Citation: Rahim ud Din, Kamal Shah, Manar A. Alqudah, Thabet Abdeljawad, Fahd Jarad. Mathematical study of SIR epidemic model under convex incidence rate[J]. AIMS Mathematics, 2020, 5(6): 7548-7561. doi: 10.3934/math.2020483
[1] | A. V. Kamyad, R. Akbari, A. A. Heydari, et al. Mathematical modeling of transmission dynamics and optimal control of vaccination and treatment for hepatitis B virus, Comput. Math. Methods Medecines, 2014 (2014), 15. |
[2] | B. Shulgin, L. Stone, Z. Agur, Pulse vaccination strategy in SIR epidemic model, Bulletin Math. Biology, 60 (1988), 1123-1148. |
[3] | G. Zaman, Y. H. Kang, I. H. Jung, Stability analysis and optimal vaccination of SIR epidemic model, Bio. System, 93 (2008), 240-249. |
[4] | W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Royal Society, 115 (1927), 700-721. |
[5] | T. Harko, F. S. N. Lobo, M. K. Mak, Exact analytical solutions of the Susceptible-InfectedRecovered (SIR) epidemic model and of the SIR model with equal death and birth rates, Appl. Math. Comput., 236 (2014), 184-194. |
[6] | M. E. Alexander, S. M. Moghadas, Periodicity in an epidemic model with a generalized non-linear incidence, Math. Biosci., 189 (2004), 75-96. |
[7] | V. Capasso, G. Serio, A generalization of the Kermack-Mckendrick deterministic epidemic model, Math. Biosci., 43 (1978), 43-61. |
[8] | A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission, Bulletin Math. Biology 68 (2006), 615-626. |
[9] | A. Korobeinikov, Global properties of infectious disease models with nonlinear incidence, Bulletin Math. Biology, 69 (2007), 1871-1886. |
[10] | W. R. Derrick, P. van den Driessche, A diseases transmission model in a nonconstant population, J. Math. Biology, 31 (1993), 490-512. |
[11] | W. M Liu, H. W. Hethcote, S. A Levin, Dynamical behavior of epidemiological models with nonlinear incidence rate, J. Math. Biology, 25 (1987), 359-380. |
[12] | W. M. Liu, S. A. Levin, Y. Iwasa, Influence of nonlinear incident rates upon the behavior of SIRS epidemiological models, J. Math. Biology, 23 (1986), 187-204. |
[13] | W. Wang, S. Ruan, Simulating the SARS outbreak in Beijing with limited data, J. Theor. Biology, 227 (2004), 369-379. |
[14] | S. Jana, S. K. Nandi, T. K. Kar, Complex dynamics of an SIR epidemic model with saturated incidence rate and treatment, Acta Biotheoretica, 64 (2016), 65-84. |
[15] | G. Rahman, K. Shah, F. Haq, et al. Host vector dynamics of pine wilt disease model with convex incidence rate, Chaos, Solitons & Fractals, 113 (2018), 31-39. |
[16] | A. B. Gumel, Modelling strategies for controlling SARS out breaks, Proc. R. Soc. Lond. B., 271 (2004), 2223-2232. |
[17] | H. W. Hethcote, The mathematics of infectious disease, SIAM Review, 42 (2000), 599-653. |
[18] | H. W. Hethcote, S. A. Levin, Periodicity in epidemiological models, Appl. Math. Ecol. Springer, Berlin, Heidelberg, 1989. |
[19] | H. W. Hethcote, P. Van den Driessche, Some epidemiological models with nonlinear incidence, J. Math. Biology 29 (1991), 271-287. |
[20] | G. M. leung, The impact of community psychological response on outbreak control for severe acute respiratory syndrome in Hong Kong, J. Epidemiol. Commun. Health, 57 (2003), 857-863. |
[21] | S. Ruan, W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate, J. Differential Equations, 188 (2003), 135-369. |
[22] | A. R. Fathalla, M. N. Anwar, Qualitative analysis of delayed SIR epidemic model with a saturated incidence rate, Int. J. Diff. Equs., 2012 (2012), 13. |
[23] | L. Perko, Differential Equations and Dynamical Systems, Springer-Verlag, New York, 1996. |
[24] | Z. Zhang, Qualitative theory of differential equations, Providence, American Mathematical Society, 1992. |
[25] | R. E. Mickens, Exact solutions to a finite-difference model of a nonlinear reaction-advection equation: Implications for numerical analysis, J. Differ. Equ. Appl., 9 (2003), 995-1006. |