Research article Special Issues

Closed-form approximate solutions for stop-loss and Russian options with multiscale stochastic volatility

  • Received: 11 June 2023 Revised: 16 August 2023 Accepted: 23 August 2023 Published: 29 August 2023
  • MSC : 91G20, 91G60

  • In general, derivation of closed-form analytic formulas for the prices of path-dependent exotic options is a challenging task when the underlying asset price model is chosen to be a stochastic volatility model. Pricing stop-loss and Russian options is studied under a multiscale stochastic volatility model in this paper. Both options are commonly perpetual American-style derivatives with a lookback provision. We derive closed-form formulas explicitly for the approximate prices of these two exotic options by using multiscale asymptotic analysis and partial differential equation method. The formulas can be efficiently computed starting with the Black-Scholes option prices. The accuracy of the analytic approximation is verified via Monte-Carlo simulations and the impacts of the multiscale stochastic volatility on the corresponding Black-Scholes option prices are revealed. Also, the performance of the model is compared with that of other models.

    Citation: Min-Ku Lee, Jeong-Hoon Kim. Closed-form approximate solutions for stop-loss and Russian options with multiscale stochastic volatility[J]. AIMS Mathematics, 2023, 8(10): 25164-25194. doi: 10.3934/math.20231284

    Related Papers:

  • In general, derivation of closed-form analytic formulas for the prices of path-dependent exotic options is a challenging task when the underlying asset price model is chosen to be a stochastic volatility model. Pricing stop-loss and Russian options is studied under a multiscale stochastic volatility model in this paper. Both options are commonly perpetual American-style derivatives with a lookback provision. We derive closed-form formulas explicitly for the approximate prices of these two exotic options by using multiscale asymptotic analysis and partial differential equation method. The formulas can be efficiently computed starting with the Black-Scholes option prices. The accuracy of the analytic approximation is verified via Monte-Carlo simulations and the impacts of the multiscale stochastic volatility on the corresponding Black-Scholes option prices are revealed. Also, the performance of the model is compared with that of other models.



    加载中


    [1] A. L. De Gennaro, C. Bernard, Semi-analytical prices for lookback and barrier options under the Heston model, Decis. Econ. Financ., 42 (2019), 715–741. https://doi.org/10.1007/s10203-019-00254-x doi: 10.1007/s10203-019-00254-x
    [2] A. Basso, P. Pianca, Correction simulation bias in discrete monitoring of Russian options. Available from: https://www.sci.unich.it/convegni/2000/wmfgen00/basso.ps.
    [3] F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ., 81 (1973), 637–654. https://doi.org/10.1142/9789814759588_0001 doi: 10.1142/9789814759588_0001
    [4] S. Y. Choi, J. P. Fouque, J. H. Kim, Option pricing under hybrid stochastic and local volatility, Quant. Financ., 13 (2013), 1157–1165. https://doi.org/10.1080/14697688.2013.780209 doi: 10.1080/14697688.2013.780209
    [5] L. Clewlow, J. Llanos, C. Strickland, Pricing exotic options in a Black-Scholes world, Financial Operations Research Centre, University of Warwick, 1994. Available from: https://warwick.ac.uk/fac/soc/wbs/subjects/finance/research/wpaperseries/1994/94-54.pdf.
    [6] A. Conze, R. Vishwanathan, Path-dependent options: The case of lookback options, J. Financ., 46 (1991), 1893–1907. https://doi.org/10.2307/2328577 doi: 10.2307/2328577
    [7] J. Cox, Notes on option pricing I: constant elasticity of variance diffusions, Standford University, Graduate School of Business, 1975.
    [8] J. Cox, S. Ross, The valuation of options for alternative stochastic processes, J. Financ. Econ., 3 (1976), 145–166. https://doi.org/10.1016/0304-405X(76)90023-4 doi: 10.1016/0304-405X(76)90023-4
    [9] D. Davydov, V. Linetsky, Pricing and hedging path-dependent options under the CEV process, Manag. Sci., 47 (2001), 881–1027. https://doi.org/10.1287/mnsc.47.7.949.9804 doi: 10.1287/mnsc.47.7.949.9804
    [10] M. Escobar-Anel, W. Fan, The SEV-SV model–-applications in portfolio optimization, Risks, 11 (2023), 30. https://doi.org/10.3390/risks11020030 doi: 10.3390/risks11020030
    [11] A. D. Fitt, P. Wilmott, J. N. Dewynne, An integral equation for the value of a stop-loss option, In: Proceedings of Seventh European Conference on Mathematics in Industry, 1994. Available from: https://www.brookes.ac.uk/getmedia/2991306b-5452-4c52-9074-62355a91dbc8/pub23.pdf.
    [12] J. P. Fouque, C. H. Han, Variance reduction for Monte Carlo methods to evaluate option prices under multi-factor stochastic volatility models, Quant. Financ., 4 (2004), 597–606. Available form: https://www.tandfonline.com/doi/abs/10.1080/14697680400020317?journalCode = rquf20.
    [13] J. P. Fouque, G. Papanicolaou, R. Sircar, K. Solna, Multiscale stochastic volatility asymptotics, SIAM J. Multiscale Model. Simul., 2 (2003), 22–42. https://doi.org/10.1137/030600291 doi: 10.1137/030600291
    [14] J. P. Fouque, G. Papanicolaou, R. Sircar, K. Solna, Multiscale stochastic volatility for equity, interest rate, and credit derivatives, Cambridge University Press, Cambridge, 2011.
    [15] J. P. Fouque, M. Lorig, R. Sircar, Second order multiscale stochastic volatility asymptotics: Stochastic terminal layer analysis & calibration, Financ. Stoch., 20 (2016), 543–588. https://doi.org/10.48550/arXiv.1208.5802 doi: 10.48550/arXiv.1208.5802
    [16] M. B. Goldman, H. B. Sosin, M. A. Gatto, Path dependent options: "Buy at the low, sell at the high", J. Financ., 34 (1979), 1111–1127. https://doi.org/10.2307/2327238 doi: 10.2307/2327238
    [17] P. S. Hagan, D. Kumar, A. S. Kesniewski, D. E. Woodward, Managing smile risk, Wilmott, 1 (2002), 84–108.
    [18] X. J. He, S. Lin, Analytically pricing exchange options with stochastic liquidity and regime switching, J. Futures Markets, 43 (2023), 662–676. https://doi.org/10.1002/fut.22403 doi: 10.1002/fut.22403
    [19] X. J. He, S. Lin, Analytically pricing European options under a hybrid stochastic volatility and interest rate model with a general correlation structure, J. Futures Markets, 43 (2023), 951–967. https://doi.org/10.1002/fut.22421 doi: 10.1002/fut.22421
    [20] T. Kato, A. Takahashi, T. Yamada, An asymptotic expansion formula for up-and-out barrier option price under stochastic volatility model, JSIAM Lett., 5 (2013), 17–20.
    [21] D. Kim, J. H. Yoon, C. R. Park, Pricing external barrier options under a stochastic volatility model, J. Comput. Appl. Math., 394 (2021), 113555. https://doi.org/10.1016/j.cam.2021.113555 doi: 10.1016/j.cam.2021.113555
    [22] J. H. Kim, J. Lee, S. P. Zhu, S. H. Yu, A multiscale correction to the Black-Scholes formula, Appl. Stoch. Model. Bus., 36 (2014), 753–765. https://doi.org/10.1002/asmb.2006 doi: 10.1002/asmb.2006
    [23] J. H. Kim, J. H. Yoon, J. Lee, S. Y. Choi, On the stochastic elasticity of variance diffusions, Econom. Model., 51 (2015), 263–268. https://doi.org/10.1016/j.econmod.2015.08.011 doi: 10.1016/j.econmod.2015.08.011
    [24] M. K. Lee, J. H. Kim, American perpetual exotic option prices under stochastic volatility models with constant or stochastic elasticity of variance (a tentative title), Working paper.
    [25] R. Merton, The theory of rational option pricing, Bell J. Econ. Manag. Sci., 4 (1973), 141–183. https://doi.org/10.2307/3003143 doi: 10.2307/3003143
    [26] B. Oksendal, Stochastic differential equations, Springer, New York, 2003.
    [27] S. H. Park, J. H. Kim, Asymptotic option pricing under the CEV diffusion, J. Math. Anal. Appl., 375 (2011), 490–501. https://doi.org/10.1016/j.jmaa.2010.09.060 doi: 10.1016/j.jmaa.2010.09.060
    [28] S. H. Park, J. H. Kim, A semi-analytic pricing formula for lookback options under a general stochastic volatility model, Stat. Probabil. Lett., 83 (2013), 2537–2543. https://doi.org/10.1016/j.spl.2013.08.002 doi: 10.1016/j.spl.2013.08.002
    [29] E. Reiner, M. Rubinstein, Breaking down the barriers, Risk Mag., 4 (1991), 28–35.
    [30] A. G. Ramm, A simple proof of the Fredholm alternative and a characterization of the Fredholm operators, Am. Math. Mon., 108 (2001), 855–860. https://doi.org/10.2307/2695558 doi: 10.2307/2695558
    [31] L. Shepp, A. N. Shiryaev, The Russian option: Reduced regret, Ann. Appl. Probab., 3 (1993), 631–640. Available from: https://www.jstor.org/stable/2959681.
    [32] P. Wilmott, S. Howison, J. Dewynne, The mathematics of financial derivatives: A student introduction, Cambridge University Press, Cambridge, 1995.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(911) PDF downloads(86) Cited by(1)

Article outline

Figures and Tables

Figures(3)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog