathematics, 2003. |
[7] | X. I. A. Yang, R. Mittal, Acceleration of the Jacobi iterative method by factors exceeding 100 using scheduled relaxation, J. Comput. Phys., 274 (2014), 695–708. https://doi.org/10.1016/j.jcp.2014.06.010 doi: 10.1016/j.jcp.2014.06.010 |
[8] | J. E. Adsuara, I. Cordero-Carrión, P. Cerdá-Durán, M. A. Aloy, Scheduled Relaxation Jacobi method improvements and applications, Comput. Phys., 321 (2016), 369–413. https://doi.org/10.1016/j.jcp.2016.05.053 doi: 10.1016/j.jcp.2016.05.053 |
[9] | F. Ding, T. Chen, Iterative least-squares solutions of coupled Sylvester matrix equations, Syst. Control Lett., 54 (2005), 95–107. https://doi.org/10.1016/j.sysconle.2004.06.008 doi: 10.1016/j.sysconle.2004.06.008 |
[10] | F. Ding, T. Chen, On iterative solutions of general coupled matrix equations, SIAM J. Control Optim., 44 (2006), 2269–2284. https://doi.org/10.1137/S0363012904441350 doi: 10.1137/S0363012904441350 |
[11] | Q. Niu, X. Wang, L. Z. Lu, A relaxed gradient based algorithm for solving Sylvester equation, Asian J. Control, 13 (2011), 461–464. https://doi.org/10.1002/asjc.328 doi: 10.1002/asjc.328 |
[12] | X. Wang, L. Dai, D. Liao, A modified gradient based algorithm for solving Sylvester equation, Appl. Math. Comput., 218 (2012), 5620–5628. https://doi.org/10.1016/j.amc.2011.11.055 doi: 10.1016/j.amc.2011.11.055 |
[13] | Y. J. Xie, C. F. Ma, The accelerated gradient based iterative algorithm for solving a class of generalized Sylvester transpose matrix equation, Appl. Math. Comput., 273 (2016), 1257–1269. https://doi.org/10.1016/j.amc.2015.07.022 doi: 10.1016/j.amc.2015.07.022 |
[14] | N. Sasaki, P. Chansangiam, Modified Jacobi-gradient iterative method for generalized Sylvester matrix equation, Symmetry, 12 (2020), 1831. https://doi.org/10.3390/sym12111831 doi: 10.3390/sym12111831 |
[15] | W. Fan, C. Gu, Z. Tian, Jacobi-gradient iterative algorithms for Sylvester matrix equations, Proceedings of the 14th Conference of the International Linear Algebra Society, Shanghai University, Shanghai, China, 2007. |
[16] | Z. Tian, M. Tian, C. Gu, X. Hao, An accelerated Jacobi-gradient based iterative algorithm for solving Sylvester matrix equations, Filomat, 31 (2017), 2381–2390. |
[17] | N. Boonruangkan, P. Chansangiam, Convergence analysis of a gradient iterative algorithm with optimal convergence factor for a generalized sylvester-transpose matrix equation, AIMS Math., 6 (2021), 8477–8496. https://doi.org/10.3934/math.2021492 doi: 10.3934/math.2021492 |
[18] | Z. Y. Li, Y. Wang, B. Zhou, G. R. Duan, Least squares solution with the minimum-norm to general matrix equations via iteration, Appl. Math. Comput., 215 (2010), 3547–3562. https://doi.org/10.1016/j.amc.2009.10.052 doi: 10.1016/j.amc.2009.10.052 |
[19] | A. Kittisopaporn, P. Chansangiam, The steepest descent of gradient-based iterative method for solving rectangular linear systems with an application to Poisson's equation, Adv. Differ. Equ., 2020 (2020), 259. https://doi.org/10.1186/s13662-020-02715-9 doi: 10.1186/s13662-020-02715-9 |
[20] | A. Kittisopaporn, P. Chansangiam, Gradient-descent iterative algorithm for solving a class of linear matrix equations with applications to heat and Poisson equations, Adv. Differ. Equ., 2020 (2020), 324. https://doi.org/10.1186/s13662-020-02785-9 doi: 10.1186/s13662-020-02785-9 |
[21] | A. Kittisopaporn, P. Chansangiam, Approximate solutions of the 2D space-time fractional diffusion equation via a gradient-descent iterative algorithm with Grünwald-Letnikov approximation, AIMS Math., 7 (2022), 8471–8490. https://doi.org/10.3934/math.2022472 doi: 10.3934/math.2022472 |
[22] | R. A. Horn, C. R. Johnson, Topics in matrix analysis, New York: Cambridge University Press, 1991. https://doi.org/10.1017/CBO9780511840371 |
[23] | S. P. Boyd, L. Vandenberghe, Convex optimization, Cambridge: Cambridge University Press, 2004. |