A new cosine similarity measure between hesitancy fuzzy graphs, which have been shown to have greater discriminating capacity than certain current ones in group decision making problems by example verification. This study proposes a novel method for estimating expert-certified repute scores by determining the ambiguous information of hesitancy fuzzy preference relations as well as the regular cosine similarity grades from one separable hesitancy fuzzy preference relation to some others. The new approach considers both "objective" and "subjective" information given by experts. We construct working procedures for assessing the eligible reputational scores of the experts by applying hesitancy fuzzy preference relations. In an evaluation in which multiple conflicting factors are taken into consideration, this can be applied to increase or reduce the relevancy of specified criteria. Applying the two effective methods, the newly developed cosine similarity measure, the energy of hesitancy fuzzy graph, and we provide a solution to a decisional issue. Finally, the two working procedures and examples are given to verify the practicality and dominance of the proposed techniques.
Citation: Rajagopal Reddy N, Sharief Basha S. A cosine similarity measures between hesitancy fuzzy graphs and its application to decision making[J]. AIMS Mathematics, 2023, 8(5): 11799-11821. doi: 10.3934/math.2023597
A new cosine similarity measure between hesitancy fuzzy graphs, which have been shown to have greater discriminating capacity than certain current ones in group decision making problems by example verification. This study proposes a novel method for estimating expert-certified repute scores by determining the ambiguous information of hesitancy fuzzy preference relations as well as the regular cosine similarity grades from one separable hesitancy fuzzy preference relation to some others. The new approach considers both "objective" and "subjective" information given by experts. We construct working procedures for assessing the eligible reputational scores of the experts by applying hesitancy fuzzy preference relations. In an evaluation in which multiple conflicting factors are taken into consideration, this can be applied to increase or reduce the relevancy of specified criteria. Applying the two effective methods, the newly developed cosine similarity measure, the energy of hesitancy fuzzy graph, and we provide a solution to a decisional issue. Finally, the two working procedures and examples are given to verify the practicality and dominance of the proposed techniques.
[1] | M. Akram, A. Adeel, J. C. R. Alcantud, Multi-criteria group decision-making using an $m$-polar hesitant fuzzy TOPSIS approach, Symmetry, 11 (2019), 1–23. https://doi.org/10.3390/sym11060795 doi: 10.3390/sym11060795 |
[2] | M. Akram, D. Saleem, B. Davvaz, Energy of double dominating bipolar fuzzy graphs, J. Appl. Math. Comput., 61 (2019), 219–234. https://doi.org/10.1007/s12190-019-01248-z doi: 10.1007/s12190-019-01248-z |
[3] | M. Akram, M. Sarwar, W. A. Dudek, Energy of bipolar fuzzy graphs, In: Graphs for the analysis of bipolar fuzzy information, Singapore: Springer, 2020,309–347. https://doi.org/10.1007/978-981-15-8756-6_8 |
[4] | M. Akram, A. Luqman, C. Kahraman, Hesitant Pythagorean fuzzy ELECTRE-Ⅱ method for multi-criteria decision-making problems, Appl. Soft Comput., 108 (2021), 107479. https://doi.org/10.1016/j.asoc.2021.107479 doi: 10.1016/j.asoc.2021.107479 |
[5] | M. Akram, N. Waseem, Similarity measures for new hybrid models: mF sets and mF soft sets, Punjab Univ. J. Math., 51 (2019), 115–130. |
[6] | N. Anjali, S. Mathew, Energy of a fuzzy graph, Ann. Fuzzy Math. Inform., 6 (2013), 455–465. |
[7] | J. J. Arockiaraj, T. Pathinathan, Index matrix representation and various operations on hesitancy fuzzy graphs, J. Comput. Math. Sci., 8 (2017), 38–49. |
[8] | J. J. Arockiaraj, T. Pathinathan, Various Cartesian products of vertex degree and edge degree in hesitancy fuzzy graphs, IJMRME, 2 (2016), 166–173. http://dx.doi.org/10.5281/ZENODO.154666 doi: 10.5281/ZENODO.154666 |
[9] | K. T. Atanassov, Generalized index matrices, C. R. Acad. Bulgare Sci., 40 (1987), 15–18. |
[10] | K. Atanassov, G. Gargov, Elements of intuitionistic fuzzy logic. Part Ⅰ, Fuzzy Sets Syst., 95 (1998), 39–52. https://doi.org/10.1016/S0165-0114(96)00326-0 doi: 10.1016/S0165-0114(96)00326-0 |
[11] | K. T. Atanassov, Index matrices: towards an augmented matrix calculus, Cham: Springer, 2014. https://doi.org/10.1007/978-3-319-10945-9 |
[12] | K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3 |
[13] | K. T. Atanassov, An equality between intuitionistic fuzzy sets, Fuzzy Sets Syst., 79 (1996), 257–258. https://doi.org/10.1016/0165-0114(95)00173-5. doi: 10.1016/0165-0114(95)00173-5 |
[14] | K. T. Atanassov, Remark on the intuitionistic fuzzy logics, Fuzzy Sets Syst., 95 (1998), 127–129. https://doi.org/10.1016/S0165-0114(96)00343-0. doi: 10.1016/S0165-0114(96)00343-0 |
[15] | P. Bhattacharya, Some remarks on fuzzy graphs, Pattern Recogn. Lett., 6 (1987), 297–302. https://doi.org/10.1016/0167-8655(87)90012-2 doi: 10.1016/0167-8655(87)90012-2 |
[16] | E. Bolturk, C. Kahraman, A novel interval-valued neutrosophic AHP with cosine similarity measure, Soft Comput., 22 (2018), 4941–4958. https://doi.org/10.1007/s00500-018-3140-y doi: 10.1007/s00500-018-3140-y |
[17] | R. Chinram, T. Mahmood, U. Ur Rehman, Z. Ali, A. Iampan, Some novel cosine similarity measures based on complex hesitant fuzzy sets and their applications, J. Math., 2021 (2021), 1–20. https://doi.org/10.1155/2021/6690728 doi: 10.1155/2021/6690728 |
[18] | B. Farhadinia, Similarity-based multi-criteria decision making technique of pythagorean fuzzy sets, Artif. Intell. Rev., 55 (2021), 2103–2148. https://doi.org/10.1007/s10462-021-10054-8 doi: 10.1007/s10462-021-10054-8 |
[19] | H. Garg, T. Mahmood, U. Ur Rehman, Z. Ali, CHFS: Complex hesitant fuzzy sets-their applications to decision making with different and innovative distance measures, CAAI Trans. Intell. Technol., 6 (2021), 93–122. https://doi.org/10.1049/cit2.12016 doi: 10.1049/cit2.12016 |
[20] | Z. T. Gong, J. H. Wang, Hesitant fuzzy graphs, hesitant fuzzy hypergraphs and fuzzy graph decisions, J. Intell. Fuzzy Syst., 40 (2021), 865–875. https://doi.org/10.3233/JIFS-201016 doi: 10.3233/JIFS-201016 |
[21] | F. Herrera, E. Herrera-Viedma, Choice functions and mechanisms for linguistic preference relations, Eur. J. Oper. Res., 120 (2000), 144–161. https://doi.org/10.1016/S0377-2217(98)00383-X doi: 10.1016/S0377-2217(98)00383-X |
[22] | C. Hwang, K. Yoon, Methods for multiple attribute decision making, In: Multiple attribute decision making, Berlin, Heidelberg: Springer, 1981, 58–191. https://doi.org/10.1007/978-3-642-48318-9_3 |
[23] | N. Jan, L. Zedam, T. Mahmood, E. Rak, Z. Ali, Generalized dice similarity measures for q-rung orthopair fuzzy sets with applications, Complex Intell. Syst., 6 (2020), 545–558. https://doi.org/10.1007/s40747-020-00145-4 doi: 10.1007/s40747-020-00145-4 |
[24] | E. Kartheek, S. S. Basha, The minimum dominating energy of fuzzy graph, J. Inform. Optim. Sci., 38 (2017), 443–453. https://doi.org/10.1080/02522667.2016.1190569 doi: 10.1080/02522667.2016.1190569 |
[25] | K. Kalpana, S. Lavanya, Connectedness energy of fuzzy graph, J. Comput. Math. Sci., 9 (2018), 485–492. |
[26] | D. F. Li, C. T. Cheng, New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions, Pattern Recogn. Lett., 23 (2002), 221–225. https://doi.org/10.1016/S0167-8655(01)00110-6 doi: 10.1016/S0167-8655(01)00110-6 |
[27] | Y. H. Li, D. L. Olson, Z. Qin, Similarity measures between intuitionistic fuzzy (vague) sets: a comparative analysis, Pattern Recogn. Lett., 28 (2007), 278–285. https://doi.org/10.1016/j.patrec.2006.07.009 doi: 10.1016/j.patrec.2006.07.009 |
[28] | S. Y. Mohamed, A. M. Ali, Energy of spherical fuzzy graph, Adv. Math. Sci. J., 9 (2020), 321–332. https://doi.org/10.37418/amsj.9.1.26 doi: 10.37418/amsj.9.1.26 |
[29] | T. Mahmood, Z. Ali, Entropy measure and TOPSIS method based on correlation coefficient using complex q-rung orthopair fuzzy information and its application to multi-attribute decision making, Soft Comput., 25 (2021), 1249–1275. https://doi.org/10.1007/s00500-020-05218-7 doi: 10.1007/s00500-020-05218-7 |
[30] | S. Naz, S. Ashraf, F. Karaaslan, Energy of a bipolar fuzzy graph and its application in decision making, Ital. J. Pure Appl. Math., 40 (2018), 339–352. |
[31] | B. Praba, V. M. Chandrasekaran, G. Deepa, Energy of an intuitionistic fuzzy graph, Ital. J. Pure Appl. Math., 32 (2014), 431–444. |
[32] | T. Pathinathan, J. J. Arockiaraj, J. J. Rosline, Hesitancy fuzzy graphs, Indian J. Sci. Technol., 8 (2015), 1–5. https://doi.org/10.17485/ijst/2015/v8i35/86672 doi: 10.17485/ijst/2015/v8i35/86672 |
[33] | N. R. Reddy, S. S. Basha, The correlation coefficient of hesitancy fuzzy graphs in decision making, Comput. Syst. Sci. Eng., 46 (2023), 579–596. https://doi.org/10.32604/csse.2023.034527 doi: 10.32604/csse.2023.034527 |
[34] | N. R. Reddy, M. Z. Khan, S. S. Basha, A. Alahmadi, A. H. Alahmadi, C. L. Chowdhary, The Laplacian energy of hesitancy fuzzy graphs in decision-making problems, Comput. Syst. Sci. Eng., 44 (2023), 2637–2653. https://doi.org/10.32604/csse.2023.029255. doi: 10.32604/csse.2023.029255 |
[35] | M. Sarwar, M. Akram, F. Zafar, Decision making approach based on competition graphs and extended TOPSIS method under bipolar fuzzy environment, Math. Comput. Appl., 23 (2018), 1–17. https://doi.org/10.3390/mca23040068 doi: 10.3390/mca23040068 |
[36] | T. Tanino, Fuzzy preference orderings in group decision making, Fuzzy Sets Syst., 12 (1984), 117–131. https://doi.org/10.1016/0165-0114(84)90032-0 doi: 10.1016/0165-0114(84)90032-0 |
[37] | V. Torra, Hesitant fuzzy sets, International Journal of Intelligent Systems, 25 (2010), 529–539. https://doi.org/10.1002/int.20418 doi: 10.1002/int.20418 |
[38] | V. Torra, Y. Narukawa, On hesitant fuzzy sets and decision, 2009 IEEE International Conference on Fuzzy Systems, 2009, 1378–1382. https://doi.org/10.1109/FUZZY.2009.5276884 doi: 10.1109/FUZZY.2009.5276884 |
[39] | Y. H. Wang, Z. F. Shan, L. Huang, The extension of TOPSIS method for multi-attribute decision-making with q-rung orthopair hesitant fuzzy sets, IEEE Access, 8 (2020), 165151–165167. https://doi.org/10.1109/ACCESS.2020.3018542 doi: 10.1109/ACCESS.2020.3018542 |
[40] | M. M. Xia, Z. S. Xu, Hesitant fuzzy information aggregation in decision making, Int. J. Approx. Reason., 52 (2011), 395–407. https://doi.org/10.1016/j.ijar.2010.09.002 doi: 10.1016/j.ijar.2010.09.002 |
[41] | M. M. Xia, Z. S. Xu, Managing hesitant information in GDM problems under fuzzy and multiplivative preference relations, Int. J. Uncertain. Fuzziness Knowl. Based Syst., 21 (2013), 865–897. https://doi.org/10.1142/S0218488513500402 doi: 10.1142/S0218488513500402 |
[42] | Z. S. Xu, M. M. Xia, Distance and similarity measures for hesitant fuzzy sets, Inform. Sci., 181 (2011), 2128–2138. https://doi.org/10.1016/j.ins.2011.01.028 doi: 10.1016/j.ins.2011.01.028 |
[43] | Z. S. Xu, Incomplete linguistic preference relations and their fusion, Inform. Fusion, 7 (2006), 331–337. https://doi.org/10.1016/j.inffus.2005.01.003 doi: 10.1016/j.inffus.2005.01.003 |
[44] | Z. S. Xu, M. M. Xia, Hesitant fuzzy entropy and cross-entropy and their use in multiattribute decision-making, Int. J. Intell. Syst., 27 (2012), 799–822. https://doi.org/10.1002/int.21548 doi: 10.1002/int.21548 |
[45] | J. X. Yang, X. A. Tang, S. L. Yang, Novel correlation coefficients for hesitant fuzzy sets and their applications to supplier selection and medical diagnosis, J. Intell. Fuzzy Syst., 35 (2018), 6427–6441. https://doi.org/10.3233/JIFS-181393 doi: 10.3233/JIFS-181393 |
[46] | R. M. Zulqarnain, X. L. Xin, M. Saeed, A development of Pythagorean fuzzy hypersoft set with basic operations and decision-making approach based on the correlation coefficient, Theory Appl. Hypersoft Set, 6 (2021), 85. https://doi.org/10.5281/zenodo.4788064 doi: 10.5281/zenodo.4788064 |