
Citation: Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Thabet Abdeljawad, Kottakkaran Sooppy Nisar. Integral transforms of an extended generalized multi-index Bessel function[J]. AIMS Mathematics, 2020, 5(6): 7531-7547. doi: 10.3934/math.2020482
[1] | Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244 |
[2] | Weerawat Sudsutad, Wicharn Lewkeeratiyutkul, Chatthai Thaiprayoon, Jutarat Kongson . Existence and stability results for impulsive (k,ψ)-Hilfer fractional double integro-differential equation with mixed nonlocal conditions. AIMS Mathematics, 2023, 8(9): 20437-20476. doi: 10.3934/math.20231042 |
[3] | Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut . On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function. AIMS Mathematics, 2022, 7(5): 7817-7846. doi: 10.3934/math.2022438 |
[4] | Naimi Abdellouahab, Keltum Bouhali, Loay Alkhalifa, Khaled Zennir . Existence and stability analysis of a problem of the Caputo fractional derivative with mixed conditions. AIMS Mathematics, 2025, 10(3): 6805-6826. doi: 10.3934/math.2025312 |
[5] | Tamer Nabil . Ulam stabilities of nonlinear coupled system of fractional differential equations including generalized Caputo fractional derivative. AIMS Mathematics, 2021, 6(5): 5088-5105. doi: 10.3934/math.2021301 |
[6] | Sunisa Theswan, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of ψ-Hilfer generalized proportional fractional nonlocal mixed boundary value problems. AIMS Mathematics, 2023, 8(9): 22009-22036. doi: 10.3934/math.20231122 |
[7] | Choukri Derbazi, Hadda Hammouche . Caputo-Hadamard fractional differential equations with nonlocal fractional integro-differential boundary conditions via topological degree theory. AIMS Mathematics, 2020, 5(3): 2694-2709. doi: 10.3934/math.2020174 |
[8] | Muath Awadalla, Manigandan Murugesan, Manikandan Kannan, Jihan Alahmadi, Feryal AlAdsani . Utilizing Schaefer's fixed point theorem in nonlinear Caputo sequential fractional differential equation systems. AIMS Mathematics, 2024, 9(6): 14130-14157. doi: 10.3934/math.2024687 |
[9] | Naveed Iqbal, Azmat Ullah Khan Niazi, Ikram Ullah Khan, Rasool Shah, Thongchai Botmart . Cauchy problem for non-autonomous fractional evolution equations with nonlocal conditions of order (1,2). AIMS Mathematics, 2022, 7(5): 8891-8913. doi: 10.3934/math.2022496 |
[10] | Zaid Laadjal, Fahd Jarad . Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential equations with Dirichlet boundary conditions. AIMS Mathematics, 2023, 8(1): 1172-1194. doi: 10.3934/math.2023059 |
Fractional calculus (FC), also known as non-integer calculus, has been widely studied in recent over the past decades (beginning 1695) in fields of applied sciences and engineering. FC deals with fractional-order integral and differential operators, which establishes phenomenon model as an increasingly realistic tool for real-world problems. In addition, it has been properly specified the term "memory" particularly in mathematics, physics, chemistry, biology, mechanics, electricity, finance, economics and control theory, we recommend these books to readers who require to learn more about the core ideas of fractional operators [1,2,3,4,5,6]. However, recently, several types of fractional operators have been employed in research education that mostly focus on the Riemann-Liouville (RL) [3], Caputo [3], Hadamard [3], Katugampola [7], conformable [8] and generalized conformable [9]. In 2017, Jarad et al. [10] introduced generalized RL and Caputo proportional fractional derivatives including exponential functions in their kernels. After that, in 2021, new fractional operators combining proportional and classical differintegrals have been introduced in [11]. Moreover, Akgül and Baleanu [12] studied the stability analysis and experiments of the proportional Caputo derivative.
Recently, one type of fractional operator that is popular with researchers now is proportional fractional derivative and integral operators (PFDOs/PFIOs) with respect to another function; for more details see [13,14]. For α>0, ρ∈(0,1], ψ∈C1([a,b]), ψ′>0, the PFIO of order α of h∈L1([a,b]) with respect to ψ is given as:
ρIα,ψa[h(t)]=1ραΓ(α)∫taρHα−1ψ(t,s)[h(s)]ψ′(s)ds, | (1.1) |
where Γ(α)=∫∞0sα−1e−sds, s>0, and
ρHα−1ψ(t,s)=eρ−1ρ(ψ(t)−ψ(s))(ψ(t)−ψ(s))α−1. | (1.2) |
The Riemann-Liouville proportional fractional derivative (RL-PFD) of order α of h∈Cn([a,b]) with respect to ψ is given by
ρDα,ψa[h(t)]=ρDn,ψρaIn−α,ψ[h(t)]=ρDn,ψtρn−αΓ(n−α)∫taρHn−α−1ψ(t,s)[h(s)]ψ′(s)ds, | (1.3) |
with n=[α]+1, where [α] denotes the integer part of order α, ρDn,ψ=ρDψ⋅ρDψ⋯ρDψ⏟ntimes, and ρDψ[h(t)]=(1−ρ)h(t)+ρh′(t))/ψ′(t). The PFD in Caputo type is given as in
CρDα,ψa[h(t)]=ρIn−α,ψa[ρDn,ψ[h(t)]]=ρα−nΓ(n−α)∫taρHn−α−1ψ(t,s)ρDn,ψ[h(s)]ψ′(s)ds. | (1.4) |
The relation of PFI and Caputo-PFD which will be used in this manuscript as
ρIα,ψa[CρDα,ψa[h(t)]]=h(t)−n−1∑k=0ρDk,ψ[h(a)]ρkk!ρHk+1ψ(t,a). | (1.5) |
Moreover, for α, β>0 and ρ∈(0,1], we have the following properties
ρIα,ψa[ρHβ−1ψ(t,a)]=Γ(β)ραΓ(β+α)ρHβ+α−1ψ(t,a), | (1.6) |
CρDα,ψa+[ρHβ−1ψ(t,a)]=ραΓ(β)Γ(β−α)ρHβ−α−1ψ(t,a). | (1.7) |
Notice that if we set ρ=1 in (1.1), (1.3) and (1.4), then we have the RL-fractional operators [3] with ψ(t)=t, the Hadamard fractional operators [3] with ψ(t)=logt, the Katugampola fractional operators [7] with ψ(t)=tμ/μ, μ>0, the conformable fractional operators [8] with ψ(t)=(t−a)μ/μ, μ>0 and the generalized conformable fractional operators [9] with ψ(t)=tμ+ϕ/(μ+ϕ), respectively. Recent interesting results on PFOs with respect to another function could be mention in [15,16,17,18,19,20,21,22,23,24,25].
Exclusive investigations in concepts of qualitative property in fractional-order differential equations (FDEs) have recently gotten a lot of interest from researchers as existence property (EP) and Ulam's stability (US). The EP of solutions for FDEs with initial or boundary value conditions has been investigated applying classical/modern fixed point theorems (FPTs). As we know, US is four types like Hyers-Ulam stability (HU), generalized Hyers-Ulam stability (GHU), Hyers-Ulam-Rassias stability (HUR) and generalized Hyers-Ulam-Rassias stability (GHUR). Because obtaining accurate solutions to fractional differential equations problems is extremely challenging, it is beneficial in various of optimization applications and numerical analysis. As a result, it is requisite to develop concepts of US for these issues, since studying the properties of US does not need us to have accurate solutions to the proposed problems. This qualitative theory encourages us to obtain an efficient and reliable technique for solving fractional differential equations because there exists a close exact solution when the purpose problem is Ulam stable. We suggest some interesting papers about qualitative results of fractional initial/boundary value problems (IVPs/BVPs) involving many types of non-integer order, see [26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43] and references therein.
We are going to present some of the researches that inspired this manuscript. In recent years, pantograph equation (PE) is a type of proportional delay differential equation emerging in deterministic situations which first studied by Ockendon and Taylor [44]:
{u′(t)=μu(t)+κu(λt),a<t<T,u(0)=u0=A,0<λ<1,μ,κ∈R. | (1.8) |
The problem (1.8) has been a broad area of applications in applied branchs such as science, medicine, engineering and economics that use the sake of PEs to model some phenomena of the problem at present which depend on the previous states. For more evidences of PEs, see [45,46,47,48,49,50,51]. There are many researches of literature on nonlinear fractional differential equations involving a specific function with initial, boundary, or nonlocal conditions, for examples in 2013, Balachandran et al. [52] discussed the initial nonlinear PEs as follows:
{CDα[u(t)]=h(t,u(t),u(σt)),α∈(0,1],0<t<1,u(0)=u0,0<σ<1, | (1.9) |
where u0∈R, CDα denotes the Caputo fractional derivative of order α and h∈C([0,1]×R2,R). FC and FPTs were applied to discuss the existence properties of the solutions in their work. In 2018, Harikrishman and co-workers [53] examined the existence properties of ψ-Hilfer fractional derivative for nonlocal problem for PEs:
{HDα,β;ψa+[u(t)]=h(t,u(t),u(σt)),t∈(a,b),σ∈(0,1),α∈(0,1)I1−γ;ψa+[u(a)]=k∑i=1ciu(τi),τi∈(a,b],α≤γ=α+β−αβ, | (1.10) |
where HDα,β;ψa+ represents the ψ-Hilfer fractional derivative of order α and type β∈[0,1], I1−γ;ψa+ is RL-fractional integral of order 1−γ with respect to ψ so that ψ′>0 and h∈C([a,b]×R2,R). Asawasamrit and co-workers [54] used Schaefer's and Banach's FPTs to establish the existence properties of FDEs with mixed nonlocal conditions (MNCs) in 2019. In 2021, Boucenna et al. [55] investigated the existence and uniqueness theorem of solutions for a generalized proportional Caputo fractional Cauchy problem. They solved the proposed problem based on the decomposition formula. Amongst important fractional equations, one of the most interesting equations is the fractional integro-differential equations, which provide massive freedom to explain processes involving memory and hereditary properties, see [56,57].
Recognizing the importance of all parts that we mentioned above, motivated us to generate this paper which deals with the qualitative results to the Caputo proportional fractional integro-differential equation (PFIDE) with MNCs:
{CρDα,ψa+[u(t)]=f(t,u(t),u(λt),ρIω,ψa+[u(λt)],CρDα,ψa+[u(λt)]),t∈(a,T),m∑i=1γiu(ηi)+n∑j=1κjCρDβj,ψa+[u(ξj)]+k∑r=1σrρIδr,ψa+[u(θr)]=A, | (1.11) |
where CρDq,ψa+ is the Caputo-PFDO with respect to another increasing differentiable function ψ of order q={α,βj} via 0<βj<α≤1, j=1,2,…,n, 0<ρ≤1, 0<λ<1, ρIp,ψa+ is the PFIO with respect to another increasing differentiable function ψ of order p={ω,δr}>0 for r=1,2,…,k, 0<ρ≤1, γi,κj,σr,A∈R, 0≤a≤ηi,ξj,θr≤T, i=1,2,…,m, f∈C(J×R4,R), J=[a,T]. We use the help of the famous FPTs like Banach's, Leray-Schauder's nonlinear alternative and Krasnoselskii's to discuss the existence properties of the solutions for (1.11). Moreover, we employ the context of different kinds of US to discuss the stability analysis. The results are well demonstrated by numerical examples at last section.
The advantage of defining MNCs of the problem (1.11) is it covers many cases as follows:
● If we set κj=σr=0, then (1.11) is deducted to the proportional multi-point problem.
● If we set γi=σr=0, then (1.11) is deducted to the PFD multi-point problem.
● If we set γi=κj=0, then (1.11) is deducted to the PFI multi-point problem.
● If we set α=ρ=1, (1.11) emerges in nonlocal problems [58].
This work is collected as follows. Section 2 provides preliminary definitions. The existence results of solutions for (1.11) is studied in Section 3. In Section 4, stability analysis of solution for (1.11) in frame of HU, GHU, HUR and GHUR are given is established. Section 5 contains the example to illustrate the theoretical results. In addition, the summarize is provided in the last part.
Before proving, assume that E=C(J,R) is the Banach space of all continuous functions from J into R provided with ‖u‖=supt∈J{|u(t)|}. The symbol ρIq,ψa+[Fu(s)(c)] means that
ρIq,ρ,ψa+[Fu(c)]=1ρqΓ(q)∫caρHq−1ψ(c,s)[Fu(s)]ψ′(s)ds, |
where q={α,α−βj,α+δr}, c={t,ηi,ξj,θr}, and
Fu(t):=f(t,u(t),u(λt),ρIω,ψa+[u(λt)],Fu(λt)). | (2.1) |
In order to convert the considered problem into a fixed point problem, (1.11) must be transformed to corresponding an integral equation. We discuss the following key lemma.
Lemma 2.1. Let 0<βj<α≤1, j=1,2,…,n, ρ>0, δr, >0, r=1,2,…,k and Ω≠0. Then, the Caputo-PFIDE with MNCs:
{CρDα,ψa+[u(t)]=Fu(t),t∈(a,T),m∑i=1γiu(ηi)+n∑j=1κjCρDβj,ψa+[u(ξj)]+k∑r=1σrρIδr,ψa+[u(θr)]=A, | (2.2) |
is equivalent to the integral equation
u(t)=ρIα,ψa+[Fu(t)]+eρ−1ρ(ψ(t)−ψ(a))Ω(A−m∑i=1γiρIα,ψa+[Fu(ηi)]−n∑j=1κjρIα−βj,ψa+[Fu(ξj)]−k∑r=1σrρIα+δr,ψa+[Fu(θr)]), | (2.3) |
where
Ω=m∑i=1γieρ−1ρ(ψ(ηi)−ψ(a))+k∑r=1σrρHδr+1ψ(θr,a)ρδrΓ(1+δr). | (2.4) |
Proof. Suppose u is the solution of (2.2). By using (1.5), the integral equation can be rewritten as
u(t)=ρIα,ψa+[Fu(t)]+c1eρ−1ρ(ψ(t)−ψ(a)), | (2.5) |
where c1∈R. Taking CρDβj,ψa+ and ρIδr,ψa+ into (2.5) with (1.6) and (1.7), we obtain
CρDβj,ψa+[u(t)]=ρIα−βj,ψa+[Fu(t)],ρIδr,ψa+[u(t)]=ρIα+δr,ψa+[Fu(t)]+c1ρHδr+1ψ(t,a)ρδrΓ(1+δr). |
Applying the nonlocal conditions in (2.2), we have
A=m∑i=1γiρIα,ψa+[Fu(ηi)]+n∑j=1κjρIα−βj,ψa+[Fu(ξj)]+k∑r=1σrρIα+δr,ψa+[Fu(θr)]+c1(m∑i=1γieρ−1ρ(ψ(ηi)−ψ(a))+k∑r=1σrρHδr+1ψ(θr,a)ρδrΓ(1+δr)). |
Solving the above equation, we get the value
c1=1Ω(A−m∑i=1γiρIα,ψa+[Fu(ηi)]−n∑j=1κjρIα−βj,ψa+[Fu(ξj)]−k∑r=1σrρIα+δr,ψa+[Fu(θr)]), |
where Ω is given as in (2.4). Taking c1 in (2.5), we obtain (2.3).
On the other hand, it is easy to show by direct computing that u(t) is provided as in (2.3) verifies (2.2) via the given MNCs. The proof is done.
By using Lemma 2.1, we will set the operator K:E→E
(Ku)(t)=ρIα,ψa+[Fu(t)]+eρ−1ρ(ψ(t)−ψ(a))Ω(A−m∑i=1γiρIα,ψa+[Fu(ηi)]−n∑j=1κjρIα−βj,ψa+[Fu(ξj)]−k∑r=1σrρIα+δr,ψa+[Fu(θr)]), | (3.1) |
where K1, K2:E→E defined by
(K1u)(t)=ρIα,ψa+Fu(t), | (3.2) |
(K2u)(t)=eρ−1ρ(ψ(t)−ψ(a))Ω(A−m∑i=1γiρIα,ψa+[Fu(ηi)]−n∑j=1κjρIα−βj,ψa+[Fu(ξj)]−k∑r=1σrρIα+δr,ψa+[Fu(θr)]). | (3.3) |
Notice that Ku=K1u+K2u. It should be noted that (1.11) has solutions if and only if K has fixed points. Next, we are going to examine the existence properties of solutions for (1.11), which is discussed by employing Banach's FPT, Leray-Schauder's nonlinear alternative and Krasnoselskii's FPT. For the benefit of calculation in this work, we will provide the constants:
Θ(χ,σ)=(ψ(χ)−ψ(a))σρσΓ(σ+1), | (3.4) |
Λ=Θ(T,α)+1|Ω|(m∑i=1|γi|Θ(ηi,α)+n∑j=1|κj|Θ(ξj,α−βj)+k∑r=1|σr|Θ(θr,α+δr)). | (3.5) |
Firstly, the uniqueness result for (1.11) will be stidied by applying Banach's FPT.
Lemma 3.1. (Banach contraction principle [59]) Assume that B is a non-empty closed subset of a Banach space E. Then any contraction mapping K from B into itself has a unique fixed point.
Theorem 3.2. Let f∈C(J×R4,R)so that:
(H1) there exist constants L1>0, L2>0, 0<L3<1 so that
|f(t,u1,v1,w1,z1)−f(t,u2,v2,w2,z2)|≤L1(|u1−u2|+|v1−v2|)+L2|w1−w2|+L3|z1−z2|, |
∀ui, vi, wi, zi∈R, i=1,2, t∈J.
If
(2L1+L2Θ(T,ω)1−L3)Λ<1, | (3.6) |
then the Caputo-PFIDE with MNCs (1.11) has a unique solution on J, where (3.4) and (3.5) refers to Θ(T,ω) and Λ.
Proof. First, we will convert (1.11) into u=Ku, where K is given as in (3.1). Clearly, the fixed points of K are solutions to (1.11). By using the Banach's FPT, we are going to prove that K has a FP which is a unique solution of (1.11).
Define supt∈J|f(t,0,0,0,0)|:=M1<∞ and setting Br1:={u∈E:‖u‖≤r1} with
r1≥M1Λ1−L3+|A||Ω|1−(2L1+L2Θ(T,ω)1−L3)Λ, | (3.7) |
where Ω, Θ(T,ω) and Λ are given as in (2.4), (3.4) and (3.5). Clearly, Br1 is a bounded, closed and convex subset of E. We have divided the method of the proof into two steps:
Step I. We prove that KBr1⊂Br1.
For each u∈Br1, we obtain
|(Ku)(t)|≤ρIα,ψa+|Fu(t)|+eρ−1ρ(ψ(t)−ψ(a))|Ω|(|A|+m∑i=1|γi|ρIα,ψa+|Fu(ηi)|+n∑j=1|κj|ρIα−βj,ψa+|Fu(ξj)|+k∑r=1|σr|ρIα+δr,ψa+|Fu(θr)|). |
From the assumption (H1), it follows that
|Fu(t)|≤|f(t,u(t),u(λt),ρIω,ψa+[u(λt)],Fu(λt))−f(t,0,0,0,0)|+|f(t,0,0,0,0)|≤L1(|u(t)|+|u(λt)|)+L2|ρIω,ψa+[u(λt)]|+L3|Fu(λt)|+M1≤2L1‖u‖+L2‖u‖ρIω,ψa+[1](t)+L3‖Fu(⋅)‖+M1=(2L1+L2(ψ(T)−ψ(a))ωρωΓ(ω+1))‖u‖+L3‖Fu(⋅)‖+M1. |
Then
‖Fu(⋅)‖≤(2L1+L2Θ(T,ω))‖u‖+M11−L3. |
This implies that
|(Ku)(t)|≤ρIα,ψa+((2L1+L2Θ(T,ω))‖u‖+M11−L3)(t)+eρ−1ρ(ψ(t)−ψ(a))|Ω|[|A|+m∑i=1|γi|ρIα,ψa+((2L1+L2Θ(T,ω))‖u‖+M11−L3)(ηi)+n∑j=1|κj|ρIα−βj,ψa+((2L1+L2Θ(T,ω))‖u‖+M11−L3)(ξj)+k∑r=1|σr|ρIα+δr,ψa+((2L1+L2Θ(T,ω))‖u‖+M11−L3)(θr)]. |
By using the fact of 0<eρ−1ρ(ψ(t)−ψ(s))≤1, a≤s<t≤T, it follows that
|(Ku)(t)|≤((2L1+L2Θ(T,ω))‖u‖+M11−L3)((ψ(T)−ψ(a))αραΓ(α+1)+1|Ω|[m∑i=1|γi|(ψ(ηi)−ψ(a))αραΓ(α+1)+n∑j=1|κj|(ψ(ξj)−ψ(a))α−βjρα−βjΓ(α−βj+1)+k∑r=1|σr|(ψ(θr)−ψ(a))α+δrρα+δrΓ(α+δr+1)])+|A||Ω|=((2L1+L2Θ(T,ω))‖u‖+M11−L3)(Θ(T,α)+1|Ω|[m∑i=1|γi|Θ(ηi,α)+n∑j=1|κj|Θ(ξj,α−βj)+k∑r=1|σr|Θ(θr,α+δr)])+|A||Ω|=(2L1+L2Θ(T,ω)1−L3)Λr1+M1Λ1−L3+|A||Ω|≤r1, |
which implies that ‖Ku‖≤r1. Thus, KBr1⊂Br1.
Step II. We prove that K:E→E is contraction.
For each u, v∈E, t∈J, we obtain
|(Ku)(t)−(Kv)(t)|≤ρIα,ψa+|Fu−Fv|(T)+eρ−1ρ(ψ(T)−ψ(a))|Ω|(m∑i=1|γi|ρIα,ψa+|Fu−Fv|(ηi)+n∑j=1|κj|ρIα−βj,ψa+|Fu−Fv|(ξj)+k∑r=1|σr|ρIα+δr,ψa+|Fu−Fv|(θr)). | (3.8) |
From (H1) again, we can compute that
|Fu(t)−Fv(t)|≤|f(t,u(t),u(λt),ρIω,ψa+[u(λt)],Fu(λt))−f(t,v(t),v(λt),ρIω,ψa+[v(λt)],Fv(λt))|≤L1(|u(t)−v(t)|+|u(λt)−v(λt)|)+L2ρIω,ψa+|u(λt)−v(λt)|+L3|Fu(λt)−Fv(λt)|≤2L1‖u−v‖+L2(ψ(T)−ψ(a))ωρωΓ(ω+1)‖u−v‖+L3‖Fu(⋅)−Fv(⋅)‖. |
Then
‖Fu(⋅)−Fv(⋅)‖≤(2L1+L2Θ(T,ω)1−L3)‖u−v‖. | (3.9) |
By inserting (3.9) into (3.8), one has
|(Ku)(t)−(Kv)(t)|≤ρIα,ψa+((2L1+L2Θ(T,ω)1−L3)‖u−v‖)(T)+eρ−1ρ(ψ(T)−ψ(a))|Ω|[m∑i=1|γi|ρIα,ψa+((2L1+L2Θ(T,ω)1−L3)‖u−v‖)(ηi)+n∑j=1|κj|ρIα−βj,ψa+((2L1+L2Θ(T,ω)1−L3)‖u−v‖)(ξj)+k∑r=1|σr|ρIα+δr,ψa+((2L1+L2Θ(T,ω)1−L3)‖u−v‖)(θr)]≤(2L1+L2Θ(T,ω)1−L3)[(ψ(T)−ψ(a))αραΓ(α+1)+1|Ω|(m∑i=1|γi|(ψ(ηi)−ψ(a))αραΓ(α+1)+n∑j=1|κj|(ψ(ξj)−ψ(a))α−βjρα−βjΓ(α−βj+1)+k∑r=1|σr|(ψ(θr)−ψ(a))α+δrρα+δrΓ(α+δr+1))]‖u−v‖=(2L1+L2Θ(T,ω)1−L3)Λ‖u−v‖, |
also, ‖Ku−Kv‖≤(2L1+L2Θ(T,ω))/(1−L3)Λ‖u−v‖. It follows from [(2L1+L2Θ(T,ω))/(1−L3)]Λ<1, that K is contraction. Then, (from Lemma 3.1), we conclude that K has the unique fixed point, that is the unique solution to (1.11) in E.
Next, Leray-Schauder's nonlinear alternative is employed to analyze in the second property.
Lemma 3.3. (Leray-Schauder's nonlinear alternative [59]) Assume that E is a Banach space, C is a closed and convex subset of M, X is an open subset of C and 0∈X. Assume that F:¯X→C is continuous, compact (that is, F(¯X) is a relatively compact subset of C) map. Then either (i) F has a fixed point in ¯X, or (ii) there is x∈∂X (the boundary of X in C) and ϱ∈(0,1) with z=ϱF(z).
Theorem 3.4. Assume that f∈C(J×R4,R) so that:
(H2) there exists ΨC(R+,R+) and Ψ is non-decreasing, p, f∈C(J,R+), q∈C(J,R+∪{0}) so that
|f(t,u,v,w,z)|≤p(t)Ψ(|u|+|v|)+f(t)|w|+q(t)|z|,∀t∈J,∀u,v,w,z∈R, |
where p0=supt∈J{p(t)}, f0=supt∈J{f(t)}, q0=supt∈J{q(t)}<1.
(H3) there exists a constant N>0 so that
N|A||Ω|+(f0Θ(T,ω)N+2p0Ψ(N)1−q0)Λ>1, |
where Θ(T,ω) and Λ are given as in (3.4) and (3.5).
Then the Caputo-PFIDE with MNCs (1.11) has at least one solution.
Proof. Assume that K is given as in (3.1). Next, we are going to prove that K maps bounded sets (balls) into bounded sets in E. For any r2>0, assume that Br2:={u∈E:‖u‖≤r2}∈E, we have, for each t∈J,
|(Ku)(t)|≤ρIα,ψa+|Fu(T)|+eρ−1ρ(ψ(T)−ψ(a))|Ω|(|A|+m∑i=1|γi|ρIα,ψa+|Fu(ηi)|+n∑j=1|κj|ρIα−βj,ψa+|Fu(ξj)|+k∑r=1|σr|ρIα+δr,ψa+|Fu(θr)|). |
It follows from (H2) that
|CρDα,ψa+[u(t)]|≤p(t)Ψ(|u(t)|+|u(λt)|)+f(t)|ρIω,ψa+[u(λt)]|+q(t)|CρDα,ψa+[u(λt)]|≤p(t)Ψ(2‖u‖)+f(t)(ψ(T)−ψ(a))ωρωΓ(ω+1)‖u‖+q(t)|CρDα,ψa+[u(t)]|. |
Then, we have
|CρDα,ψa+u(t)|≤p(t)Ψ(2‖u‖)+f(t)Θ(T,ω)‖u‖1−q(t). |
For any a≤s<t≤T, we have 0<eρ−1ρ(ψ(t)−ψ(s))≤1, then
|(Ku)(t)|≤[(ψ(T)−ψ(a))αραΓ(α+1)+1|Ω|(m∑i=1|γi|(ψ(ηi)−ψ(a))αραΓ(α+1)+n∑j=1|κj|(ψ(ξj)−ψ(a))α−βjρα−βjΓ(α−βj+1)+k∑r=1|σr|(ψ(θr)−ψ(a))α+δrρα+δrΓ(α+δr+1))](p0Ψ(2‖u‖)+f0Θ(T,ω)‖u‖1−q0)+|A||Ω|=(2p0Ψ(‖u‖)+f0Θ(T,ω)‖u‖1−q0)Λ+|A||Ω|, |
which leads to
‖Ku‖≤(2p0Ψ(‖u‖)+f0Θ(T,ω)‖u‖1−q0)Λ+|A||Ω|:=N. |
Now, we will prove that K maps bounded sets into equicontinuous sets of E.
Given τ1<τ2 where τ1, τ2∈J, and for each u∈Br2. Then, we obtain
|(Ku)(τ2)−(Ku)(τ1)|≤|ρIα,ψa+[Fu(τ2)]−ρIα,ψa+[Fu(τ1)]|+|eρ−1ρ(ψ(τ2)−ψ(a))−eρ−1ρ(ψ(τ1)−ψ(a))||Ω|(|A|+m∑i=1|γi|ρIα,ψa+|Fu(ηi)|+n∑j=1|κj|ρIα−βj,ψa+|Fu(ξj)|+k∑r=1|σr|ρIα+δr,ψa+|Fu(θr)|)≤(2p0Ψ(‖u‖)+f0Θ(T,ω)‖u‖1−q0)(1ραΓ(α)∫τ2τ1ρHα−1ψ(τ2,s)ψ′(s)ds+1ραΓ(α)∫τ1a|ρHα−1ψ(τ2,s)−ρHα−1ψ(τ1,s)|ψ′(s)ds)+|eρ−1ρ(ψ(τ2)−ψ(a))−eρ−1ρ(ψ(τ1)−ψ(a))||Ω|(2p0Ψ(‖u‖)+f0Θ(T,ω)‖u‖1−q0)×(|A|+m∑i=1|γi|(ψ(ηi)−ψ(a))αραΓ(α+1)+n∑j=1|κj|(ψ(ξj)−ψ(a))α−βjρα−βjΓ(α−βj+1)+k∑r=1|σr|(ψ(θr)−ψ(a))α+δrρα−δrΓ(α+δr+1))≤[1ραΓ(α+1)(|(ψ(τ2)−ψ(a))α−(ψ(τ1)−ψ(a))α|+2(ψ(τ2)−ψ(τ1))α)+1|Ω|(|A|+m∑i=1|γi|Θ(ηi,α)+n∑j=1|κj|Θ(ξj,α−βj)+k∑r=1|σr|Θ(θr,α+δr))×|eρ−1ρ(ψ(τ2)−ψ(a))−eρ−1ρ(ψ(τ1)−ψ(a))|][2p0Ψ(‖u‖)+f0Θ(T,ω)‖u‖1−q0]. |
Clearly, which independent of u∈Br2 the above inequality, |(Ku)(τ2)−(Ku)(τ1)|→0 as τ2→τ1. Hence, by the Arzelá-Ascoli property, \mathcal{K} : \mathcal{E} \to \mathcal{E} is completely continuous.
Next, we will prove that there is \mathcal{B} \subseteq \mathcal{E} where \mathcal{B} is an open set, u \neq \varrho \mathcal{K}(u) for \varrho \in (0, 1) and u \in \partial \mathcal{B} . Assume that u\in\mathcal{E} is a solution of u = \varrho \mathcal{K}u , \varrho \in (0, 1) . Hence, it follows that
\begin{eqnarray*} \vert u(t) \vert & = & \vert \varrho(\mathcal{K}u)(t)\vert\\ &\leq& \frac{|{A}|}{\vert\Omega \vert} + \left( \frac{2p_0 \Psi(\|u\|) + f_0 \Theta(T,\omega) \Vert u \Vert}{1 - q_0}\right)\\ && \times\left[\Theta(T,\alpha) + \frac{1}{\vert\Omega \vert}\left(\sum\limits_{i = 1}^{m} \vert \gamma_{i}\vert \Theta(\eta_{i},\alpha) + \sum\limits_{j = 1}^{n} \vert \kappa_{j}\vert \Theta(\xi_{j},\alpha-\beta_j) + \sum\limits_{r = 1}^{k} \vert \sigma_{r}\vert \Theta(\theta_r, \alpha+\delta_r)\right)\right] \\ & = & \frac{|{A}|}{\vert\Omega \vert} + \left( \frac{2p_0 \Psi(\|u\|)+f_0 \Theta(T,\omega) \Vert u \Vert}{1 - q_0}\right)\Lambda, \end{eqnarray*} |
which yields
\begin{equation*} \|u\| \leq \frac{\vert {A} \vert}{\vert\Omega \vert} + \left( \frac{2p_0 \Psi(\|u\|)+f_0 \Theta(T,\omega)\Vert u \Vert}{1 - q_0}\right)\Lambda. \end{equation*} |
Consequently,
\begin{equation*} \frac{\|u\|}{\frac{|{A}|}{\vert\Omega \vert} + \left( \frac{2p_0 \Psi(\|u\|)+f_0 \Theta(T,\omega) \Vert u \Vert}{1 - q_0} \right)\Lambda} \leq 1. \end{equation*} |
By (H_3) , there is N so that \|u\| \neq N . Define
\begin{equation*} \mathcal{B} = \{u \in \mathcal{E} : \|u\| < N\} \qquad {\rm{and}} \qquad \mathcal{Q} = \mathcal{B}\cap B_{r_2}. \end{equation*} |
Note that \mathcal{K} : \overline{\mathcal{Q}} \to \mathcal{E} is continuous and completely continuous. By the option of \mathcal{Q} , there is no u \in \partial \mathcal{Q} so that u = \varrho \mathcal{K}u , \exists\varrho \in (0, 1) . Thus, (by Lemma 3.3 ), we conclude that \mathcal{K} has fixed point u\in\overline{\mathcal{Q}} which verifies that (1.11) has at least one solution.
By applying Krasnoselskii's \mathbb{FPT} , the existence property will be achieved.
Lemma 3.5. (Krasnoselskii's fixed point theorem [60]) Let \mathcal{M} be a closed, bounded, convex and nonempty subset of a Banach space. Let K_1 , K_2 be the operators such that (i) K_1x+K_2y \in \mathcal{M} whenever x, y \in \mathcal{M} ; (ii) K_1 is compact and continuous; (iii) K_2 is contraction mapping. Then there exists z \in \mathcal{M} such that z = K_1z+K_2z .
Theorem 3.6. Suppose that (H_1) holds and f \in\mathcal{C}(\mathcal{J}\times\mathbb{R}^{4}, \mathbb{R}) so that:
(H_4) \exists g \in \mathcal{C}(\mathcal{J}, \mathbb{R}^+) so that
\begin{equation*} f(t,u,v,w,z)| \leq g(t),\quad \forall (t,u,v,w,z) \in \mathcal{J} \times \mathbb{R}^4. \end{equation*} |
If
\begin{equation} \left( \frac{2\mathbb{L}_1+\mathbb{L}_2\Theta(T,\omega)}{1-\mathbb{L}_{3}} \right) \left(\Lambda - \Theta(T,\alpha)\right) < 1, \end{equation} | (3.10) |
then the Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (1.11) has at least one solution.
Proof. Define \sup_{t \in \mathcal{J}} \vert g(t) \vert = \Vert g \Vert and picking
\begin{equation} r_3 \geq \frac{\vert {A} \vert}{\vert \Omega \vert} + \Vert g \Vert \Lambda, \end{equation} | (3.11) |
we consider B_{r_3} = \left\{ u \in \mathcal{E}: \Vert u \Vert \leq r_3 \right\} . Define \mathcal{K}_1 and \mathcal{K}_2 on B_{r_3} as (3.2) and (3.3).
For any u, v \in B_{r_3} , we obtain
\begin{eqnarray*} && \vert (\mathcal{K}_1u)(t) + (\mathcal{K}_2v)(t)\vert\\ &\leq& \sup\limits_{t \in \mathcal{J}}\Bigg\{ {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}\vert F_u(t)\vert + \frac{e^{\frac{\rho-1}{\rho}\big( \psi(t)-\psi(a) \big)}}{\vert \Omega \vert }\Bigg(\vert {A} \vert + \sum\limits_{i = 1}^{m}\vert \gamma_{i}\vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}\vert F_v (\eta_i)\vert + \sum\limits_{j = 1}^{n}\vert \kappa_{j}\vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha-\beta_j,\psi}\vert F_v (\xi_j)\vert\\ && + \sum\limits_{r = 1}^{k}\vert \sigma_{r}\vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha+\delta_r,\psi}\vert F_v(\theta_r)\vert\Bigg)\Bigg\}\\ &\leq& \frac{\vert {A} \vert}{\vert \Omega \vert} + \Vert g \Vert \Bigg\{\frac{\big( \psi(T)-\psi(a) \big)^{\alpha}}{\rho^{\alpha}\Gamma(\alpha+1)} + \frac{1}{\vert \Omega \vert}\Bigg(\sum\limits_{i = 1}^{m} \frac{\vert \gamma_{i} \vert \big( \psi(\eta_i)-\psi(a) \big)^{\alpha}}{\rho^{\alpha}\Gamma(\alpha+1)} + \sum\limits_{j = 1}^{n} \frac{\vert \kappa_{j}\vert \big( \psi(\xi_j)-\psi(a) \big)^{\alpha-\beta_j}}{\rho^{\alpha-\beta_j}\Gamma(\alpha-\beta_j+1)}\\ && + \sum\limits_{r = 1}^{k} \frac{\vert \sigma_{r} \vert \big( \psi(\theta_r)-\psi(a) \big)^{\alpha+\delta_r}}{\rho^{\alpha+\delta_r}\Gamma(\alpha+\delta_r+1)}\Bigg)\Bigg\}\\ & = & \frac{\vert {A} \vert}{\vert \Omega \vert} + \Vert g \Vert \Lambda \leq r_3. \end{eqnarray*} |
This implies that \mathcal{K}_1u+\mathcal{K}_2v \in B_{r_3} , which verifies Lemma 3.5 (i).
Next, we are going to show that Lemma 3.5 (ii) is verified.
Assume that u_n is a sequence so that u_n \to u \in \mathcal{E} as n \to \infty . Hence, we get
\begin{equation*} \left \vert (\mathcal{K}_1u_n)(t)-(\mathcal{K}_1u)(t)\right \vert \leq {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi} \vert F_{u_n} - F_u\vert (T) \leq \Theta(T,\alpha) \Vert F_{u_n} - F_u \Vert. \end{equation*} |
Since f is continuous, verifies that F_{u} is also continuous. By the Lebesgue dominated convergent theorem, we have
\begin{equation*} \vert(\mathcal{K}_1u_n)(t) - (\mathcal{K}_1u)(t)\vert \to 0\quad {\rm{as}}\quad n\to \infty. \end{equation*} |
Therefore,
\begin{equation*} \Vert\mathcal{K}_1u_n - \mathcal{K}_1u\Vert \to 0\quad {\rm{as}}\quad n\to \infty. \end{equation*} |
Thus, implies that \mathcal{K}_1u is continuous. Also, the set \mathcal{K}_1B_{r_3} is uniformly bounded as
\begin{equation*} \Vert\mathcal{K}_1u\Vert \leq \Theta(T,\alpha)\Vert g \Vert. \end{equation*} |
Next step, we will show the compactness of \mathcal{K}_1 .
Define \sup \{\vert f(t, u, v, w, z) \vert; (t, u, v, w, z) \in \mathcal{J}\times \mathbb{R}^4\} = f^* < \infty , thus, for each \tau_1, \tau_2 \in \mathcal{J} with \tau_1 \leq \tau_2 , it follows that
\begin{array}{l} \left\vert (\mathcal{K}_1u)(\tau_2) - (\mathcal{K}_1u)(\tau_1) \right \vert = \left \vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[F_u(\tau_2)] - {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[F_u(\tau_1)] \right \vert \\ \leq \frac{1}{\rho^\alpha \Gamma(\alpha+1)} \Big( \left| \left( \psi(\tau_2)-\psi(a) \right)^{\alpha}-\left( \psi(\tau_1)-\psi(a) \right)^{\alpha}\right| +2\left( \psi(\tau_2)-\psi(\tau_1) \right)^{\alpha} \Big) \; f^*. \end{array} |
Clearly, the right-hand side of the above inequality is independent of u and \left \vert (\mathcal{K}_1u)(\tau_2)-(\mathcal{K}_1u)(\tau_1) \right \vert \to 0 , as \tau_2 \to \tau_1 . Hence, the set \mathcal{K}_1B_{r_3} is equicontinuous, also \mathcal{K}_1 maps bounded subsets into relatively compact subsets, which implies that \mathcal{K}_1B_{r_3} is relatively compact. By the Arzelá-Ascoli theorem, then \mathcal{K}_1 is compact on B_{r_3} .
Finally, we are going to show that \mathcal{K}_2 is contraction.
For each u , v \in B_{r_{3}} and t \in \mathcal{J} , we get
\begin{eqnarray*} &&\left\vert (\mathcal{K}_2 u)(t) - (\mathcal{K}_2 v)(t) \right\vert\\ &\leq& \frac{1}{\vert \Omega \vert}\Bigg(\sum\limits_{i = 1}^{m} \vert \gamma_{i} \vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi} \vert F_u - F_{v} \vert(\eta_i) + \sum\limits_{j = 1}^{n} \vert \kappa_{j} \vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha-\beta_j,\psi}\vert F_u - F_{v} \vert(\xi_j) + \sum\limits_{r = 1}^{k} \vert \sigma_{r} \vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha+\delta_r,\psi}\vert F_u - F_{v} \vert(\theta_r)\Bigg)\\ &\leq& \frac{1}{\vert \Omega \vert}\Bigg(\sum\limits_{i = 1}^{m} \frac{\vert \gamma_{i} \vert \left( \psi(\eta_i)-\psi(a) \right)^{\alpha}}{\rho^{\alpha}\Gamma(\alpha+1)} + \sum\limits_{j = 1}^{n} \frac{\vert \kappa_{j}\vert \left( \psi(\xi_j)-\psi(a) \right)^{\alpha-\beta_j}}{\rho^{\alpha-\beta_j}\Gamma(\alpha-\beta_j+1)} + \sum\limits_{r = 1}^{k} \frac{\vert \sigma_{r} \vert \left( \psi(\theta_r)-\psi(a) \right)^{\alpha+\delta_r}}{\rho^{\alpha+\delta_r}\Gamma(\alpha+\delta_r+1)}\Bigg)\\ && \times \left( \frac{2\mathbb{L}_1+\mathbb{L}_2\Theta(T,\omega)}{1-\mathbb{L}_{3}}\right) \Vert u-v\Vert\\ & = & \left( \frac{2\mathbb{L}_1+\mathbb{L}_2\Theta(T,\omega)}{1-\mathbb{L}_{3}} \right) \left(\Lambda - \Theta(T,\alpha)\right) \Vert u-v\Vert. \end{eqnarray*} |
Since (3.10) holds, implies that \mathcal{K}_2 is contraction and also Lemma 3.5 (iii) verifies.
Therefore, the assumptions of Lemma 3.5 are verified. Then, (by Lemma 3.5 ) which verifies that (1.11) has at least one solution.
This part is proving different kinds of \mathbb{US} like \mathbb{HU} stable, \mathbb{GHU} stable, \mathbb{HUR} stable and \mathbb{GHUR} stable of the Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (1.11).
Definition 4.1. The Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (1.11) is called \mathbb{HU} stable if there is a constant \Delta_{f} > 0 so that for every \epsilon > 0 and the solution z\in \mathcal{E} of
\begin{equation} \left\vert {_{}^{C\rho}}\mathbb{D}_{a^+}^{\alpha,\psi}[z(t)] - f(t, z(t), z(\lambda t), {_{}^{\rho}}\mathbb{I}_{a^+}^{\omega,\psi}[z(\lambda t)], {_{}^{C\rho}}\mathbb{D}_{a^+}^{\alpha,\psi}[z(\lambda t)]) \right\vert \leq \epsilon, \end{equation} | (4.1) |
there exists the solution u\in \mathcal{E} of (1.11) so that
\begin{equation} \left\vert z(t) - u(t)\right\vert \leq \Delta_{f}\epsilon ,\quad t\in \mathcal{J}. \end{equation} | (4.2) |
Definition 4.2. The Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (1.11) is called \mathbb{GHU} stable if there is a function \Phi \in \mathcal{C}(\mathbb{R}^{+}, \mathbb{R}^{+}) via \Phi(0) = 0 so that, for every solution z\in \mathcal{E} of
\begin{equation} \left\vert {_{}^{C\rho}}\mathbb{D}_{a^+}^{\alpha,\psi}[z(t)] - f(t, z(t), z(\lambda t), {_{}^{\rho}}\mathbb{I}_{a^+}^{\omega,\psi}[z(\lambda t)], {_{}^{C\rho}}\mathbb{D}_{a^+}^{\alpha,\psi}[z(\lambda t)]) \right\vert \leq \epsilon \Phi(t), \end{equation} | (4.3) |
there is the solution u\in \mathcal{E} of (1.11) so that
\begin{equation} \left\vert z(t) - u(t)\right\vert \leq \Phi(\epsilon),\quad t\in \mathcal{J}. \end{equation} | (4.4) |
Definition 4.3. The Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (1.11) is called \mathbb{HUR} stable with respect to \Phi \in \mathcal{C}(\mathcal{J}, \mathbb{R}^{+}) if there is a constant \Delta_{f, \Phi} > 0 such that for every \epsilon > 0 and for any the solution z\in \mathcal{E} of (4.3) there is the solution u\in \mathcal{E} of (1.11) so that
\begin{equation} \left\vert z(t) - u(t)\right\vert \leq \Delta_{f,\Phi}\epsilon \Phi(t),\quad t\in \mathcal{J}. \end{equation} | (4.5) |
Definition 4.4. The Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (1.11) is called \mathbb{GHUR} stable with respect to \Phi \in \mathcal{C}(\mathcal{J}, \mathbb{R}^{+}) if there is a constant \Delta_{f, \Phi} > 0 so that for any the solution z\in \mathcal{E} of
\begin{equation} \left\vert {_{}^{C\rho}}\mathbb{D}_{a^+}^{\alpha,\psi}[z(t)] - f(t, z(t), z(\lambda t), {_{}^{\rho}}\mathbb{I}_{a^+}^{\omega,\psi}[z(\lambda t)], {_{}^{C\rho}}\mathbb{D}_{a^+}^{\alpha,\psi}[z(\lambda t)]) \right\vert \leq \Phi(t), \end{equation} | (4.6) |
there is the solution u\in \mathcal{E} of (1.11) so that
\begin{equation} \left\vert z(t) - u(t)\right\vert \leq \Delta_{f,\Phi}\Phi(t),\quad t\in \mathcal{J}. \end{equation} | (4.7) |
Remark 4.5. Cleary, (i) Definition 4.1 \Rightarrow Definition 4.2 ; (ii) Definition 4.3 \Rightarrow Definition 4.4 ; (iii) Definition 4.3 for \Phi(t) = 1 \Rightarrow Definition 4.1 .
Remark 4.6. z\in \mathcal{E} is the solution of (4.1) if and only if there is the function w\in \mathcal{E} (which depends on z ) so that: (i) |w(t)|\leq \epsilon , \forall t \in \mathcal{J} ; (ii) {_{}^{C\rho}}\mathbb{D}_{a^+}^{\alpha, \psi}[z(t)] = F_{z}(t) + w(t) , t\in \mathcal{J} .
Remark 4.7. z\in \mathcal{E} is the solution of (4.3) if and only if there is the function v\in \mathcal{E} (which depends on z ) so that: (i) |v(t)|\leq \epsilon \Phi(t) , \forall t \in \mathcal{J} ; (ii) {_{}^{C\rho}}\mathbb{D}_{a^+}^{\alpha, \psi}[z(t)] = F_{z}(t) + v(t) , t\in \mathcal{J} .
From Remark 4.6 , the solution of
\begin{equation*} {_{}^{C\rho}}\mathbb{D}_{a^+}^{\alpha,\psi}[z(t)] = f(t, z(t), z(\lambda t), {_{}^{\rho}}\mathbb{I}_{a^+}^{\omega,\psi}[z(\lambda t)], {_{}^{C\rho}}\mathbb{D}_{a^+}^{\alpha,\psi}[z(\lambda t)]) + w(t),\quad t\in \mathcal{J}, \end{equation*} |
can be rewritten as
\begin{eqnarray} z(t) & = & {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[F_z(t)] + \frac{e^{\frac{\rho-1}{\rho} \big( \psi(t)-\psi(a) \big)}}{\Omega}\Bigg({A} - \sum\limits_{i = 1}^{m}\gamma_{i} {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[F_z(\eta_i)] - \sum\limits_{j = 1}^{n}\kappa_{j} {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha-\beta_j,\psi}[F_z(\xi_j)]\\ && - \sum\limits_{r = 1}^{k}\sigma_{r}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha+\delta_r,\psi}[F_z(\theta_r)]\Bigg) + {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi} [w(t)] - \frac{e^{\frac{\rho-1}{\rho} \big( \psi(t)-\psi(a) \big)}}{\Omega}\Bigg(\sum\limits_{i = 1}^{m}\gamma_{i}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[w(\eta_i)] \\ && + \sum\limits_{j = 1}^{n}\kappa_{j}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha-\beta_j,\psi}[w(\xi_j)] + \sum\limits_{r = 1}^{k}\sigma_{r} {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha+\delta_r,\psi}[w(\theta_r)]\Bigg). \end{eqnarray} | (4.8) |
Firstly, the key lemma that will be applied in the presents of \mathbb{HU} stable and \mathbb{GHU} stable.
Lemma 4.8. Assume that 0 < \epsilon, \rho \leq 1 . If z\in \mathbb{E} verifies (4.1), hence z is the solution of
\begin{equation} \left\vert z(t) - (\mathcal{K}z)(t)\right\vert \leq \Lambda\epsilon, \end{equation} | (4.9) |
where \Lambda is given as in (3.5).
Proof. By Remark 4.6 with (4.8), it follows that
\begin{array}{l} \left\vert z(t)-(\mathcal{K}z)(t)\right\vert = \Bigg\vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[w(t)] - \frac{e^{\frac{\rho-1}{\rho}\big( \psi(t)-\psi(a) \big)}}{\Omega}\Bigg(\sum\limits_{i = 1}^{m}\gamma_{i}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[w(\eta_i)] + \sum\limits_{j = 1}^{n}\kappa_{j}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha-\beta_j,\psi} [w(\xi_j)]\\ \qquad + \sum\limits_{r = 1}^{k}\sigma_{r}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha+\delta_r,\psi}[w(\theta_r)]\Bigg) \Bigg \vert \\ \leq {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}\vert w(T)\vert + \frac{1}{\vert \Omega \vert}\Bigg(\sum\limits_{i = 1}^{m}\vert \gamma_{i}\vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}\vert w(\eta_i) \vert + \sum\limits_{j = 1}^{n}\vert \kappa_{j}\vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha-\beta_j,\psi}\vert w (\xi_j)\vert\\ \qquad + \sum\limits_{r = 1}^{k}\vert \sigma_{r}\vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha+\delta_r,\psi}\vert w(\theta_r)\vert\Bigg)\\ \leq \Bigg[ \frac{\big( \psi(T)-\psi(a) \big)^{\alpha}}{\rho^{\alpha}\Gamma(\alpha+1)} + \frac{1}{|\Omega|}\Bigg(\sum\limits_{i = 1}^{m} \frac{|\gamma_{i}| \big( \psi(\eta_i)-\psi(a) \big)^{\alpha}}{\rho^{\alpha}\Gamma(\alpha+1)} + \sum\limits_{j = 1}^{n} \frac{|\kappa_{j}| \big( \psi(\xi_j)-\psi(a) \big)^{\alpha-\beta_j}}{\rho^{\alpha-\beta_j}\Gamma(\alpha-\beta_j+1)}\\ \qquad + \sum\limits_{r = 1}^{k} \frac{|\sigma_{r}| \big( \psi(\theta_r)-\psi(a) \big)^{\alpha+\delta_r}}{\rho^{\alpha+\delta_r}\Gamma(\alpha+\delta_r+1)} \Bigg)\Bigg]\epsilon\\ = \Lambda \epsilon, \end{array} |
where \Lambda is given by (3.5), from which (4.9) is achieved.
Next, we will show the \mathbb{HU} and \mathbb{GHU} stability results.
Theorem 4.9. Suppose that f \in \mathcal{C}(\mathcal{J}\times\mathbb{R}^4, \mathbb{R}) . If (H_{1}) is verified with (3.6) trues. Hence the Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (1.11) is \mathbb{HU} stable as well as \mathbb{GHU} stable on \mathcal{J} .
Proof. Assume that z\in \mathcal{E} is the solution of (4.1) and assume that u is the unique solution of
\begin{equation*} \left\{ \begin{array}{l} {_{}^{C\rho}}\mathbb{D}_{a^+}^{\alpha,\psi} [u(t)] = f(t, u(t),u(\lambda t), {_{}^{\rho}}\mathbb{I}_{a^+}^{\omega,\psi}[u(\lambda t)], {_{}^{C\rho}}\mathbb{D}_{a^+}^{\alpha,\psi} [u(\lambda t)]),\quad t\in (a,T),\quad \lambda \in (0,1), \\ \sum\limits_{i = 1}^{m}\gamma_{i} u(\eta_i) + \sum\limits_{j = 1}^{n}\kappa_j {_{}^{C\rho}}\mathbb{D}_{a^+}^{\beta_j,\psi} [u(\xi_j)] + \sum\limits_{r = 1}^{k}\sigma_r {_{}^{\rho}}\mathbb{I}_{a^+}^{\delta_r,\psi}[u(\theta_r)] = A. \end{array} \right. \end{equation*} |
By using |x-y|\leq |x|+|y| with Lemma 4.8, one has
\begin{eqnarray*} \left\vert z(t) - u(t)\right\vert & = & \Bigg\vert z(t) - {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[F_u(t)] - \frac{e^{\frac{\rho-1}{\rho}\big( \psi(t)-\psi(a) \big)}}{\Omega}\Bigg({A} - \sum\limits_{i = 1}^{m}\gamma_{i}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[F_u(\eta_i)]\\ && \qquad - \sum\limits_{j = 1}^{n}\kappa_{j}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha-\beta_j,\psi}[F_u(\xi_j)] - \sum\limits_{r = 1}^{k}\sigma_{r}{_{}^{\rho}}\mathbb{I}_{a^{+}}^{\alpha+\delta_r,\psi}[F_u(\theta_r)]\Bigg)\Bigg\vert\\ & = & \left\vert z(t)-(\mathcal{K}z)(t)+(\mathcal{K}z)(t)-(\mathcal{K}u)(t)\right\vert\\ &\leq& \left\vert z(t)-(\mathcal{K}z)(t)\right\vert + \left\vert (\mathcal{K}z)(t)-(\mathcal{K}u)(t)\right\vert\\ &\leq& \Lambda \epsilon + \left( \frac{2\mathbb{L}_1 + \mathbb{L}_2 \Theta(T,\omega)}{1 - \mathbb{L}_3} \right) \Lambda \vert z(t) - u(t) \vert, \end{eqnarray*} |
where \Lambda is given as in (3.5). This offers |z(t)-u(t)|\leq\Delta_{f}\epsilon , where
\begin{equation} \Delta_{f} = \frac{\Lambda }{1-\left( \frac{2\mathbb{L}_1 + \mathbb{L}_2 \Theta(T,\omega)}{1 - \mathbb{L}_3} \right) \Lambda }. \end{equation} | (4.10) |
Then, the Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (1.11) is \mathbb{HU} stable. In addition, if we input \Phi(\epsilon) = \Delta_{f}\epsilon via \Phi(0) = 0 , hence (1.11) is \mathbb{GHU} stable.
Thanks of Remark 4.7 , the solution
\begin{equation*} {_{}^{C\rho}}\mathbb{D}_{a^+}^{\alpha,\psi} [z(t)] = f(t, z(t), z(\lambda t), {_{}^{\rho}}\mathbb{I}_{a^+}^{\omega,\psi}[z(\lambda t)], {_{}^{C\rho}}\mathbb{D}_{a^+}^{\alpha,\psi} [z(\lambda t)])+v(t),\quad t\in (a,T], \end{equation*} |
can be rewritten as
\begin{eqnarray} z(t) & = & {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[F_z(t)] + \frac{e^{\frac{\rho-1}{\rho}\big( \psi(t)-\psi(a) \big)}}{\Omega}\Bigg({A} - \sum\limits_{i = 1}^{m}\gamma_{i}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[F_z(\eta_i)] -\sum\limits_{j = 1}^{n}\kappa_{j}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha-\beta_j,\psi}[F_z(\xi_j)]\\ && - \sum\limits_{r = 1}^{k}\sigma_{r}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha+\delta_r,\psi}[F_z(\theta_r)]\Bigg) + {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi} [v(t)] - \frac{e^{\frac{\rho-1}{\rho}\big( \psi(t)-\psi(a) \big)}}{\Omega}\Bigg(\sum\limits_{i = 1}^{m}\gamma_{i}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[v(\eta_i)] \\ && + \sum\limits_{j = 1}^{n}\kappa_{j}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha-\beta_j,\psi} [v(\xi_j)] + \sum\limits_{r = 1}^{k}\sigma_{r} {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha+\delta_r,\psi} [v(\theta_r)]\Bigg). \end{eqnarray} | (4.11) |
For the next proving, we state the following assumption:
(H_5) there is an increasing function \Phi\in \mathcal{C}(\mathcal{J}, \mathbb{R}^+) and there is a constant n_{\Phi} > 0 , so that, for each t\in J ,
\begin{equation} {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[\Phi(t)] \leq n_{\Phi} \Phi(t). \end{equation} | (4.12) |
Lemma 4.10. Assume that z\in \mathcal{E} is the solution of (4.3). Hence, z verifies
\begin{equation} \left\vert z(t) - (\mathcal{K}z)(t)\right\vert \leq \Lambda \epsilon n_{\Phi} \Phi(t) ,\quad 0 < \epsilon \leq 1. \end{equation} | (4.13) |
where \Lambda is given as in (3.5).
Proof. From (4.11), we have
\begin{eqnarray*} && \left\vert z(t)-(\mathcal{K}z)(t) \right \vert \\ & = & \Bigg \vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi} v(t) - \frac{e^{\frac{\rho-1}{\rho}\big( \psi(t)-\psi(a) \big)}}{\Omega}\Bigg(\sum\limits_{i = 1}^{m}\gamma_{i}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[v(\eta_i)] + \sum\limits_{j = 1}^{n}\kappa_{j}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha-\beta_j,\psi}[v(\xi_j)] + \sum\limits_{r = 1}^{k}\sigma_{r}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha+\delta_r,\psi}[v(\theta_r)]\Bigg) \Bigg \vert \\ &\leq& \Bigg[{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi} [\Phi(T)] + \frac{1}{\vert \Omega \vert}\Bigg(\sum\limits_{i = 1}^{m}\vert \gamma_{i}\vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi} [\Phi(\eta_i)] + \sum\limits_{j = 1}^{n}\vert \kappa_{j}\vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha-\beta_j,\psi} [\Phi(\xi_j)] + \sum\limits_{r = 1}^{k}\vert \sigma_{r}\vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha+\delta_r,\psi} [\Phi(\theta_r)]\Bigg)\Bigg]\epsilon\\ &\leq& \Bigg [\frac{\big( \psi(T)-\psi(a) \big)^{\alpha}}{\rho^{\alpha}\Gamma(\alpha+1)} + \frac{1}{|\Omega|}\Bigg( \sum\limits_{i = 1}^{m}\frac{|\gamma_{i}| \big( \psi(\eta_i)-\psi(a) \big)^{\alpha}}{\rho^{\alpha}\Gamma(\alpha+1)} + \sum\limits_{j = 1}^{n} \frac{|\kappa_{j}| \big( \psi(\xi_j)-\psi(a) \big)^{\alpha-\beta_j}}{\rho^{\alpha-\beta_j}\Gamma(\alpha-\beta_j+1)}\\ && + \sum\limits_{r = 1}^{k} \frac{|\sigma_{r}| \big( \psi(\theta_r)-\psi(a) big)^{\alpha+\delta_r}}{\rho^{\alpha+\delta_r}\Gamma(\alpha+\delta_r+1)} \Bigg)\Bigg]\epsilon n_{\Phi} \Phi(t)\\ & = & \Lambda \epsilon n_{\Phi} \Phi(t), \end{eqnarray*} |
where \Lambda is given by (3.5), which leads to (4.13).
Finally, we are going to show \mathbb{HUR} and \mathbb{GHUR} stability results.
Theorem 4.11. Suppose f \in \mathcal{C}(\mathcal{J}\times\mathbb{R}^4, \mathbb{R}) . If (H_{1}) is satisfied with (3.6) trues. Hence, the Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (1.11) is \mathbb{HUR} stable as well as \mathbb{GHUR} stable on \mathcal{J} .
Proof. Assume that \epsilon > 0 . Suppose that z\in \mathcal{E} is the solution of (4.6) and u is the unique solution of (1.11). By using the triangle inequality, Lemma 4.8 and (4.11), we estamate that
\begin{eqnarray*} \left\vert z(t)-u(t)\right\vert & = & \Bigg\vert z(t) - {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[F_u(t)] - \frac{e^{\frac{\rho-1}{\rho}\big( \psi(t)-\psi(a) \big)}}{\Omega}\Bigg(A - \sum\limits_{i = 1}^{m}\gamma_{i}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[F_u(\eta_i)] - \sum\limits_{j = 1}^{n}\kappa_{j}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha-\beta_j,\psi}[F_u(\xi_j)]\\ && \qquad - \sum\limits_{r = 1}^{k}\sigma_{r}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha+\delta_r,\psi}[F_u(\theta_r)]\Bigg)\Bigg\vert\\ & = & \left\vert z(t)-(\mathcal{K}z)(t)+(\mathcal{K}z)(t)-(\mathcal{K}u)(t)\right\vert\\ &\leq& \left\vert z(t)-(\mathcal{K}z)(t)\right\vert +\left\vert (\mathcal{K}z)(t)-(\mathcal{K}x)(t)\right\vert\\ &\leq& \Lambda \epsilon n_{\Phi} \Phi(t) + \left( \frac{2\mathbb{L}_1 + \mathbb{L}_2 \Theta(T,\omega)}{1 - \mathbb{L}_3} \right) \Lambda \vert z(t) - u(t) \vert, \end{eqnarray*} |
where \Lambda is given as in (3.5), verifies that |z(t)-u(t)| \leq \Delta_{f, \Phi}\epsilon \Phi(t) , where
\begin{equation*} \Delta_{f,\Phi} : = \frac{\Lambda n_{\Phi}}{1-\left( \frac{2\mathbb{L}_1 + \mathbb{L}_2 \Theta(T,\omega)}{1 - \mathbb{L}_3} \right) \Lambda }. \end{equation*} |
Then, the Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (1.11) is \mathbb{HUR} stable. In addition, if we input \Phi(t) = \epsilon \Phi(t) with \Phi(0) = 0 , then (1.11) is \mathbb{GHUR} stable.
This part shows numerical instances that demonstrate the exactness and applicability of our main results.
Example 5.1. Discussion the following nonlinear Caputo- \mathbb{PFIDE} with \mathbb{MNC} s of the form:
\begin{equation} \left\{ \begin{array}{l} {_{}^{{C \frac{2}{3}}}\mathbb{D}}_{0^+}^{\frac{1}{2},\sqrt{t}} [u(t)] = f\left(t, u(t), u\left(\frac{t}{\sqrt{3}}\right), {_{}^{\frac{2}{3}}}\mathbb{I}_{0^+}^{\frac{3}{4},\sqrt{t}} \left[u\left(\frac{t}{\sqrt{3}}\right)\right], {_{}^{{C\frac{2}{3}}}\mathbb{D}}_{0^+}^{\frac{1}{2},\sqrt{t} \left[u\left(\frac{t}{\sqrt{3}}\right)\right]}\right),\quad t\in (0,1), \\[0.5cm] \sum\limits_{i = 1}^{2}\left(\frac{i+1}{2} \right) u\left( \frac{2i+1}{5} \right) + \sum\limits_{j = 1}^{3} \left(\frac{2j-1}{5}\right) {_{}^{{C\frac{2}{3}}}\mathbb{D}}_{0^+}^{\frac{2j+1}{20},\sqrt{t}} \left[u\left(\frac{j}{4}\right) \right] + \sum\limits_{r = 1}^{2} \left(\frac{r}{3}\right) {_{}^{\frac{2}{3}}\mathbb{I}}_{0^+}^{\frac{r}{r+1},\sqrt{t}}\left[u \left(\frac{r+1}{4} \right)\right] = 1. \end{array} \right. \end{equation} | (5.1) |
Here, \alpha = 1/2 , \rho = 2/3 , \psi(t) = \sqrt{t} , \lambda = 1/\sqrt{3} , \omega = 3/4 , a = 0 , T = 1 , m = 2 , n = 3 , k = 2 , \gamma_{i} = (i+1)/2 , \eta_{i} = (2i+1)/5 , i = 1, 2 , \kappa_j = (2j-1)/5 , \beta_{j} = (2j+1)/20 , \xi_{j} = j/4 , j = 1, 2, 3 , \sigma_{r} = r/3 , \delta_{r} = r/(r+1) , \theta_{r} = (r+1)/4 , r = 1, 2 . By using Python, we obtain that \Omega \approx 2.4309\neq 0 and \Lambda \approx 4.042711 .
(I) If we set the nonlinear function
\begin{equation*} f(t,u,v,w) = \frac{1}{3^{t+3}(2+\cos2t)}\left(\frac{\vert u \vert}{1+\vert u \vert}+\frac{\vert v \vert}{1+\vert v \vert}+\frac{\vert w \vert}{1+\vert w \vert}+\frac{\vert z \vert}{1+\vert z \vert} \right). \end{equation*} |
For any u_i , v_i , w_i , z_i\in \mathbb{R} , i = 1, 2 and t\in [0, 1] , one has
\begin{equation*} \vert f(t,u_1,v_1,w_1,z_1)-f(t,u_2,v_2,w_2,z_2) \vert \leq \frac{1}{3^{t+3}}\left(\left\vert u_1-u_2\right\vert + \left\vert v_1-v_2\right\vert + \vert w_1-w_2 \vert+\vert z_1-z_2 \vert \right). \end{equation*} |
The assumption (H_1) is satisfied with \mathbb{L}_{1} = \mathbb{L}_2 = \mathbb{L}_3 = \frac{1}{27} . Hence
\begin{equation*} \Bigg(\frac{2\mathbb{L}_1 +\mathbb{L}_2\Theta(T,\omega)}{1-\mathbb{L}_3}\Bigg)\Lambda \approx 0.540287 < 1. \end{equation*} |
All conditions of Theorem 3.2 are verified. Hence, the nonlinear Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (5.1) has a unique solution on [0, 1] . Moreover, we obtain
\begin{equation*} \Delta_{f} = \frac{\Lambda }{1-\left( \frac{2\mathbb{L}_1 + \mathbb{L}_2 \Theta(T,\omega)}{1 - \mathbb{L}_3} \right) \Lambda } \approx 8.793988 > 0. \end{equation*} |
Hence, from Theorem 4.9, the nonlinear Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (5.1) is \mathbb{HU} stable and also \mathbb{GHU} stable on [0, 1] . In addition, by taking \Phi(t) = e^{\frac{\rho-1}{\rho}\psi(t)}\left(\psi(t)-\psi(0)\right) , we have
\begin{equation*} {_{}^{\frac{2}{3}}\mathbb{I}}_{0^+}^{\frac{1}{2},\psi}[\Phi(t)] = \frac{2\sqrt{2}}{\sqrt{3\pi}}\, e^{-0.5\psi(t)}\left( \psi(t)-\psi(0) \right)^{\frac{3}{2}} \leq \frac{2\sqrt{2}}{\sqrt{3\pi}} \left( \psi(t)-\psi(0) \right)^{\frac{1}{2}} \Phi(t). \end{equation*} |
Thus, (4.12) is satisfied with n_\Phi = \frac{2\sqrt{2}}{\sqrt{3\pi}} > 0 . Then, we have
\begin{equation*} \Delta_{f,\Phi} : = \frac{\Lambda n_{\Phi}}{1-\left( \frac{2\mathbb{L}_1 + \mathbb{L}_2 \Theta(T,\omega)}{1 - \mathbb{L}_3} \right) \Lambda } \approx 8.102058 > 0. \end{equation*} |
Hence, from Theorem 4.11, the nonlinear Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (5.1) is \mathbb{HUR} stable and also \mathbb{GHUR} stable.
(II) If we take the nonlinear function
\begin{equation*} f(t,u,v,w) = \frac{1}{4^{t+2}}\left(\frac{\vert u \vert + \vert v \vert}{1+\vert u \vert+ \vert v \vert} + \frac{1}{2}\right) + \frac{1}{2^{t+3}}\left(\frac{\vert w \vert+ \vert z \vert}{1+\vert w \vert + \vert z \vert} + \frac{1}{2}\right), \end{equation*} |
we have
\begin{equation*} \vert f(t,u,v,w,z) \vert \leq \frac{1}{4^{t+2}}\left(\left\vert u\right\vert + \left\vert v\right\vert + \frac{1}{2}\right)+ \frac{1}{2^{t+3}} \left(\vert w \vert+\vert z \vert + \frac{1}{2}\right). \end{equation*} |
From the above inequality with (H_2) – (H_3) , we get that p(t) = 1 /4^{t+2} , \Psi\left(\vert u \vert +\vert v \vert \right) = \vert u \vert +\vert v \vert +1/2 and h(t) = q(t) = 1 / 2^{t+3} . So, we have p_0 = 1/16 and h_0 = q_0 = 1/8 . From all the datas, we can compute that the constant N > 0.432489 . All assumptions of Theorem 3.4 are verified. Hence, the nonlinear Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (5.1) has at least one solution on [0, 1] . Moreover,
\begin{equation*} \Delta_{f} : = \frac{\Lambda }{1-\left( \frac{2\mathbb{L}_1 + \mathbb{L}_2 \Theta(T,\omega)}{1 - \mathbb{L}_3} \right) \Lambda } \approx 63.662781 > 0, \end{equation*} |
Hence, from Theorem 4.9, the nonlinear Caputo- \mathbb{PFIDE} with \mathbb{MNC} s 5.1 is \mathbb{HU} stable and also \mathbb{GHU} stable on [0, 1] . In addition, by taking \Phi(t) = e^{\frac{\rho-1}{\rho}\psi(t)}\left(\psi(t)-\psi(0)\right)^{\frac{1}{2}} , we have
\begin{equation*} {_{}^{\frac{2}{3}}\mathbb{I}}_{0^+}^{\frac{1}{2},\psi}[\Phi(t)] = \frac{\sqrt{3 \pi}}{2\sqrt{2}}\, e^{-0.5\psi(t)}\left( \psi(t)-\psi(0) \right) \leq \frac{\sqrt{3\pi}}{2\sqrt{2}} \left( \psi(t)-\psi(0) \right)^{\frac{1}{2}} \Phi(t). \end{equation*} |
Thus, (4.12) is satisfied with n_\Phi = \frac{\sqrt{3\pi}}{2\sqrt{2}} > 0 . Then, we have
\begin{equation*} \Delta_{f,\Phi} : = \frac{\Lambda n_{\Phi}}{1-\left( \frac{2\mathbb{L}_1 + \mathbb{L}_2 \Theta(T,\omega)}{1 - \mathbb{L}_3} \right) \Lambda } \approx 69.0997 > 0 , \end{equation*} |
Hence, from Theorem 4.11, the nonlinear Caputo- \mathbb{PFIDE} with \mathbb{MNC} s 5.1 is \mathbb{HUR} stable and also \mathbb{GHUR} stable on [0, 1] .
(III) If we set the nonlinear function
\begin{equation*} f(t,u,v,w) = \frac{1}{4^{t+2}}\left(\frac{\vert u \vert + \vert v \vert}{1+\vert u \vert+ \vert v \vert}\right) + \frac{1}{2^{t+3}}\left(\frac{\vert w \vert+ \vert z \vert}{1+\vert w \vert + \vert z \vert}\right). \end{equation*} |
For u_i , v_i , w_i , z_i\in \mathbb{R} , i = 1, 2 and t\in [0, 1] , we have
\begin{equation*} \vert f(t,u_1,v_1,w_1,z_1)-f(t,u_2,v_2,w_2,z_2) \vert \leq \frac{1}{4^{t+2}}\left(\left\vert u_1-u_2\right\vert + \left\vert v_1-v_2\right\vert \right)+ \frac{1}{2^{t+3}} \left(\vert w_1-w_2 \vert+\vert z_1-z_2 \vert \right). \end{equation*} |
The assumption (H_4) is satisfied with \mathbb{L}_{1} = \mathbb{L}_2 = \frac{1}{16} , \mathbb{L}_{3} = \frac{1}{8} and
\begin{equation*} \vert f(t,u,v,w,z) \vert \leq \frac{1}{4^{t+2}}+ \frac{1}{2^{t+3}}, \end{equation*} |
which yields that
\begin{equation*} g(t) = \frac{1}{4^{t+2}}+ \frac{1}{2^{t+3}}. \end{equation*} |
Then
\begin{equation*} \left( \frac{2\mathbb{L}_1+\mathbb{L}_2\Theta(T,\omega)}{1-\mathbb{L}_{3}} \right) \left(\Lambda - \Theta(T,\alpha)\right) \approx 0.660387 < 1. \end{equation*} |
All assumptions of Theorem 3.6 are verified. Hence the nonlinear Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (5.1) has at least one solution on [0, 1] .
Furthermore, we get
\begin{equation*} \Delta_{f} = \frac{\Lambda }{1-\left( \frac{2\mathbb{L}_1 + \mathbb{L}_2 \Theta(T,\omega)}{1 - \mathbb{L}_3} \right) \Lambda } \approx 43.1392148 > 0. \end{equation*} |
Hence, from Theorem 4.9, the nonlinear Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (5.1) is \mathbb{HU} stable and also \mathbb{GHU} stable on [0, 1] . In addition, by taking \Phi(t) = e^{\frac{\rho-1}{\rho}\psi(t)}\left(\psi(t)-\psi(0)\right)^{2} , we have
\begin{equation*} {_{}^{\frac{2}{3}}\mathbb{I}}_{0^+}^{\frac{1}{2},\psi}[\Phi(t)] = \frac{8\sqrt{6}}{15\sqrt{\pi}}\, e^{-0.5\psi(t)}\left( \psi(t)-\psi(0) \right)^{\frac{5}{2}} \leq \frac{8\sqrt{6}}{15\sqrt{\pi}} \left( \psi(t)-\psi(0) \right)^{\frac{1}{2}} \Phi(t). \end{equation*} |
Thus, (4.12) is satisfied with n_\Phi = \frac{8\sqrt{6}}{15\sqrt{\pi}} > 0 . Then, we have
\begin{equation*} \Delta_{f,\Phi} : = \frac{\Lambda n_{\Phi}}{1-\left( \frac{2\mathbb{L}_1 + \mathbb{L}_2 \Theta(T,\omega)}{1 - \mathbb{L}_3} \right) \Lambda } \approx 31.79594 > 0. \end{equation*} |
Hence, from Theorem 4.11, the nonlinear Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (5.1) is \mathbb{HUR} stable and also \mathbb{GHUR} stable on [0, 1] .
Example 5.2. Discussion the following linear Caputo- \mathbb{PFIDE} with \mathbb{MNC} s of the form:
\begin{equation} \left\{ \begin{array}{l} {_{}^{{C\frac{2}{3}}}\mathbb{D}}_{0^+}^{\alpha,\psi(t)} [u(t)] = {e^{\frac{-1}{2}\psi(t)}} \big( \psi(t)-\psi(0) \big)^{\frac{1}{2}},\quad t\in (0,1), \\[0.5cm] \sum\limits_{i = 1}^{2}\left(\frac{i+1}{2} \right) u\left( \frac{2i+1}{5} \right) + \sum\limits_{j = 1}^{3} \left(\frac{2j-1}{5}\right) {_{}^{{C\frac{2}{3}}}\mathbb{D}}_{0^+}^{\frac{2j+1}{20},\sqrt{t}} \left[u\left(\frac{j}{4}\right)\right] + \sum\limits_{r = 1}^{2} \left(\frac{r}{3}\right) {_{}^{\frac{2}{3}}\mathbb{I}}_{0^+}^{\frac{r}{r+1},\sqrt{t}}\left[u \left(\frac{r+1}{4} \right)\right] = 1. \end{array} \right. \end{equation} | (5.2) |
By Lemma 2.1 , the implicit solution of the problem (5.2)
\begin{eqnarray*} u(t) & = & \frac{\Gamma(\frac{3}{2})}{(\frac{2}{3})^{\alpha} \Gamma(\frac{3}{2}+\alpha)}\; e^{-\frac{1}{2}\psi(t)}\big( \psi(t)-\psi(0) \big)^{\frac{1}{2}+\alpha} \\ && + \frac{e^{-\frac{1}{2}\big( \psi(t)-\psi(0)\big)}}{\Omega} \Bigg( 1-\sum\limits_{i = 1}^{2}\Big(\frac{i+1}{2}\Big)\; e^{-\frac{1}{2}\psi\big( \frac{2i+1}{5} \big)}\Big( \psi\Big( \frac{2i+1}{5}\Big) - \psi(0) \Big)^{\frac{1}{2}} \\ && - \sum\limits_{j = 1}^{3}\Big(\frac{2j-1}{5}\Big) \frac{\Gamma(\frac{3}{2})}{(\frac{2}{3})^{\alpha-\frac{2j+1}{20}}\Gamma \Big(\frac{3}{2} +\alpha - \frac{2j+1}{20} \Big)} \; e^{-\frac{1}{2}\psi\big( \frac{j}{4} \big)} \Big( \psi\Big( \frac{j}{4} \Big) - \psi(0) \Big)^{\frac{1}{2}+\alpha-\frac{2j+1}{20}}\\ && -\sum\limits_{r = 1}^{2}\Big(\frac{r}{3}\Big) \frac{\Gamma(\frac{3}{2})}{(\frac{2}{3})^{\alpha+\frac{r}{r+1}}\Gamma \Big(\frac{3}{2} +\alpha + \frac{r}{r+1} \Big)} \; e^{-\frac{1}{2}\psi\big( \frac{r+1}{4} \big)} \Big( \psi\Big( \frac{r+1}{4} \Big) - \psi(0) \Big)^{\frac{1}{2}+\alpha+\frac{r}{r+1}}\Bigg), \end{eqnarray*} |
where
\begin{equation*} \Omega = \sum\limits_{i = 1}^{2}\Big(\frac{i+1}{2}\Big)e^{-\frac{1}{2} \big(\psi(t)-\psi(0) \big)} + \sum\limits_{r = 1}^{2}\Big(\frac{r}{3}\Big) \frac{\Big( \psi\big( \frac{r+1}{4} \big) - \psi(0) \Big)^{\frac{r}{r+1}} e^{-\frac{1}{2} \big(\psi( \frac{r+1}{4})-\psi(0) \big)} }{(\frac{2}{3})^{\frac{r}{r+1}}\Gamma \Big(1+ \frac{r}{r+1} \Big)}. \end{equation*} |
We consider several cases of the following function \psi(t) :
(I) If \psi(t) = t^{\alpha} then the solution of linear Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (5.2) is given as in
\begin{eqnarray*} u(t) & = & \frac{\Gamma(\frac{3}{2})}{(\frac{2}{3})^{\alpha} \Gamma(\frac{3}{2}+\alpha)}e^{-\frac{t^{\alpha}}{2}}\big(t^{\alpha} \big)^{1/2+\alpha} + \frac{e^{-\frac{t^{\alpha}}{2}}}{\Omega} \Bigg( 1-\sum\limits_{i = 1}^{2}\Big(\frac{i+1}{2}\Big)e^{-\frac{1}{2}\big(\frac{2i+1}{5} \big)^{\alpha}} \big( \frac{2i+1}{5} \big)^{\frac{\alpha}{2}} \\ && - \sum\limits_{j = 1}^{3}\Big(\frac{2j-1}{5}\Big) \frac{\Gamma(\frac{3}{2})}{(\frac{2}{3})^{\alpha-\frac{2j+1}{20}}\Gamma \Big(\frac{3}{2} +\alpha - \frac{2j+1}{20} \Big)} e^{-\frac{1}{2}\big(\frac{j}{4} \big)^{\alpha}} \big( \frac{j}{4} \big)^{\alpha \big(\frac{1}{2}+\alpha-\frac{2j+1}{20} \big)}\\ && -\sum\limits_{r = 1}^{2}\Big(\frac{r}{3}\Big) \frac{\Gamma(\frac{3}{2})}{(\frac{2}{3})^{\alpha+\frac{r}{r+1}}\Gamma \Big(\frac{3}{2} +\alpha + \frac{r}{r+1} \Big)} e^{-\frac{1}{2}\big(\frac{r+1}{4} \big)^{\alpha}} \big( \frac{r+1}{4} \big)^{\alpha \big( \frac{1}{2}+\alpha+\frac{r}{r+1} \big)}\Bigg), \end{eqnarray*} |
where
\begin{equation*} \Omega = \sum\limits_{i = 1}^{2}\Big(\frac{i+1}{2}\Big)e^{-\frac{t^{\alpha}}{2}} + \sum\limits_{r = 1}^{2}\Big(\frac{r}{3}\Big) \frac{\big( \frac{r+1}{4} \big)^{\frac{\alpha r}{r+1}} e^{-\frac{1}{2}\big( \frac{r+1}{4} \big)^{\alpha}} }{(\frac{2}{3})^{\frac{r}{r+1}}\Gamma \Big(1+ \frac{r}{r+1} \Big)}. \end{equation*} |
(II) If \psi(t) = \frac{\sin t}{\alpha} then the solution of linear Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (5.2) is given as in
\begin{eqnarray*} u(t) & = & \frac{\Gamma(\frac{3}{2})}{(\frac{2}{3})^{\alpha} \Gamma(\frac{3}{2}+\alpha)} \; e^{-\frac{\sin t}{2 \alpha}}\Big( \frac{\sin t}{\alpha} \Big)^{\frac{1}{2}+\alpha} + \frac{e^{-\frac{\sin t}{2 \alpha}}}{\Omega} \Bigg( 1-\sum\limits_{i = 1}^{2}\Big(\frac{i+1}{2}\Big) \; e^{-\frac{\sin \big( \frac{2i+1}{5} \big)}{2 \alpha}} \Bigg(\frac{\sin \Big( \frac{2i+1}{5}\Big)}{\alpha} \Bigg)^{\frac{1}{2}} \\ && - \sum\limits_{j = 1}^{3}\Big(\frac{2j-1}{5}\Big) \frac{\Gamma(\frac{3}{2})}{(\frac{2}{3})^{\alpha-\frac{2j+1}{20}}\Gamma \Big(\frac{3}{2} +\alpha - \frac{2j+1}{20} \Big)} \; e^{-\frac{\sin\left(\frac{j}{4}\right)}{2 \alpha}} \Big( \frac{\sin\left(\frac{j}{4}\right)}{\alpha}\Big)^{\frac{1}{2}+\alpha-\frac{2j+1}{20}}\\ && -\sum\limits_{r = 1}^{2}\Big(\frac{r}{3}\Big) \frac{\Gamma(\frac{3}{2})}{(\frac{2}{3})^{\alpha+\frac{r}{r+1}}\Gamma \Big(\frac{3}{2} +\alpha + \frac{r}{r+1} \Big)} \; e^{-\frac{\sin \left( \frac{r+1}{4} \right)}{2 \alpha }} \Bigg(\frac{\sin \left( \frac{r+1}{4} \right)}{\alpha}\Bigg)^{\frac{1}{2}+\alpha+\frac{r}{r+1}}\Bigg), \end{eqnarray*} |
where
\begin{equation*} \Omega = \sum\limits_{i = 1}^{2}\Big(\frac{i+1}{2}\Big)e^{-\frac{\sin t}{2 \alpha}} + \sum\limits_{r = 1}^{2}\Big(\frac{r}{3}\Big) \frac{\Big(\frac{\sin \big( \frac{r+1}{4} \big)}{\alpha} \Big)^{\frac{r}{r+1}} e^{-\frac{\sin ( \frac{r+1}{4}) }{2 \alpha}} }{(\frac{2}{3})^{\frac{r}{r+1}}\Gamma \Big(1+ \frac{r}{r+1} \Big)}. \end{equation*} |
(III) If \psi(t) = e^{\alpha t} then the solution of linear Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (5.2) is given as in
\begin{eqnarray*} u(t) & = & \frac{\Gamma(\frac{3}{2})}{(\frac{2}{3})^{\alpha} \Gamma(\frac{3}{2}+\alpha)} \; e^{-\frac{e^{\alpha t}}{2}}\big( e^{\alpha t}-1 \big)^{\frac{1}{2}+\alpha} + \frac{e^{-\frac{e^{\alpha t}-1}{2}}}{\Omega} \Bigg( 1-\sum\limits_{i = 1}^{2}\Big(\frac{i+1}{2}\Big)e^{-\frac{e^{\alpha \big( \frac{2i+1}{5} \big) }}{2}} \Big( e^{\alpha \big( \frac{2i+1}{5} \big)} - 1 \Big)^{\frac{1}{2}} \\ && - \sum\limits_{j = 1}^{3}\Big(\frac{2j-1}{5}\Big) \frac{\Gamma(\frac{3}{2})}{(\frac{2}{3})^{\alpha-\frac{2j+1}{20}}\Gamma \Big(\frac{3}{2} +\alpha - \frac{2j+1}{20} \Big)} \; e^{-\frac{e^{ \frac{\alpha j}{4} }}{2}} \Big( e^{ \frac{\alpha j}{4}} - 1 \Big)^{\frac{1}{2}+\alpha-\frac{2j+1}{20}}\\ && -\sum\limits_{r = 1}^{2}\Big(\frac{r}{3}\Big) \frac{\Gamma(\frac{3}{2})}{(\frac{2}{3})^{\alpha+\frac{r}{r+1}}\Gamma \Big(\frac{3}{2} +\alpha + \frac{r}{r+1} \Big)} e^{-\frac{e^{\alpha \big( \frac{r+1}{4} \big)}}{2}} \Big(e^{\alpha \big( \frac{r+1}{4} \big)} - 1 \Big)^{\frac{1}{2}+\alpha+\frac{r}{r+1}}\Bigg), \end{eqnarray*} |
where
\begin{equation*} \Omega = \sum\limits_{i = 1}^{2}\Big(\frac{i+1}{2}\Big)e^{-\frac{1}{2} \big(e^{\alpha t}-1 \big)} + \sum\limits_{r = 1}^{2}\Big(\frac{r}{3}\Big) \frac{\Big( e^{\alpha \big(\frac{r+1}{4} \big) } - 1 \Big)^{\frac{r}{r+1}} e^{-\frac{1}{2} \big( e^{\alpha \big( \frac{r+1}{4} \big)-1}\big)} }{(\frac{2}{3})^{\frac{r}{r+1}}\Gamma \Big(1+ \frac{r}{r+1} \Big)}. \end{equation*} |
(IV) If \psi(t) = \frac{\ln(1+t)}{\alpha} then the solution of linear Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (5.2) is given as in
\begin{eqnarray*} u(t) & = & \frac{\Gamma(\frac{3}{2})}{(\frac{2}{3})^{\alpha} \Gamma(\frac{3}{2}+\alpha)}e^{-\frac{1}{2 \alpha}\ln(1+t)}\Big( \frac{\ln(1+t)}{\alpha} \Big)^{1/2+\alpha} \\ && + \frac{e^{-\frac{1}{2} \ln(1+t)}}{\Omega} \Bigg( 1-\sum\limits_{i = 1}^{2}\Big(\frac{i+1}{2 \alpha}\Big)e^{-\frac{1}{2 \alpha}\ln\big(1+ \frac{2i+1}{5} \big)}\Big(\frac{1}{\alpha} \ln\big( 1+\frac{2i+1}{5} \Big)^{\frac{1}{2}} \\ && - \sum\limits_{j = 1}^{3}\Big(\frac{2j-1}{5}\Big) \frac{\Gamma(\frac{3}{2})}{(\frac{2}{3})^{\alpha-\frac{2j+1}{20}}\Gamma \Big(\frac{3}{2} +\alpha - \frac{2j+1}{20} \Big)} e^{-\frac{1}{2 \alpha}\ln\big(1+ \frac{j}{4} \big)} \Big( \frac{1}{\alpha}\ln\big( 1+\frac{j}{4} \Big)^{\frac{1}{2}+\alpha-\frac{2j+1}{20}}\\ && -\sum\limits_{r = 1}^{2}\Big(\frac{r}{3}\Big) \frac{\Gamma(\frac{3}{2})}{(\frac{2}{3})^{\alpha+\frac{r}{r+1}}\Gamma \Big(\frac{3}{2} +\alpha + \frac{r}{r+1} \Big)} e^{-\frac{1}{2 \alpha}\ln\big(1+ \frac{r+1}{4} \big)} \Big(\frac{1}{\alpha} \ln\big(1+ \frac{r+1}{4} \big) \Big)^{\frac{1}{2}+\alpha+\frac{r}{r+1}}\Bigg), \end{eqnarray*} |
where
\begin{equation*} \Omega = \sum\limits_{i = 1}^{2}\Big(\frac{i+1}{2}\Big)e^{-\frac{1}{2 \alpha} \ln(1+t)} + \sum\limits_{r = 1}^{2}\Big(\frac{r}{3}\Big) \frac{\Big( \frac{1}{\alpha }\ln\big( 1+\frac{r+1}{4} \big) \Big)^{\frac{r}{r+1}} e^{-\frac{1}{2 \alpha} \ln(1+ \frac{r+1}{4})} }{(\frac{2}{3})^{\frac{r}{r+1}}\Gamma \Big(1+ \frac{r}{r+1} \Big)}. \end{equation*} |
Graph representing the solution of the problem (5.2) with various values \alpha via many the functions \psi(t) = t^{\alpha} , \psi(t) = \frac{\sin t}{\alpha} , \psi(t) = e^{\alpha t} and \psi(t) = \frac{\ln(1+t)}{\alpha} is shown as in Figures 1–4 by using Python.
The qualitative analysis is accomplished in this work. The authors proved the existence, uniqueness and stability of solutions for Caputo- \mathbb{PFIDE} with \mathbb{MNC} s which consist of multi-point and fractional multi-order boundary conditions. Some famous theorems are employed to obtain the main results such as the Banach's \mathbb{FPT} is the important theorem to prove the uniqueness of the solution, while Leray-Schauder's nonlinear alternative and Krasnoselskii's \mathbb{FPT} are used to investigate the existence results. Furthermore, we established the various kinds of Ulam's stability like \mathbb{HU} , \mathbb{GHU} , \mathbb{HUR} and \mathbb{GHUR} stables. Finally, by using Python, numerical instances allowed to guarantee the accuracy of the theoretical results.
This research would be a great work to enrich the qualitative theory literature on the problem of nonlinear fractional mixed nonlocal conditions involving a particular function. For the future works, we shall focus on studying the different types of existence results and stability analysis for impulsive fractional boundary value problems.
B. Khaminsou was supported by the International Science Programme PhD. Research Scholarship from National University of Laos (NUOL). W. Sudsutad was partially supported by Ramkhamhaeng University. C. Thaiprayoon and J. Kongson would like to thank for funding this work through the Center of Excellence in Mathematics (CEM), CHE, Sri Ayutthaya Road, Bangkok, 10400, Thailand and Burapha University.
On behalf of all authors, the corresponding author states that there is no conflict of interest.
[1] | G. Dattoli, S. Lorenzutta, G. Maino, et al. Generalized Bessel functions and exact solutions of partial differential equations, Rend. Mat., 7 (1992), 12. |
[2] | V. S. Kiryakova, Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus, J. Comput. Appl. Math., 118 (2000), 241-259. |
[3] | M. Kamarujjama, Computation of new class of integrals involving generalized Galue type Struve function, J. Comput. Appl. Math., 351 (2019), 228-236. |
[4] | O. Khan, M. Kamarujjama, N. U. Khan, Certain integral transforms involving the product of Galue type struve function and Jacobi polynomial, Palestine J. Math., 8 (2019), 191-199. |
[5] | M. Kamarujjama, N. U. Khan, O. Khan, The generalized pk-Mittag-Leffler function and solution of fractional kinetic equations, J. Anal., 27 (2019), 1029-1046. |
[6] | N. U. Khan, M. Ghayasuddin, W. A. Khan, et al. Certain unified integral involving Generalized Bessel-Maitland function, South East Asian J. Math. Math. Sci., 11 (2015), 27-36. |
[7] | N. U. Khan, M. Ghayasuddin, Study of the unified double integral associated with generalized Bessel-Maitland function, Pure Appl. Math. Lett., 2016 (2016), 15-19. |
[8] | S. D. Purohit, P. Agarwal, et al. Certain new integral formulas involving the generalized Bessel functions, Bull. Korean Math. Soc., 51 (2014), 995-1003. |
[9] | G. Dattoli, S. Lorenzutta, G. Maino, et al. Theory of multiindex multivariable Bessel functions and Hermite polynomials, Le Mat., 52 (1997), 179-197. |
[10] | J. Choi, P. Agarwal, A note on fractional integral operator associated with multiindex MittagLeffler functions, Filomat, 30 (2016), 1931-1939. |
[11] | M. Kamarujjama, N. U. Khan, O. Khan, Estimation of certain integrals with extended multi-index Bessel function, Malaya J. Mat. (MJM), 7 (2019), 206-212. |
[12] | D. L. Suthar, S. D. Purohit, R. K. Parmar, Generalized fractional calculus of the multi-index Bessel function, Math. Nat. Sci., 1 (2017), 26-32. |
[13] | K. S. Nisar, S. D. Purohit, D. L. Suthar, et al. Fractional calculus and certain integrals of generalized multiindex Bessel function, arXiv preprint arXiv: 1706.08039, 2017. |
[14] | D. L. Suthar, T. Tsagye, Riemann-Liouville fractional integrals and differential formula involving Multi-index Bessel-function, Math. Sci. Lett., 6 (2017), 233-237. |
[15] | D. L. Suthar, D. Kumar, H. Habenom, Solutions of fractional Kinetic equation associated with the generalized multiindex Bessel function via Laplace transform, Differ. Equ. Dyn. Syst., (2019), 1-14. |
[16] | O. I. Marichev, Volterra equation of Mellin convolution type with a Horn function in the kernel, Izv. Akad. Nauk BSSR. Ser. Fiz.-Mat. Nauk, 1 (1974), 128-129. |
[17] | F. W. Olver, D. W. Lozier, R. F. Boisvert, et al. NIST handbook of mathematical functions hardback and CD-ROM, Cambridge university press, 2010. |
[18] | S. Mubeen, R. S. Ali, Fractional operators with generalized Mittag-Leffler k-function, Adv. Differ. Equ., 2019 (2019), 520. |
[19] | A. Petojevic, A note about the Pochhammer symbols, Math. Moravica, 12 (2008), 37-42. |
[20] | M. A. Chaudhry, A. Qadir, H. M. Srivastava, et al. Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput., 159 (2004), 589-602. |
[21] | M. A. Chaudhry, S. M. Zubair, et al. On a class of incomplete gamma functions with applications, CRC press, 2001. |
[22] | H. M. Srivastava, P. W. Karlsson, Multiple gaussian hypergeometric series, Halsted Press (Ellis Horwood Limited, Chichester), 1985. |
[23] | D. V. Widder, Laplace transform (PMS-6), Princeton university press, 2015. |
[24] | I. N. Sneddon, The use of integral transform, Tata McGraw Hill, New Delhi, 1979. |
[25] | M. A. Özarslan, B. Yilmaz, The extended Mittag-Leffler function and its properties, J. Inequal. Appl., 2014 (2014), 85. |
[26] | M. A. Özarslan, Some remarks on extended hypergeometric, extended confluent hypergeometric and extended Appell's functions, J. Comput. Anal. Appl., 14 (2012). |
1. | Osama Moaaz, Ahmed E. Abouelregal, Meshari Alesemi, Moore–Gibson–Thompson Photothermal Model with a Proportional Caputo Fractional Derivative for a Rotating Magneto-Thermoelastic Semiconducting Material, 2022, 10, 2227-7390, 3087, 10.3390/math10173087 | |
2. | Shayma Adil Murad, Reny George, Certain Analysis of Solution for the Nonlinear Two-Point Boundary Value Problem with Caputo Fractional Derivative, 2022, 2022, 2314-8888, 1, 10.1155/2022/1385355 |