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Abstract: Consider a linear system Ax = b where the coefficient matrix A is rectangular and of
full-column rank. We propose an iterative algorithm for solving this linear system, based on gradient-
descent optimization technique, aiming to produce a sequence of well-approximate least-squares
solutions. Here, we consider least-squares solutions in a full generality, that is, we measure any related
error through an arbitrary vector norm induced from weighted positive definite matrices W. It turns out
that when the system has a unique solution, the proposed algorithm produces approximated solutions
converging to the unique solution. When the system is inconsistent, the sequence of residual norms
converges to the weighted least-squares error. Our work includes the usual least-squares solution when
W = I. Numerical experiments are performed to validate the capability of the algorithm. Moreover,
the performance of this algorithm is better than that of recent gradient-based iterative algorithms in
both iteration numbers and computational time.
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1. Introduction and literature reviews

Throughout, let us denote by Rm×n the set of all m-by-n real matrices, and Rn the set of all n-
dimensional real vectors. For any real symmetric matrix A, its largest/smallest eigenvalues are denoted
by λmax(A) and λmin(A), respectively. We consider a linear algebraic system

Ax = b, (1.1)
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where A is a given coefficient matrix, b is a known constant vector, and x is an unknown vector. Theory
of linear systems is a fundamental part of linear algebra. Computations of solutions of the linear system
are an attractive research topic in numerical linear algebra, and play an essential role in data science,
statistics, theoretical physics, signal processing, control engineering, economics, etc; see e.g. [1]. In
an ideal case, we can solve for an exact solution of the linear system using traditional methods, such
as, Gaussian elimination and matrix factorization. When the system has no solution, we can seek
for a least-squares solution which minimizes the squared norm-error ∥Ax − b∥2. Direct computational
methods for this case are using Moore-Penrose inverses and solving the associated normal equation.
However, such direct methods are suitable only when the coefficient matrix A is of small dimension.
For large/moderate systems, well-approximate solutions are enough in practical applications.

1.1. Stationary iterative methods

There are many ideas to create an iterative scheme for producing approximate solutions of Eq (1.1).
A group of stationary iterative methods are formulated by a recursive equation

x(i+1) = T x(i) + c,

where T is an iteration matrix derived from A, and c is a vector derived from A and b. Then the
sequence x(i) of approximate solutions converges to the exact solution for any initial vector x(0) if and
only if T has spectral radius less than 1; see e.g. [2, Ch. 9]. Classical stationary iterative methods are
the Jacobi method, Gauss-Siedel method, and SOR method. All three of them start with decomposing
A = D + L + U, where D, L,U are the diagonal/lower/upper-triangular parts of A, respectively. A
group of methods developed from these methods include: JOR method [3], ESOR method [4], AOR
method [5], weighted Jacobi method [6], and scheduled relaxation Jacobi method [7,8]. Unfortunately,
the above iterative methods are guaranteed to be applicable when coefficient matrices are of specific
forms. For example, AOR method is applicable when A is an irreducible matrix with weak diagonal
dominance.

1.2. Gradient-based iterative methods

A general form of stationary iterative methods was discussed in the work of Ding and Chen [9]:

x(i+1) = x(i) + µG(b − Ax(i)), (1.2)

where G is an associated matrix and µ > 0 is a convergent factor. Equation (1.2) includes the Jacobi
method when G = D−1 and µ = 1. When G = L + U and µ = 1, Eq (1.2) reduces to Gauss-Siedel
method. When G = AT , this method is called the gradient-based iterative (GI) method.

Algorithm 1: GI algorithm for solving Eq (1.1).
Choose x(0) ∈ Rn and compute x(i+1) = x(i) + µAT (b − Ax(i)),
update i;

According to [9], with 0 < µ < 2/λmax(AAT ), the generated sequence x(i) converges to the exact
solution for any given initial x(0). When Eq (1.1) is inconsistent and rank A = n, we shall seek for an
LS solution as follows.
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Algorithm 2: LSI algorithm for solving Eq (1.1).
Choose x(0) ∈ Rn and compute x(i+1) = x(i) + µ(AT A)−1AT (b − Ax(i)),
update i;

The work [10] shows that, for 0 < µ < 2, the iterative solution x(i) produced by Algorithm 2
converges to the LS solution for any initial x(0).

In the last decade, many authors adapted the idea of GI method to derive iterative methods for linear
matrix equations, such as the Sylvester matrix equation AX+XB = C. Note that the Sylvester equation
includes the linear system (1.1) as a special case. In the following, we rewrite certain matrix algorithms
to be fit with the linear system.

Algorithm 3: RGI algorithm for solving Eq (1.1).

Choose x(0)
1 and x(0)

2 ∈ R
n. Compute

x(i) = ω̂x(i)
1 + (1 − ω̂)x(i)

2 ,
x(i+1)

1 = x(i) + (1 − ω̂)µAT (b − Ax(i)),
x(i+1)

2 = x(i),
update i;

The RGI algorithm was proposed in [11] by introducing a relaxed factor ω̂ ∈ (0, 1). This algorithm
has been proved to be applicable when 0 < µ < {ω̂(1 − ω̂)λmax(AAT )}−1.

Algorithm 4: MGI algorithm for solving Eq (1.1).

Choose x(0)
1 , x

(0)
2 ∈ R

n and compute x(0) = (x(0)
1 + x(0)

2 )/2. In the step of computing
x(i+1)

1 = x(i) + µAT (Ax(i) − b),
x(i) = (x(i+1)

1 + x(i)
2 )/2,

x(i+1)
2 = x(i),

x(i+1) = (x(i+1)
1 + x(i+1)

2 )/2,
update i;

In [12], MGI algorithm was proposed and proved to be applicable when 0 < µ < 2/∥A∥2F .

Algorithm 5: AGBI algorithm for solving Eq (1.1).

Choose x(0)
1 , x

(0)
2 ∈ R

n and compute
x(i) = (1 − ω̄)x(i)

1 + ω̄x(i)
2 ,

x(i+1)
1 = x(i) + ω̄µ(b − Ax(i)),

x(i) = (1 − ω̄)x(i+1)
1 + ω̄x(i)

2 ,
x(i+1)

2 = x(i),
update i;

In [13], AGBI algorithm was proposed and proved to be applicable when 0 < µ < 2/(ω̄∥A∥22).
Another interesting GI method which can be adapted for the linear system starts with decomposing
the (square) coefficient matrices to be the sum of its diagonal part and others, and then applies GI
technique; see e.g. [14–16]. See more GI algorithms to solve for exact or LS solutions in [17, 18] and
references therein. Recently, GI technique is adapted with optimization, so that we can compute the
best step size for each iteration; see e.g. [19–21].
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1.3. Our work

This paper is a continuation of [19]. Instead of finding an exact solution, we look for a least-squares
solution of inconsistent linear systems. We can extend the notion of LS solution by introducing a
weighted norm ∥v∥2 = vT Wv, where W is a given positive definite matrix. In fact, every vector
norm on Rn induced from inner products must be in this form. In most practical applications, the
weighted matrix W is a diagonal matrix whose entries are weights of individual coordinates. Its
off-diagonal entries can be cross-correlation weights between data values. We apply gradients and
the steepest-descent optimization technique to derive an iterative algorithm, called gradient-descent
iterative (GDI) algorithm. When the system (1.1) is inconsistent, the algorithm will construct a
sequence of approximate LS solutions with respect to the weighted norm induced by W. It turns out
that the sequence of residual errors ∥Ax(i)−b∥2W converges to the weighted LS error. This means that x(i)

is a well-approximate weighted LS solution, where i is a large-enough integer. When the system (1.1)
is consistent, the algorithm will construct a sequence of approximate LS solutions converging to an
exact solution.

The rest of this paper is organized as follows. In Section 2, we provide preliminaries that will
be used in the analysis of matrix algorithms. In Section 3, we derive the GDI algorithm. We make a
convergence analysis, including error estimations and convergence rates, to verify theoretical capability
of the GDI algorithm; see Section 4. Numerical experiments for consistent/inconsistent cases are
illustrated to show the performance of the algorithm, compared to the direct method and GI-type
methods; see Section 5. Finally, we conclude the whole work in Section 6.

2. Auxiliary results from matrix analysis

Recall that the spectral norm ∥·∥2 and the Frobenius norm ∥·∥F of matrix A ∈ Rm×n are defined by

∥A∥2 =
√
λmax(AT A), ∥A∥F =

√
tr(AT A).

Lemma 2.1 (e.g. [22]). For any conformable matrices A and B, we have

1) ∥AT ∥2 = ∥A∥2,
2) ∥AT A∥2 = ∥A∥22,
3) ∥AT B∥F ≤ ∥A∥2∥B∥F .

Recall that every inner product on Rm must be in the form

⟨x, y⟩W = yT Wx, x, y ∈ Rm,

where W ∈ Rm×m is a positive definite matrix. The weighted inner product induces the weighted norm
∥x∥W =

√
xT Wx. If W = I, then the weighted ones are just the usual inner product ⟨x, y⟩ = yT x and the

usual norm ∥x∥ =
√

xT x. The weighted matrix norm induced by W is defined by ∥A∥W =
√

tr(AT WA)
for any A ∈ Rm×n. In paticular, when W = I we have ∥A∥I = ∥A∥F for any A ∈ Rm×n.

Lemma 2.2. Let W ∈ Rm×m be positive definite. For any x, y ∈ Rm and A, B ∈ Rm×m, we get

1) ⟨x, y⟩ =
〈
W− 1

2 x,W− 1
2 y

〉
W

,

2) ∥x∥ = ∥W− 1
2 x∥W ,
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3) ∥A∥W = ∥W
1
2 A∥F ,

4) ∥AB∥W ≤ ∥W
1
2 ∥2∥A∥2∥W− 1

2 B∥W .

Proof. Let us write u = W− 1
2 x and v = W− 1

2 y. We have

⟨x, y⟩ = yT x = (W
1
2 v)T (W

1
2 u) = vT Wu = ⟨u, v⟩W =

〈
W− 1

2 x,W− 1
2 y

〉
W
.

In particular, we get ∥x∥ = ∥W− 1
2 x∥W . Since W ∈ Rm×m is positive definite matrix, we can write

W = (W
1
2 )T W

1
2 thus

∥A∥W =
√

tr(AT (W
1
2 )T W

1
2 A) = ∥W

1
2 A∥F .

From 3) of Lemma 2.1 and 1), 3) of Lemma 2.2, we obtain

∥AB∥W = ∥W
1
2 AB∥F ≤ ∥W

1
2 ∥2∥A∥2∥B∥F ≤ ∥W

1
2 ∥2∥A∥2∥W− 1

2 B∥W .

□

Lemma 2.3 (e.g. [2]). Suppose W ∈ Rm×m is any positive definite matrix and A ∈ Rm×n is of full-
column rank (rank A = n). Then the LS solution to the linear system Eq (1.1) that minimizes the
weighted squared error ∥Ax − b∥2W is the unique solution x∗ to the weighted normal equations

AT WAx∗ = AT Wb so that x∗ = (AT WA)−1AT Wb.

In this case, the weighted LS error is given by

∥Ax∗ − b∥2W = ∥bT ∥2W − bT x∗ = ∥bT ∥2W − bT WA(AT WA)−1AT Wb. (2.1)

Let f : Rm → R be a strongly convex function, which means that there are two positive constants γ
and Γ such that

γI ⪯ ∇2 f (x) ⪯ ΓI, for all x ∈ Rm.

Here, the matrix inequality A ⪯ B for real symmetric matrices A and B means that the scalar inequality
xT Ax ≤ xT Bx holds for all x ∈ Rm.

Lemma 2.4. Let W ∈ Rm×m be positive definite. Then, from the above notations about strongly convex
functions, the following bounds hold for all x, y ∈ Rm:

f (y) ≥ f (x) +
〈
W− 1

2∇ f (x),W− 1
2 (y − x)

〉
W
+
γ

2
∥W− 1

2 (y − x)∥2W , (2.2)

f (y) ≤ f (x) +
〈
W− 1

2∇ f (x),W− 1
2 (y − x)

〉
W
+
Γ

2
∥W− 1

2 (y − x)∥2W . (2.3)

Proof. From [23, Ch. 9], we have

f (y) ≥ f (x) + ⟨∇ f (x), y − x⟩ +
γ

2
∥y − x∥2,

f (y) ≤ f (x) + ⟨∇ f (x), y − x⟩ +
Γ

2
∥y − x∥2.

We can rewrite the above usual inner products/norms in terms of weighted ones by using 1) and 2) of
Lemma 2.2. □
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3. GDI algorithm for exact or weighted LS solutions

Consider the linear system (1.1) when A ∈ Rm×n is a given constant matrix, b ∈ Rm is a given
constant vector, and x ∈ Rn is an unknown vector. Assume that rank A = n, i.e., A is of full-column
rank. In this section, we derive an iterative algorithm to solve (1.1) for an exact solution or a least-
squares (LS) solution, based on gradients and steepest-descent technique. Here, we seek for a vector
x∗ ∈ Rn that minimizes the weighted LS error ∥Ax − b∥2W , where W ∈ Rm×m is a given positive definite
matrix. When ∥Ax − b∥W = 0, the vector x∗ becomes an exact solution of the system.

It is natural to measure any error related to iterative procedure using the weighted norm ∥·∥W induced
by W. To measure the residual error occurred at each iteration, we consider the squared residual-error
function f : Rm → R, defined by

f (x) := ∥Ax − b∥2W . (3.1)

Our recursive iteration will be in the form

x(i+1) = x(i) − α(i+1)∇ f (x),

i.e., the next approximate solution x(i+1) is equal to the current one x(i) along with a suitable step size
α(i+1) in the direction of −∇ f (x). Now, we compute the gradient of f (x) as follows:

∇ f (x) =
d
dx

((Ax − b)T W(Ax − b))

=
d
dx

(xT AT WAx − xT AT Wb − bT WAx + bT Wb)

= 2AT W(Ax − b). (3.2)

Thus, we obtain the following recursive formula:

x(i+1) = x(i) − 2α(i+1)AT W(Ax(i) − b). (3.3)

To optimize the step size at each iteration, we define Φ(i+1) : [0,∞)→ R by

Φ(i+1)(α) := f (x(i+1)) = ∥Ax(i+1) − b∥2W
= ∥A(x(i) − 2α(i+1)AT W(Ax(i) − b)) − b∥2W .

By substituting c = b − Ax(i) and e = 2AAT Wc, we have

Φ(i+1)(α) = ∥αe − c∥2W , α > 0.

Its critical point can be obtained as follows:

0 =
d

dα
Φ(i+1)(α) =

d
dα

((αe − c)T W(αe − c))

=
d

dα
(α2eT We − αeT Wc − αcT We + cT Wc) = 2αeT We − 2eT Wc. (3.4)
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Indeed, we get α = (eT Wc)/(eT We), so that the minimizer of Φ(i+1) is given by

α(i+1) =
(W

1
2 AAT W(b − Ax(i)))T (W

1
2 (b − Ax(i)))

2(W
1
2 AAT W(b − Ax(i)))T (W

1
2 AAT W(b − Ax(i)))

. (3.5)

Algorithm 6: GDI algorithm for solving Eq (1.1).
A ∈ Rm×n, and b ∈ Rm ;
Set i = 0. Choose x(0) ∈ Rn. Compute P = AT W, M = W

1
2 AP.

for i = 0, 1, 2, 3, . . . do
r(i) = b − Ax(i);
if ∥r(i)∥W ⩽ ϵ then

x(i) is a solution; break;
else

m(i) = Mr(i);
α(i+1) = mT

(i)W
1
2 r(i)/(2mT

(i)m(i)) ;
x(i+1) = x(i) − α(i+1)P(Ax(i) − b) ;

end
update i;

end

Remark 3.1. In Algorithm 6, the matrices P,M and the vectors r(i), m(i) are introduced in order to avoid
duplicated computation. Recall that the condition number of a matrix is the ratio between its largest
and smallest singular values. When A is ill-conditioned (i.e., its condition number is large), then a
small residual ∥r(i)∥W does not guarantee a small error of the solution. In this case, we suggest a user
to impose an additional stopping rule, e.g. ∥x(i) − x(i−1)∥W < ϵ

′ where ϵ′ is a toterance number.

4. Capability and performance of GDI algorithm

In this section, we make a convergence analysis for the proposed algorithm.

Theorem 1. Suppose that Eq (1.1) is inconsistent and A is of full-column rank. Let W ∈ Rm×m be
positive definite. Denote the condition number of W

1
2 A by κ. Then, for any initial vector x(0), the

sequence x(i) generated by Algorithm 6 satisfies

(i) ∥Ax(i) − b∥2W → δ as i→ ∞, where δ is the weighted LS error (2.1);
(ii) we have the following bounds:

∥r(i)∥2W ≤ (1 − κ−2)∥r(i−1)∥2W − δκ, (4.1)
∥r(i)∥2W ≤ (1 − κ−2)i∥r(0)∥2W − δ + δ(1 − κ

−2)i. (4.2)

Proof. If there is an integer i such that ∇ f (x(i)) = 0, then x(i) is the desire LS solution. Now, assume
that ∇ f (x(i)) , 0 for any i. We can compute the second-order derivative of f as follows:

∇2 f (x) = 2AT WA = 2(W
1
2 A)T (W

1
2 A).
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Since rank A = n and W is invertible, we have rank W
1
2 A = n. Thus, ∇2 f (x) is positive definite, so that

0 < λmin(AT WA) ≤ λmax(AT WA). From the spectral theory of matrices, we have

2λmin(AT WA)I ⪯ ∇2 f (x) ⪯ 2λmax(AT WA)I.

Hence f is strongly convex. From the convexity inequality (2.2) with γ = 2λmin(AT WA), we have that
for all y ∈ Rm,

f (y) ≥ f (x(i)) +
〈
W− 1

2∇ f (x(i)),W− 1
2 (y − x(i))

〉
W
+

2λmin(AT WA)
2

∥W− 1
2 (y − x(i))∥2W

= f (x(i)) − α(i+1)∥W− 1
2∇ f (x(i))∥2W + α

2
(i+1)λmin(AT WA)∥W− 1

2∇ f (x(i))∥2W . (4.3)

Minimizing the real-valued function on the right-hand side of (4.3) with respect to the variable α(i+1)

yields the minimizer α(i+1) = 1/(2λmin(AT WA)). Thus, for all y ∈ Rm, we obtain

f (y) ≥ f (x(i)) −
1

2λmin(AT WA)
∥W− 1

2∇ f (x(i))∥2W +
1

4λ2
min(AT WA)

λmin(AT WA)∥W− 1
2∇ f (x(i))∥2W

= f (x(i)) −
1

4λmin(AT WA)
∥W− 1

2∇ f (x(i))∥2W . (4.4)

With the weighted LS solution y = x∗, we have

δ ≥ f (x(i)) −
1

4λmin(AT WA)
∥W− 1

2∇ f (x(i))∥2W , (4.5)

where δ is the weighted LS error ∥Ax∗ − b∥2W . Similarly, from Eq (2.3), we have

f (y) ≤ f (x(i)) − α(i+1)∥W− 1
2∇ f (x(i))∥2W + α

2
(i+1)λmax(AT WA)∥W− 1

2∇ f (x(i))∥2W (4.6)

for all y ∈ Rm. Minimizing the real-valued function on the right-hand side of (4.6) yields the minimizer
α(i+1) = 1/(2λmax(AT WA)). With y = x(i+1), we get

f (x(i+1)) ≤ f (x(i)) −
1

4λmax(AT WA)
∥W− 1

2∇ f (x(i))∥2W . (4.7)

From (4.5) and (4.7), we get

f (x(i+1)) − δ ≤
(
1 −
λmin(AT WA)
λmax(AT WA)

)
( f (x(i)) − δ). (4.8)

Let us denote

β = 1 − (λmin(AT WA)/λmax(AT WA)) = 1 − κ−2. (4.9)

Then, we can rewrite Eq (4.8) as

f (x(i+1)) − δ ≤ β( f (x(i)) − δ). (4.10)

By induction, we obtain

f (x(i)) − δ ≤ βi( f (x(0)) − δ), for any i ∈ N. (4.11)

Since 0 ≤ β < 1, we have f (x(i)) − δ→ 0 or f (x(i))→ δ as i→ ∞.
From (4.9), the inequalities (4.10) and (4.11) become (4.1) and (4.2), respectively. □
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Corollary 4.1. Suppose that Eq (1.1) is inconsistent and A is of full-column rank. Let κ be the condition
number of A. Then, for any initial vector x(0), the sequence x(i) generated by Algorithm 6 satisfies

(i) ∥Ax(i) − b∥2 → δ as i→ ∞, where δ = ∥b∥2 − bT A(AT A)−1AT b is the LS error;
(ii) we have the following bounds:

∥r(i)∥2 ≤ (1 − κ−2)∥r(i−1)∥2 − δκ, (4.12)
∥r(i)∥2 ≤ (1 − κ−2)i∥r(0)∥2 − δ + δ(1 − κ−2)i. (4.13)

Proof. This is a particular case of Theorem 1 when W = I. □

Theorem 2. Suppose that Eq (1.1) is consistent and A is of full-column rank. Let x∗ be the exact
solution of (1.1). Let W ∈ Rm×m be positive definite. Denote the condition number of W

1
2 A by κ. Then,

for any initial vector x(0), the sequence x(i) generated by Algorithm 6 satisfies

(i) x(i) → x∗ as i→ ∞;
(ii) estimations for residual vectors are as follows:

∥r(i)∥W ≤ (1 − κ−2)
1
2 ∥r(i−1)∥W , (4.14)

∥r(i)∥W ≤ (1 − κ−2)
i
2 ∥r(0)∥W ; (4.15)

(iii) we have the following error estimations:

∥x(i) − x∗∥W ≤
√
λmax(W)κ2(1 − κ−2)

1
2 ∥x(i−1) − x∗∥, (4.16)

∥x(i) − x∗∥W ≤
√
λmax(W)κ2(1 − κ−2)

i
2 ∥x(0) − x∗∥. (4.17)

In particular, the convergence rate of Algorithm 6 is controlled by the term
√

1 − κ−2;
(iv) let ϵ > 0. Suppose x(0) , x∗ and κ > 1. We have ∥x(i) − x∗∥W < ϵ after i∗ iterations, where

i∗ >
2 log ϵ − log λmax(W) − 4 log κ − 2 log ∥x(0) − x∗∥

log (1 − κ−2)
. (4.18)

Proof. (i) The proof of is similar to that of Theorem 1. In this case, Eq (1.1) has a solution, i.e.
δ = 0. From Eqs (4.10) and (4.11), we get

f (x(i+1)) ≤ β f (x(i)), (4.19)
f (x(i)) ≤ βi f (x(0)), for any i ∈ N. (4.20)

Since 0 ≤ β < 1, we have f (x(i)) = ∥Ax(i) − b∥2W → 0. It follows that Ax(i) − b → 0. Since
b = Ax∗, we have Ax(i) → Ax∗. Since A is of full-column rank, the matrix AT A is invertible.
Hence, x(i) → x∗ as i→ ∞.

(ii) From (4.9), the inequalities (4.19) and (4.20) become (4.14) and (4.15), respectively.
(iii) By using Lemmas 2.1, 2.2 and Eq (4.14), we have

∥x(i) − x∗∥W = ∥(AT WA)−1(AT WA)x(i) − (AT WA)−1(AT WA)x∗∥W

= ∥(AT WA)−1(AT W
1
2 )(W

1
2 Ax(i) −W

1
2 Ax∗)∥W
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≤ ∥W
1
2 ∥2∥(AT WA)−1∥2∥AT W

1
2 ∥2∥Ax(i) − Ax∗∥W

=
√
λmax(W)∥(AT WA)−1∥2∥W

1
2 A∥2∥Ax(i) − b∥W

≤
√
λmax(W)∥(AT WA)−1∥2∥W

1
2 A∥2

( √
β∥Ax(i−1) − b∥W

)
≤ (1 − κ−2)

1
2
√
λmax(W)∥(AT WA)−1∥2∥W

1
2 A∥2∥W

1
2 A∥2∥W− 1

2 (x(i−1) − x∗)∥W

=
√
λmax(W)κ2(1 − κ−2)

1
2 ∥x(i−1) − x∗∥.

By induction, the inequality (4.17) holds.
(iv) From (4.17), we get an error estimation

∥x(i) − x∗∥W ≤
√
λmax(W) κ2(1 − κ−2)

i
2 ∥x(0) − x∗∥ → 0, as i→ ∞.

It implies that for each ϵ > 0√
λmax(W)κ2(1 − κ−2)

i
2 ∥x(0) − x∗∥ < ϵ, for all i ≥ i∗, i∗ ∈ N.

Taking the 10-base logarithm on both sides yields the desired iteration number (4.18).
□

Theorem 2 includes the work [19] as a special case.

5. Numerical experiments

In this section, we verify theoretical results through numerical experiments implemented by
MATLAB R2021a, on the same Mac operating system (M1 chip 8C CPU/8C GPU/8GB/512GB). We
consider both consistent and inconsistent linear systems with square/non-square coefficient matrices of
moderate/large dimension. The coefficient matrix A and the weighted positive definite matrix W we
considered are the identity matrix (denoted by I),

• a tridiagonal matrix (denoted by tridiag),
• an upper-triangular portion included the main diagonal (denoted by triu),
• a lower-triangular portion included the main diagonal (denoted by tril).

We compare the performance of Algorithm 6 (GDI) with the direct method and well-known iterative
methods in the literature. The algorithm performance is evaluated through the number of iterations, the
norm of residual vectors, and the CPU time measured in seconds by tic toc functions on MATLAB.

5.1. Experiments for consistent linear systems

Example 1. Consider a moderate-scaled linear system (1.1) with

A = tridiag(1,−2, 0) ∈ R50×50, b = (1, 0, . . . , 0)T ∈ R50, W = tridiag(1, 4, 1) ∈ R50×50.

This linear system has a unique solution. We take an initial point x(0) = (−0.1,−0.1, . . . ,−0.1)T ∈ R50

and set a tolerance error ϵ = 10−3. It turns out that Algorithm 6 produces a satisfactory solution (3-
digit accuracy) within 13 iterations, consuming 0.026620 seconds. So, the iteration number satisfies
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the inequality (4.18). Numerical results illustrated in Figure 1 and Table 1 both show the applicability
of the algorithm. Theorem 2 says that the convergence rate of Algorithm 6 depends on the condition
number of W

1
2 A, namely, κ = 1.8699. So, with a well-conditioned coefficient matrix, the algorithm

produced a satisfactory solution within a small iteration number.

Figure 1. The logarithm of the relative error for Example 1.

Table 1. Numerical solutions for Example 1.

Method Direct GDI
Iterations - 13

x1 -0.5000 -0.5000
x2 -0.2500 -0.2500
x3 -0.1250 -0.1250
x4 -0.0625 -0.0625
x5 -0.0312 -0.0313
x6 -0.0156 -0.0157
x7 -0.0078 -0.0078
x8 -0.0039 -0.0039
x9 -0.0020 -0.0020
x10 -0.0010 -0.0010
x11 -0.0005 -0.0005
x12 -0.0002 -0.0003
x13 -0.0001 -0.0002
x14 -0.0001 -0.0001

x15, . . . , x74 0 -0.0001
x75, . . . , x80 0 0
∥r(i)∥W 0 0.0009898876
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Example 2. Consider a large-scaled linear system (1.1) with

A = tridiag(1,−13,−7) ∈ R80×80, b = (1, 1, . . . , 1)T ∈ R80, W = I ∈ R80×80.

In fact, the linear system has a unique solution. We compare the performance of Algorithm 6 with well-
known and recent iterative methods, namely GI (Algorithm 1), RGI (Algorithm 3), MGI (Algorithm 4),
AGBI (Algorithm 5), and MJGI [14]. All algorithms are implemented using the same initial point
x(0) = (−5,−5, . . . ,−5)T ∈ R80. The numerical results are shown in Figure 2 and Table 2. After
running 29 iterations, GDI method produces a well-approximated solution having the residual ∥r(i)∥W =

0.00087 < ϵ := 10−3, consuming 0.017624 seconds. We see that the performance of GDI algorithm is
better than that of other algorithms in both errors and computational time. Indeed, the performance of
GDI algorithm (and, in fact, other ones) is governed by the condition number κ = 2.7097.

Figure 2. The logarithm of the relative error for Example 2.

Table 2. Numerical solutions for Example 2.

Method Parameters Iterations Relative error CPU time
Convergent factor weighted factor

GDI - 29 0.00087 0.021170
GI µ = 0.0055 - 29 0.034310 0.034310

RGI µ = 0.0292 ω = 0.6 29 0.522498 0.054389
MGI µ =0.0055 - 29 0.005316 0.027525

AGBI1 µ =0.0062 ω = 0.3 29 0.314652 0.027661
AGBI2 µ =0.0031 ω = 0.6 29 1.343812 0.026997
MJGI1 µ =0.0013 - 29 0.352640 0.028018
MJGI2 µ =0.0025 - 29 0.005942 0.024014
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5.2. Experiments for inconsistent linear systems

Example 3. Consider a moderate-scaled linear system (1.1) with

A = triu(35,−4, 3, 0, . . . , 0) ∈ R50×45, b = (1, 1, . . . , 1,−1)T ∈ R50,

and the weighted positive definite matrix W = diag(2, 1, 2, 1, . . . , 1) ∈ R50×50. We can check that
rank A = 45 , 46 = rank[A b], so that the linear system is inconsistent but has a unique LS solution.
According to Eq (2.1), the square root of weighted LS error is 2.7017. We perform GDI algorithm with
initial value x(0) = (7, 7, . . . , 7)T ∈ R45. The numerical results in Figure 3 and Table 3 show that GDI
algorithm produces a well-approximated solution after 16 iterations with error 2.7017, which is very
close to the theoretical weighted LS error. Moreover, each coordinate value of x(16) is very close to that
of the LS solution obtained from the direct method.

Figure 3. The logarithm of the relative error for Example 3.

Table 3. Numerical solutions for Example 3.

Method Direct GDI
Iterations - 16

x1 0.0286 0.0286
x2 0.0318 0.0319
x3 0.0298 0.0298
x4 0.0292 0.0292

x5, . . . , x41 0.0294 0.0294
x42 0.0296 0.0296
x43 0.0294 0.0294
x44 0.0268 0.0298
x45 0.0280 0.0280

LS error 2.7017 2.7017
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Example 4. Consider a moderate-scaled linear system (1.1) with

A = triu(15,−2, 1, 0, . . . , 0) ∈ R30×25, b = (1, 1, . . . , 1,−1)T ∈ R30, W = I ∈ R30×30.

In this case, the linear system is inconsistent and has a unique LS solution. According to Eq (2.1), the
square root of weighted LS error is given by ϵ = ∥Ax∗ − b∥W = 2.2371. We compare the performance
of GDI algorithm with LSI method (Algorithm 2) with different parameters µ1 = 0.1, µ2 = 0.25,
and µ3 = 0.5, using the same initial point x(0) = 0 ∈ R25. The numerical results are presented in
Figure 4, Tables 4 and 5. We can see that out of a total of 4 iterations, the GDI method takes the
least computational time (0.012849 seconds) compared to the LSI method with different parameters.
In addition, the value of each solution coordinate obtained from GDI method is close to the exact LS
solution x∗ than those obtained from LSI method.

Figure 4. The logarithm of the relative error for Example 4.

Table 4. LS solutions for Example 4.

Method Direct GDI LSI
Parameter - - µ1 = 0.1 µ2 = 0.25 µ3 = 0.5
Iterations - 4 4 4 4

x1 0.0714 0.0715 0.0194 0.0413 0.0625
x2 0.0714 0.0713 0.0194 0.0413 0.0625
x3 0.0714 0.0714 0.0194 0.0413 0.0625
x4 0.0714 0.0713 0.0194 0.0413 0.0625
x5 0.0714 0.0715 0.0194 0.0413 0.0625

x6, . . . , x20 0.0714 0.0714 0.0194 0.0413 0.0625
x21 0.0713 0.0714 0.0193 0.0412 0.0624
x22 0.0713 0.0712 0.0193 0.0412 0.0624
x23 0.0723 0.0722 0.0196 0.0418 0.0633
x24 0.0756 0.0754 0.0205 0.0437 0.0661
x25 0.0667 0.0667 0.0181 0.0385 0.0583
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Table 5. Numerical solutions for Example 4.

Method GDI LSI
Parameter - µ1 = 0.1 µ2 = 0.25 µ3 = 0.5
Iterations 4 4 4 4
LS error 2.23607 4.276216 3.073998 2.321772

CPU time 0.006919 0.009616 0.007964 0.008092

Example 5. Consider a large-scaled linear system (1.1) with

A = tril(−3,−13, 7, 0, . . . , 0) ∈ R100×80, b = (1, 1, . . . , 1,−1)T ∈ R100, W = I ∈ R100×100.

In fact, the linear system is inconsistent and has a unique LS solution. We compare the performance of
GDI algorithm with LSI algorithm (Algorithm 2) with the same initial vector x(0) = 0 ∈ R80. Figure 5
shows that GDI produces a solution having the LS error 4.41218, which is equal to the theoretical
LS error (2.1) within 5 iterations. However, the accuracy of each coordinate (compared to the direct
method) in the solution is not guaranteed. From Tables 6 and 7, we see that GDI method takes 28
iterations to obtain an LS solution with 4-digit accuracy in each coordinate, consuming 0.027191
seconds. However, within the same iteration number, LSI method with three parameters (µ1 = 0.02,
µ2 = 0.05, µ3 = 0.1) does not provide a satisfactory LS solution. Thus, GDI method is applicable and
has a better performance than LSI method.

Figure 5. The logarithm of the relative error for Example 5.
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Table 6. LS solutions for Example 5.

Method Direct GDI LSI
Parameter - - µ1 = 0.02 µ2 = 0.05 µ3 = 0.1
Iterations - 28 28 28 28

x1 -0.0692 -0.0692 -0.0291 -0.0519 -0.0652
x2 -0.0883 -0.0883 -0.0371 -0.0662 -0.0832
x3 -0.1006 -0.1006 -0.0423 -0.0754 -0.0947
x4 -0.1059 -0.1059 -0.0445 -0.0794 -0.0998
x5 -0.1086 -0.1086 -0.0457 -0.0814 -0.1023
x6 -0.1099 -0.1099 -0.0462 -0.0824 -0.1035
x7 -0.1105 -0.1105 -0.0465 -0.0829 -0.1041
x8 -0.1108 -0.1108 -0.0466 -0.0831 -0.1044
x9 -0.1110 -0.1110 -0.0467 -0.0832 -0.1045
x10 -0.1110 -0.1110 -0.0467 -0.0832 -0.1046

x11, . . . , x20 -0.1111 -0.1111 -0.0467 -0.0833 -0.1046
x21, . . . , x71 -0.1111 -0.1111 -0.0467 -0.0833 -0.1047

x72 -0.1112 -0.1112 -0.0467 -0.0833 -0.1047
x73 -0.1113 -0.1113 -0.0468 -0.0834 -0.1048
x74 -0.1114 -0.1114 -0.0468 -0.0835 -0.1049
x75 -0.1118 -0.1118 -0.0470 -0.0838 -0.1053
x76 -0.1122 -0.1122 -0.0472 -0.0841 -0.1057
x77 -0.1148 -0.1148 -0.0483 -0.0861 -0.1081
x78 -0.1123 -0.1123 -0.0472 -0.0842 -0.1057
x79 -0.1446 -0.1146 -0.0608 -0.1084 -0.1362
x80 -0.0303 -0.0303 -0.0127 -0.0227 -0.0285

Table 7. Numerical solutions for Example 5.

Method GDI LSI
Parameter - µ1 = 0.02 µ2 = 0.05 µ3 = 0.1
Iterations 28 28 28 28
LS error 4.41218 6.820422 4.951215 4.442936

CPU time 0.027191 0.028941 0.031406 0.030662

6. Conclusions

We consider the rectangular linear system (1.1) when the coefficient matrix is of full-column rank.
So the system has a unique solution or a unique LS solution. Here, we consider LS solutions in
a full generality, that is, we measure the error through any vector norm induced from weighted
positive definite matrices W. We propose a gradient-descent iterative (GDI) algorithm to this linear
system, aiming to produce a sequence of well-approximate exact or weighted LS solutions. In the

AIMS Mathematics Volume 8, Issue 5, 11781–11798.



11797

recursive equation, the step size is optimized at each iteration so that the square residual error is
minimized. It turns out that when Eq (1.1) has a unique solution, GDI algorithm produces approximate
solutions converging to the unique solution. When Eq (1.1) is inconsistent, the sequence of residual
norms converges to the weighted LS error. Moreover, with a well-conditioned coefficient matrix, the
algorithm produced a satisfactory solution within a small iteration number. When W = I, the weighted
LS error becomes the LS error with respect to the usual norm. Numerical experiments are performed to
verify the capability of the proposed algorithm. Moreover, the performance of GDI algorithm is better
than that of GI-type algorithms in both iteration numbers and computational time.

Acknowledgments

This research project is supported by National Research Council of Thailand (NRCT):
(N41A640234). The authors would like to thank reviewers for useful suggestions and comments.

Conflict of interest

The authors declare there are no conflicts of interest.

References

1. W. D. James, Applied numerical linear algebra, Philadelphia: Society for Industrial and Applied
Mathematics, 1997.

2. P. J. Olver, C. Shakiban, Applied linear algebra, New York: Springer, 2018.

3. D. M. Young, Iterative solution of large linear systems, New York: Academic Press, 1971.

4. P. Albrechtt, M. P. Klein, Extrapolated iterative methods for linear systems, SIAM J. Numer. Anal.,
21 (1984), 192–201. https://doi.org/10.1137/0721014

5. A. J. Hughes-Hallett, The convergence of accelerated overrelaxation iterations, Math. Comput., 47
(1986), 219–223.

6. Y. Saad, Iterative methods for sparse linear systems, 2 Eds., Philadelphia: Society for Industrial
and Applied Mathematics, 2003.

7. X. I. A. Yang, R. Mittal, Acceleration of the Jacobi iterative method by factors
exceeding 100 using scheduled relaxation, J. Comput. Phys., 274 (2014), 695–708.
https://doi.org/10.1016/j.jcp.2014.06.010

8. J. E. Adsuara, I. Cordero-Carrión, P. Cerdá-Durán, M. A. Aloy, Scheduled Relaxation
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