Citation: Xinwei Su, Shuqin Zhang, Lixin Zhang. Periodic boundary value problem involving sequential fractional derivatives in Banach space[J]. AIMS Mathematics, 2020, 5(6): 7510-7530. doi: 10.3934/math.2020481
[1] | K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley and Sons, New York, 1993. |
[2] | Z. L. Wei, Q. D. Li, J. L. Che, Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative, J. Math. Anal. Appl., 367 (2010), 260-272. |
[3] | B. Ahmad, R. Luca, Existence of solutions for a sequential fractional integro-differential system with coupled integral boundary conditions, Chaos Soliton. Fract., 104 (2017), 378-388. |
[4] | B. Ahmad, J. J. Nieto, Sequential fractional differential equations with three-point boundary conditions, Comput. Math. Appl., 64 (2012), 3046-3052. |
[5] | B. Ahmad, J. J. Nieto, Boundary value problems for a class of sequential integrodifferential equations of fractional order, J. Funct. Space. Appl., 2013 (2013), 1-8. |
[6] | B. Ahmad, S. K. Ntouyas, Existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions, Appl. Math. Comput., 266 (2015), 615-622. |
[7] | Y. Chen, X. H. Tang, Solvability of sequential fractional order multi-point boundary value problems at resonance, Appl. Math. Comput., 218 (2012), 7638-7648. |
[8] | Q. D. Li, H. Su, Z. L. Wei, Existence and uniqueness result for a class of sequential fractional differential equations, J. Appl. Math. Comput., 38 (2012), 641-652. |
[9] | C. Promsakon, N. Phuangthong, S. K. Ntouyas, et al. Nonlinear sequential Riemann-Liouville and Caputo fractional differential equations with generalized fractional integral conditions, Adv. Differ. Equ., 2018 (2018), 1-17. |
[10] | H. Ye, R. Huang, Initial value problem for nonlinear fractional differential equations with sequential fractional derivative, Adv. Differ. Equ., 2015 (2015), 1-13. |
[11] | H. Ye, R. Huang, On the nonlinear fractional differential equations with Caputo sequential fractional derivative, Adv. Math. Phys., 2015 (2015), 1-9. |
[12] | O. Abu Arqub, Application of residual power series method for the solution of time-fractional Schrödinger equations in one-dimensional space, Fundam. Inf., 166 (2019), 87-110. |
[13] | O. Abu Arqub, Numerical algorithm for the solutions of fractional order systems of Dirichlet function types with comparative analysis, Fundam. Inf., 166 (2019), 111-137. |
[14] | O. Abu Arqub, N. Shawagfeh, Application of reproducing kernel algorithm for solving Dirichlet time-fractional diffusion-Gordon types equations in porous media, J. Porous Med., 22 (2019), 411-434. |
[15] | A. M. A. El-Sayed, H. H. G. Hashem, E. A. A. Ziada, Picard and Adomian decomposition methods for a quadratic integral equation of fractional order, Comput. Appl. Math., 33 (2014), 95-109. |
[16] | A. Lotfi, S. A. Yousefi, A numerical technique for solving a class of fractional variational problems, J. Comput. Appl. Math., 237 (2013), 633-643. |
[17] | P. Chen, Y. Li, Monotone iterative technique for a class of semilinear evolution equations with nonlocal conditions, Results Math., 63 (2013), 731-744. |
[18] | H. D. Gou, Y. X. Li, Upper and lower solution method for Hilfer fractional evolution equations with nonlocal conditions, Bound. Value Probl., 2019 (2019), 1-25. |
[19] | C. Hu, B. Liu, S. Xie, Monotone iterative solutions for nonlinear boundary value problems of fractional differential equations with deviating arguments, Appl. Math. Comput., 222 (2013), 72-81. |
[20] | F. A. Mcrae, Monotone iterative technique and existence results for fractional differential equations, Nonlinear Anal., 71 (2009), 6093-6096. |
[21] | J. Mu, Y. Li, Monotone interactive technique for impulsive fractional evolution equations, J. Inequal. Appl., 2011 (2011), 1-12. |
[22] | G. Wang, Monotone iterative technique for boundary value problems of a nonlinear fractional differential equation with deviating arguments, J. Comput. Appl. Math., 236 (2012), 2425-2430. |
[23] | L. Zhang, B. Ahmad, G. Wang, Explicit iterations and extremal solutions for fractional differential equation with nonlinear integral boundary conditions, Appl. Math. Comput., 268 (2015), 338-392. |
[24] | C. Z. Bai, Impulsive periodic boundary value problems for fractional differential equation involving Riemann-Liouville sequential fractional derivative, J. Math. Anal. Appl., 384 (2011), 211-231. |
[25] | R. Khalil, M. Al-Horani, A. Yousef, et al. A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. |
[26] | T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57-66. |
[27] | D. Zhao, M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo, 54 (2017), 903-917. |
[28] | D. R. Anderson, D. J. Ulness, Properties of the Katugampola fractional derivative with potential application in quantum mechanics, J. Math. Phys., 56 (2015), 1-15. |
[29] | D. Zhao, X. Pan, M. Luo, A new framework for multivariate general conformable fractional calculus and potential applications, Phys. A, 15 (2018), 271-280. |
[30] | S. Yang, L. Wang, S. Q. Zhang, Conformable derivative: application to non-Darcian flow in lowpermeability porous media, Appl. Math. Lett., 79 (2018), 105-110. |
[31] | H. W. Zhou, S. Yang, S. Q. Zhang, Conformable derivative approach to anomalous diffusion, Phys. A, 491 (2018), 1001-1013. |
[32] | M. Al-Refai, T. Abdeljawad, Fundamental results of conformable Sturm-Liouville eigenvalue problems, Complexity, 2017 (2017), 1-7. |
[33] | S. Asawasamrit, S. K. Ntouyas, P. Thiramanus, et al. Periodic boundary value problems for impulsive conformable fractional integro-differential equations, Bound. Value Probl., 2016 (2016), 1-18. |
[34] | H. Batarfi, J. Losada, J. J. Nieto, et al. Three-point boundary value problems for conformable fractional differential equations, J. Funct. Space., 2015 (2015), 1-6. |
[35] | B. Bayour, D. F. M. Torres, Existence of solution to a local fractional nonlinear differential equation, J. Comput. Appl. Math., 312 (2017), 127-133. |
[36] | M. Bouaouid, M. Hannabou, K. Hilal, Nonlocal conformable fractional differential equations with a measure of noncompactness in Banach spaces, J. Math., 2020 (2020), 1-6. |
[37] | L. M. Feng, S. R. Sun, Oscillation theorems for three classes of conformable fractional differential equations, Adv. Differ. Equ., 2019 (2019), 1-30. |
[38] | A. Jaiswal, D. Bahuguna, Semilinear conformable fractional differential equations in Banach spaces, Differ. Equ. Dyn. Syst., 27 (2019), 313-325. |
[39] | M. M. Li, J. R. Wang, D. O'Regan, Existence and Ulam's stability for conformable fractional differential equations with constant coefficients, Bull. Malays. Math. Sci. Soc., 42 (2019), 1791-1812. |
[40] | S. M. Meng, Y. J. Cui, Multiplicity results to a conformable fractional differential equations involving integral boundary condition, Complexity, 2019 (2019), 1-8. |
[41] | E. Ünal, A. Gökdoğan, Solution of conformable fractional ordinary differential equations via differential transform method, Optik, 128 (2017), 264-273. |
[42] | J. F. Wang, C. Z. Bai, Antiperiodic boundary value problems for impulsive fractional functional differential equations via conformable derivative, J. Funct. Space., 2018 (2018), 1-11. |
[43] | W. Y. Zhong, L. F. Wang, Positive solutions of conformable fractional differential equations with integral boundary conditions, Bound. Value Probl., 2018 (2018), 1-12. |
[44] | W. Y. Zhong, L. F. Wang, Basic theory of initial value problems of conformable fractional differential equations, Adv. Differ. Equ., 2018 (2018), 1-14. |
[45] | K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, New York, 1985. |
[46] | T. Cardinali, R. Precup, P. Rubbioni, A unified existence theory for evolution equations and systems under nonlocal conditions, J. Math. Anal. Appl., 432(2015), 1039-1057. |
[47] | H. P. Heinz, On the behaviour of measure of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal., 7 (1983), 1351-1371. |
[48] | D. O'Regan, R. Precup, Existence criteria for integral equations in Banach spaces, J. Inequal. Appl., 6 (2001), 77-97. |