In this paper, we consider an initial-boundary value parabolic problem under nonlinear Neumann boundary conditions. By virtue of the modified differential inequality, lower bounds for the blow-up time of the solution are derived in higher dimensional spaces. An upper bound for the blow-up time are specified under appropriate assumptions on the functions $ a, b, f, g, h $ and $ u_0 $.
Citation: Zhanwei Gou, Jincheng Shi. Blow-up phenomena and global existence for nonlinear parabolic problems under nonlinear boundary conditions[J]. AIMS Mathematics, 2023, 8(5): 11822-11836. doi: 10.3934/math.2023598
In this paper, we consider an initial-boundary value parabolic problem under nonlinear Neumann boundary conditions. By virtue of the modified differential inequality, lower bounds for the blow-up time of the solution are derived in higher dimensional spaces. An upper bound for the blow-up time are specified under appropriate assumptions on the functions $ a, b, f, g, h $ and $ u_0 $.
[1] | B. Straughan, Explosive instabilities in mechanics, Berlin: Springer, 1998. https://doi.org/10.1007/978-3-642-58807-5 |
[2] | P. Quittner, P. Souplet, Superlinear parabolic problems: Blow-up, global existence and steady states, Berlin: Birkhäuser Verlag AG, 2007. |
[3] | C. Bandle, H. Brunner, Blow-up in diffusion equations, J. Comput. Appl. Math., 97 (1998), 3–22. https://doi.org/10.1016/S0377-0427(98)00100-9 doi: 10.1016/S0377-0427(98)00100-9 |
[4] | J. L. Vazquez, The problems of blow-up for nonlinear heat equations. Complete blow-up and avalanche formation, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, 15 (2004), 281–300. |
[5] | F. B. Weissler, Local existence and nonexistence for semilinear parabolic equations in $L^p$, Indiana Univ. Math. J., 29 (1980), 79–102. https://doi.org/10.1512/iumj.1980.29.29007 doi: 10.1512/iumj.1980.29.29007 |
[6] | F. B. Weissler, Existence and nonexistence of global solutions for a heat equation, Israel J. Math., 38 (1981), 29–40. https://doi.org/10.1007/BF02761845 doi: 10.1007/BF02761845 |
[7] | J. Shi, S. Xiao, Global existence and blow-up for the classical solutions of the long-short wave equations with viscosity, Discrete Dyn. Nat. Soc., 2021 (2021), 7211126. https://doi.org/10.1155/2021/7211126 doi: 10.1155/2021/7211126 |
[8] | L. E. Payne, P. W. Schaefer, Lower bounds for blow-up time in parabolic problems under Neumann conditions, Appl. Anal., 85 (2006), 1301–1311. https://doi.org/10.1080/00036810600915730 doi: 10.1080/00036810600915730 |
[9] | Y. Li, Y. Liu, C. Lin, Blow-up phenomena for some nonlinear parabolic problems under mixed boundary conditions, Nonlinear Anal. Real, 11 (2010), 3815–3823. https://doi.org/10.1016/j.nonrwa.2010.02.011 doi: 10.1016/j.nonrwa.2010.02.011 |
[10] | Y. Liu, S. Luo, Y. Ye, Blow-up phenomena for a parabolic problem with a gradient nonlinearity under nonlinear boundary conditions, Comput. Math. Appl., 65 (2013), 1194–1199. https://doi.org/10.1016/j.camwa.2013.02.014 doi: 10.1016/j.camwa.2013.02.014 |
[11] | T. Imai, K. Mochizuki, On blow-up of solutions for quasilinear degenerate parabolic equations, Publ. Res. Inst. Math. Sci., 27 (1991), 695–709. https://doi.org/10.2977/prims/1195169267 doi: 10.2977/prims/1195169267 |
[12] | H. L. Zhang, Blow-up solutions and global solutions for nonlinear parabolic problems, Nonlinear Anal. Theor., 69 (2008), 4567–4574. https://doi.org/10.1016/j.na.2007.11.013 doi: 10.1016/j.na.2007.11.013 |
[13] | X. Y. Gao, J. T. Ding, B. Z. Guo, Blow-up and global solutions for quasilinear parabolic equations with Neumann boundary conditions, Appl. Anal., 88 (2009), 183–191. https://doi.org/10.1080/00036810802713818 doi: 10.1080/00036810802713818 |
[14] | X. S. Lv, X. F. Song, Bounds of the blow up time in parabolic equations with weighted source under nonhomogeneous Neumann boundary condition, Math. Method. Appl. Sci., 37 (2014), 1019–1028. https://doi.org/10.1002/mma.2859 doi: 10.1002/mma.2859 |
[15] | X. F. Song, X. S. Lv, Bounds of the blow up time and blow up rate estimates for a type of parabolic equations with weighted source, Appl. Math. Comput., 236 (2014), 78–92. https://doi.org/10.1016/j.amc.2014.03.023 doi: 10.1016/j.amc.2014.03.023 |
[16] | L. Ma, Z. B. Fang, Blow-up analysis for a reaction-difusion equation with weighted nonlocal inner absorptions under nonlinear boundary flux, Nonlinear Anal. Real, 32 (2016), 338–354. https://doi.org/10.1016/j.nonrwa.2016.05.005 doi: 10.1016/j.nonrwa.2016.05.005 |
[17] | Y. Li, Y. Liu, S. Xiao, Blow-up phenomena for some nonlinear parabolic problems under Robin boundary conditions, Math. Comput. Model., 54 (2011), 3065–3069. https://doi.org/10.1016/j.mcm.2011.07.034 doi: 10.1016/j.mcm.2011.07.034 |
[18] | J. T. Ding, X. H. Shen, Blow-up analysis in quasilinear reaction-diffusion problems with weighted nonlocal source, Comput. Math. Appl., 75 (2018), 1288–1301. https://doi.org/10.1016/j.camwa.2017.11.009 doi: 10.1016/j.camwa.2017.11.009 |
[19] | J. T. Ding, B. Z. Guo, Blow-up and global existence for nonlinear parabolic equations with Neumann boundary conditions, Comput. Math. Appl., 60 (2010), 670–679. https://doi.org/10.1016/j.camwa.2010.05.015 doi: 10.1016/j.camwa.2010.05.015 |
[20] | Y. Liu, Lower bounds for the blow-up time in a non-local reaction diffusion problem under nonlinear boundary conditions, Math. Comput. Model., 57 (2013), 926–931. https://doi.org/10.1016/j.mcm.2012.10.002 doi: 10.1016/j.mcm.2012.10.002 |
[21] | J. Ladevèze, P. Ladevèze, Majorations de la constante de poincaré relative au problème de la membrane-domaines étoilés, Z. Angew. Math. Phys., 29 (1978), 670–683. https://doi.org/10.1007/BF01601492 doi: 10.1007/BF01601492 |
[22] | L. E. Payne, H. F. Weinberger, An optimal Poincaré constant for convex domains, Arch. Rational Mech. Anal., 5 (1960), 286–292. https://doi.org/10.1007/BF00252910 doi: 10.1007/BF00252910 |