Citation: Jin Zhang, Wenpeng Zhang. A certain two-term exponential sum and its fourth power means[J]. AIMS Mathematics, 2020, 5(6): 7500-7509. doi: 10.3934/math.2020480
[1] | T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976. |
[2] | W. P. Zhang, H. L. Li, Elementary Number Theory, Shaanxi Normal University Press, Xi'an, 2013. |
[3] | W. Narkiewicz, Classical Problems in Number Theory, Polish Scientifc Publishers, WARSZAWA, 1986. |
[4] | K. Ireland, M. Rosen, A classical introduction to modern number theory, Springer-Verlag, New York, 1982. |
[5] | H. Zhang, W. P. Zhang, The fourth power mean of two-term exponential sums and its application, Mathematical Reports, 19 (2017), 75-81. |
[6] | W. P. Zhang, D. Han, On the sixth power mean of the two-term exponential sums, J. Number Theory, 136 (2014), 403-413. |
[7] | D. Han, A Hybrid mean value involving two-term exponential sums and polynomial character sums, Czechoslovak Mathematical J., 64 (2014), 53-62. |
[8] | X. Y. Liu, W. P. Zhang, On the high-power mean of the generalized Gauss sums and Kloosterman sums, Mathematics, 7 (2019), 907. |
[9] | X. X. Li, J. Y. Hu, The hybrid power mean quartic Gauss sums and Kloosterman sums, Open Math., 15 (2017), 151-156. |
[10] | L. Chen, Z. Y. Chen, Some new hybrid power mean formulae of trigonometric sums, Advances Differences Equation, (2020) 2020: 220. |
[11] | L. Chen, J. Y. Hu, A linear Recurrence Formula Involving Cubic Gauss Sums and Kloosterman Sums, Acta Mathematica Sinica (Chinese Series), 61 (2018), 67-72. |
[12] | S. Chowla, J. Cowles, M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502-506. |
[13] | W. P. Zhang, J. Y. Hu, The number of solutions of the diagonal cubic congruence equation mod p, Mathematical Reports, 20 (2018), 70-76. |
[14] | A. Weil, Basic number theory, Springer-Verlag, New York, 1974 |
[15] | A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A., 34 (1948), 203-210. |