Citation: Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Thabet Abdeljawad, Kottakkaran Sooppy Nisar. Integral transforms of an extended generalized multi-index Bessel function[J]. AIMS Mathematics, 2020, 5(6): 7531-7547. doi: 10.3934/math.2020482
[1] | G. Dattoli, S. Lorenzutta, G. Maino, et al. Generalized Bessel functions and exact solutions of partial differential equations, Rend. Mat., 7 (1992), 12. |
[2] | V. S. Kiryakova, Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus, J. Comput. Appl. Math., 118 (2000), 241-259. |
[3] | M. Kamarujjama, Computation of new class of integrals involving generalized Galue type Struve function, J. Comput. Appl. Math., 351 (2019), 228-236. |
[4] | O. Khan, M. Kamarujjama, N. U. Khan, Certain integral transforms involving the product of Galue type struve function and Jacobi polynomial, Palestine J. Math., 8 (2019), 191-199. |
[5] | M. Kamarujjama, N. U. Khan, O. Khan, The generalized pk-Mittag-Leffler function and solution of fractional kinetic equations, J. Anal., 27 (2019), 1029-1046. |
[6] | N. U. Khan, M. Ghayasuddin, W. A. Khan, et al. Certain unified integral involving Generalized Bessel-Maitland function, South East Asian J. Math. Math. Sci., 11 (2015), 27-36. |
[7] | N. U. Khan, M. Ghayasuddin, Study of the unified double integral associated with generalized Bessel-Maitland function, Pure Appl. Math. Lett., 2016 (2016), 15-19. |
[8] | S. D. Purohit, P. Agarwal, et al. Certain new integral formulas involving the generalized Bessel functions, Bull. Korean Math. Soc., 51 (2014), 995-1003. |
[9] | G. Dattoli, S. Lorenzutta, G. Maino, et al. Theory of multiindex multivariable Bessel functions and Hermite polynomials, Le Mat., 52 (1997), 179-197. |
[10] | J. Choi, P. Agarwal, A note on fractional integral operator associated with multiindex MittagLeffler functions, Filomat, 30 (2016), 1931-1939. |
[11] | M. Kamarujjama, N. U. Khan, O. Khan, Estimation of certain integrals with extended multi-index Bessel function, Malaya J. Mat. (MJM), 7 (2019), 206-212. |
[12] | D. L. Suthar, S. D. Purohit, R. K. Parmar, Generalized fractional calculus of the multi-index Bessel function, Math. Nat. Sci., 1 (2017), 26-32. |
[13] | K. S. Nisar, S. D. Purohit, D. L. Suthar, et al. Fractional calculus and certain integrals of generalized multiindex Bessel function, arXiv preprint arXiv: 1706.08039, 2017. |
[14] | D. L. Suthar, T. Tsagye, Riemann-Liouville fractional integrals and differential formula involving Multi-index Bessel-function, Math. Sci. Lett., 6 (2017), 233-237. |
[15] | D. L. Suthar, D. Kumar, H. Habenom, Solutions of fractional Kinetic equation associated with the generalized multiindex Bessel function via Laplace transform, Differ. Equ. Dyn. Syst., (2019), 1-14. |
[16] | O. I. Marichev, Volterra equation of Mellin convolution type with a Horn function in the kernel, Izv. Akad. Nauk BSSR. Ser. Fiz.-Mat. Nauk, 1 (1974), 128-129. |
[17] | F. W. Olver, D. W. Lozier, R. F. Boisvert, et al. NIST handbook of mathematical functions hardback and CD-ROM, Cambridge university press, 2010. |
[18] | S. Mubeen, R. S. Ali, Fractional operators with generalized Mittag-Leffler k-function, Adv. Differ. Equ., 2019 (2019), 520. |
[19] | A. Petojevic, A note about the Pochhammer symbols, Math. Moravica, 12 (2008), 37-42. |
[20] | M. A. Chaudhry, A. Qadir, H. M. Srivastava, et al. Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput., 159 (2004), 589-602. |
[21] | M. A. Chaudhry, S. M. Zubair, et al. On a class of incomplete gamma functions with applications, CRC press, 2001. |
[22] | H. M. Srivastava, P. W. Karlsson, Multiple gaussian hypergeometric series, Halsted Press (Ellis Horwood Limited, Chichester), 1985. |
[23] | D. V. Widder, Laplace transform (PMS-6), Princeton university press, 2015. |
[24] | I. N. Sneddon, The use of integral transform, Tata McGraw Hill, New Delhi, 1979. |
[25] | M. A. Özarslan, B. Yilmaz, The extended Mittag-Leffler function and its properties, J. Inequal. Appl., 2014 (2014), 85. |
[26] | M. A. Özarslan, Some remarks on extended hypergeometric, extended confluent hypergeometric and extended Appell's functions, J. Comput. Anal. Appl., 14 (2012). |