In this article, we aim to introduce and explore a new class of preinvex functions called n-polynomial m-preinvex functions, while also presenting algebraic properties to enhance their numerical significance. We investigate novel variations of Pachpatte and Hermite-Hadamard integral inequalities pertaining to the concept of preinvex functions within the framework of the Caputo-Fabrizio fractional integral operator. By utilizing this direction, we establish a novel fractional integral identity that relates to preinvex functions for differentiable mappings of first-order. Furthermore, we derive some novel refinements for Hermite-Hadamard type inequalities for functions whose first-order derivatives are polynomial preinvex in the Caputo-Fabrizio fractional sense. To demonstrate the practical utility of our findings, we present several inequalities using specific real number means. Overall, our investigation sheds light on convex analysis within the context of fractional calculus.
Citation: Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon. Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator[J]. AIMS Mathematics, 2023, 8(11): 25572-25610. doi: 10.3934/math.20231306
[1] | Yinwan Cheng, Chao Yang, Bing Yao, Yaqin Luo . Neighbor full sum distinguishing total coloring of Halin graphs. AIMS Mathematics, 2022, 7(4): 6959-6970. doi: 10.3934/math.2022386 |
[2] | Shabbar Naqvi, Muhammad Salman, Muhammad Ehtisham, Muhammad Fazil, Masood Ur Rehman . On the neighbor-distinguishing in generalized Petersen graphs. AIMS Mathematics, 2021, 6(12): 13734-13745. doi: 10.3934/math.2021797 |
[3] | Xiaoxue Hu, Jiangxu Kong . An improved upper bound for the dynamic list coloring of 1-planar graphs. AIMS Mathematics, 2022, 7(5): 7337-7348. doi: 10.3934/math.2022409 |
[4] | Baolin Ma, Chao Yang . Distinguishing colorings of graphs and their subgraphs. AIMS Mathematics, 2023, 8(11): 26561-26573. doi: 10.3934/math.20231357 |
[5] | Zongpeng Ding . Skewness and the crossing numbers of graphs. AIMS Mathematics, 2023, 8(10): 23989-23996. doi: 10.3934/math.20231223 |
[6] | Zongrong Qin, Dingjun Lou . The k-subconnectedness of planar graphs. AIMS Mathematics, 2021, 6(6): 5762-5771. doi: 10.3934/math.2021340 |
[7] | Xin Xu, Xu Zhang, Jiawei Shao . Planar Turán number of double star S3,4. AIMS Mathematics, 2025, 10(1): 1628-1644. doi: 10.3934/math.2025075 |
[8] | Yunfeng Tang, Huixin Yin, Miaomiao Han . Star edge coloring of K2,t-free planar graphs. AIMS Mathematics, 2023, 8(6): 13154-13161. doi: 10.3934/math.2023664 |
[9] | Ana Klobučar Barišić, Antoaneta Klobučar . Double total domination number in certain chemical graphs. AIMS Mathematics, 2022, 7(11): 19629-19640. doi: 10.3934/math.20221076 |
[10] | Gohar Ali, Martin Bača, Marcela Lascsáková, Andrea Semaničová-Feňovčíková, Ahmad ALoqaily, Nabil Mlaiki . Modular total vertex irregularity strength of graphs. AIMS Mathematics, 2023, 8(4): 7662-7671. doi: 10.3934/math.2023384 |
In this article, we aim to introduce and explore a new class of preinvex functions called n-polynomial m-preinvex functions, while also presenting algebraic properties to enhance their numerical significance. We investigate novel variations of Pachpatte and Hermite-Hadamard integral inequalities pertaining to the concept of preinvex functions within the framework of the Caputo-Fabrizio fractional integral operator. By utilizing this direction, we establish a novel fractional integral identity that relates to preinvex functions for differentiable mappings of first-order. Furthermore, we derive some novel refinements for Hermite-Hadamard type inequalities for functions whose first-order derivatives are polynomial preinvex in the Caputo-Fabrizio fractional sense. To demonstrate the practical utility of our findings, we present several inequalities using specific real number means. Overall, our investigation sheds light on convex analysis within the context of fractional calculus.
Differential equations of arbitrary order have been shown to be useful in the study of models of many phenomena in various fields such as: Electrochemistry and material science, they are in fact described by differential equations of fractional order [9,10,15,16,25,26,27,28,29]. For more details, we refer the reader to the books of Hilfer [30], Podlubny [31], Kilbas et al. [34], Miller and Ross [2] and to the following research papers [1,2,3,4,5,6,7,8,11,12,14,16,17,19,20,24,31,35,36,37,38,39,40,41,42]. In this work, we discuss the existence and uniqueness of the solutions for multi-point boundary value problems of nonlinear fractional differential equations with two Riemann-Liouville fractionals:
{Dαx(t)=∑mi=1fi(t,x(t),y(t),φ1x(t),ϕ1y(t)),α∈]1,2],t∈[0,T]Dβy(t)=∑mi=1gi(t,x(t),y(t),φ2x(t),ϕ2y(t)),β∈]1,2],t∈[0,T]I2−αx(0)=0, Dα−2x(T)=θIα−1(x(η)), 0<η<T,I2−βy(0)=0, Dβ−2x(T)=ωIβ−1(x(γ)), 0<γ<T, | (1.1) |
where D(.), I(.) denote the Riemann-Liouville derivative and integral of fractional order (.), respectively, fi, gi:[0,T]×R4→R, i=1,⋯,m are continuous functions on [0,T] and
(φ1x)(t)=∫t0A′1(t,s)x(s)ds, (ϕ1y)(t)=∫t0B′1(t,s)y(s)ds, |
(φ2x)(t)=∫t0A′2(t,s)x(s)ds, (ϕ1y)(t)=∫t0B′2(t,s)y(s)ds, |
with Ai and Bi being continuous functions on [0,1]×[0,1]. However, it is rare to find a work in nonlinear term fi depends on fractional derivative of unknown functions x(t),y(t),φ1x(t),ϕ1y(t) and solutions for multi-order fractional differential equations on the infinite interval [0,T). Motivated by [8,11,12,13,14] and the references therein, we consider the existence and unicity of solution for multi-order fractional differential equations on infinite interval [0,T).
The rest of this paper is organized as follow. In section 2, we present some preliminaries and lemmas. Section 3 is dedicated to showing the existence of a solution for problem (1.1). Finally, section 4 illustrated the proposed results with two examples.
Remark 1.1. This work generalizes the work of Houas and Benbachir [14] on different boundary conditions and for another type of integral.
This section covers the basic concepts of Riemann-Liouville type fractional calculus that will be used throughout this paper.
Definition 2.1. [31,32] The Riemann-Liouville fractional integral operator of order α≥0, of a function f:(0,∞)→R is defined as
{Jαf(t)=1Γ(α)∫t0(t−τ)α−1f(τ)dτ,J0f(t)=f(t), |
where Γ(α):=∫∞0e−uuα−1du.
Definition 2.2. [31,32] The Riemann-Liouville fractional derivative of order α>0, of a continuous function h:(0,∞)→R is defined as
Dαh(t)=1Γ(n−α)(ddt)n∫t0(t−τ)n−α−1h(τ)dτ=(ddt)nIn−αh(τ), |
where n=[α]+1.
For α<0, we use the convention that Dαh=J−αh. Also for 0≤ρ<α, it is valid that DρJαh=hα−ρ. We note that for ε>−1 and ε≠α−1,α−2,...,α−n, we have
Dαtε=Γ(ε+1)Γ(ε−α+1)tε−α,Dαtα−i=0, i=1,2,...,n. |
In particular, for the constant function h(t)=1, we obtain
Dα1=1Γ(1−α)t−α,α∉N. |
For α∈N, we obtain, of course, Dα1=0 because of the poles of the gamma function at the points 0,−1,−2,... For α>0, the general solution of the homgeneous equation Dαh(t)=0 in C(0,T)∩L(0,T) is
h(t)=c0tα−n+c1tα−n−1+......+cn−2tα−2+cn−1tα−1, |
where ci,i=1,2,....,n−1, are arbitrary real constants. Further, we always have DαIαh=h, and
DαIαh(t)=h(t)+c0tα−n+c1tα−n−1+......+cn−2tα−2+cn−1tα−1. |
Lemma 2.1. [33] Let E be Banach space. Assume that T:E⟶E is a completely continuous operator. If the set V={x∈E:x=μTx, 0<μ<1} is bounded, then T has a fixed point in E.
To define the solution for problem (1.1). We consider the following lemma.
Lemma 2.2. Suppose that (Hi)i=1,…,m⊂C([0,1],R), and consider the problem
Dαh(t)−m∑i=1Hi(t)=0, t∈j, 1<α<2, m∈N∗, | (2.1) |
with the conditions
I2−αh(0)=0, Dα−2h(T)=θIα−1(h(η)), 0<η<T. | (2.2) |
Then we have
h(t)=1Γ(α)m∑i=1∫t0(t−τ)α−1Hi(τ)dτ+tα−1ψ(m∑i=1∫T0(T−τ)Hi(τ)dτ−θΓ(2α)m∑i=1∫η0(η−τ)2α−2Hi(τ)dτ) |
with ψ=θΓ(α)Γ(2α−1)η2α−2−Γ(α)T.
Proof. We have
h(t)=m∑i=1IαHi(t)+c0tα−2+c1tα−1, |
where ci∈R, i=0,1.
We obtain
I2−αh(τ)=m∑i=1I2Hi(τ)+c0I2−ατα−2+c1I2−ατα−1=m∑i=1I2Hi(τ)+c0+c1τ,Iα−1h(τ)=m∑i=1I2α−1Hi(τ)+c0Iα−1τα−2+c1Iα−1τα−1=m∑i=1I2α−1Hi(τ)+c0Γ(α−1)Γ(2α−2)τ2α−3+c1Γ(α)Γ(2α−1)τ2α−2,Dα−2h(τ)=m∑i=1I2Hi(τ)+c0Γ(α−1)+c1Γ(α)τ. |
Using the given conditions: I2−αh(0)=0, we find that c0=0, and since Dα−2h(T)−θIα−1(h(η))=0, we have
m∑i=1I2hi(T)+c1Γ(α)T−θ[m∑i=1I2α−1hi(η)+c1Γ(α)Γ(2α−1)η2α−2]=0, |
then
c1[Γ(α)Γ(2α−1)η2α−2−Γ(α)T]=m∑i=1I2hi(T)−θm∑i=1I2α−1hi(η) |
and
c1=1ψ(m∑i=1I2Hi(T)−θm∑i=1I2α−1Hi(η))=1ψ(m∑i=1∫T0(T−τ)Hi(τ)dτ−θΓ(2α)m∑i=1∫η0(η−τ)2α−2Hi(τ)dτ) |
with
ψ=θΓ(α)Γ(2α−1)η2α−2−Γ(α)T. |
Finally, the solution of (2.1) and (2.2) is
h(t)=1Γ(α)m∑i=1∫t0(t−τ)α−1Hi(τ)dτ+tα−1ψ(m∑i=1∫T0(T−τ)Hi(τ)dτ−θΓ(2α)m∑i=1∫η0(η−τ)2α−2Hi(τ)dτ). |
We denote by
E={x,y∈C([0,T],R);φix,ϕiy∈C([0,T],R) i=1,2}, |
and the Banach space of all continuous functions from [0,T] to R endowed with a topology of uniform convergence with the norm defined by
||(x,y)||E=max(||x||,||y||,||φ1x||,||ϕ1y||,||φ2x||,||ϕ2y||), |
where
||x||=supt∈j|φix(t)|,||y||=supt∈j|y(t)|,||ϕix||=supt∈j|φix(t)|,||ϕiy||=supt∈j|ϕiy(t)|. |
In this section, we prove some existence and uniqueness results to the nonlinear fractional coupled system (1.1).
For the sake of convenience, we impose the following hypotheses:
(H1) For each i=1,2,⋯,m, the functions fi and gi :[0,T]×R4⟶R are continuous.
(H2) There exist nonnegative real numbers ξik,φik,k=1,2,3,4,i=1,2,⋯,m, such that for all t∈[0,T] and all (x1,x2,x3,x4), (y1,y2,y3,y4)∈R4, we have
|fi(t,x1,x2,x3,x4)−fi(t,y1,y2,y3,y4)|≤4∑k=1 ξik|xk−yk|, |
and
|gi(t,x1,x2,x3,x4)−gi(t,y1,y2,y3,y4)|≤4∑k=1 χik|xk−yk|. |
(H3) There exist nonnegative constants (Li) and (Ki) i=1,...,m, such that: For each t∈[0,T] and all (x1,x2,x3,x4)∈R4,
|fi(t,x1,x2,x3,x4)|≤Li,|gi(t,x1,x2,x3,x4)|≤Ki,i=1,...,m. |
We also consider the following quantities:
A1=TαΓ(α+1)m∑i=1(ξi1+ξi2+ξi3+ξi4),A2=TβΓ(β+1)m∑i=1(χi1+χi2+χi3+χi4),A3=maxt,s∈[0,1]||A′1(t,s)||×A1,A4=maxt,s∈[0,1]||A′2(t,s)||×A1,A5=maxt,s∈[0,1]||B′1(t,s)||×A2,A6=maxt,s∈[0,1]||B′2(t,s)||×A2,ν1=[TαΓ(α+1)+1ψ(Tα+12+θT3α−2(2α−1)2Γ(2α−1))],ν2=[TβΓ(β+1)+1ψ′(Tβ+12+ωT3β−2(2β−1)2Γ(2β−1))],ν3=maxt,s∈[0,1]|A′1(t,s)|ν1,ν4=maxt,s∈[0,1]|A′2(t,s)|ν1,ν5=maxt,s∈[0,1]|B′1(t,s)|ν2,ν6=maxt,s∈[0,1]|B′2(t,s)|ν2. |
The first result is based on Banach contraction principle. We have
Theorem 3.1. Assume that (H2) holds. If the inequality
max(A1,A2,A3,A4,A5,A6)<1, | (3.1) |
is valid, then the system (1.1) has a unique solution on [0,T].
Proof. We define the operator T:E⟶E by
T(x,y)(t)=(T1(x,y)(t),T2(x,y)(t)),t∈[0,T], |
such that
T1(x,y)(t)=1Γ(α)m∑i=1∫t0(t−τ)α−1Hi(τ)dτ+tα−1ψ(m∑i=1∫T0(T−τ)Hi(τ)dτ−θΓ(2α)m∑i=1∫η0(η−τ)2α−2Hi(τ)dτ) | (3.2) |
and
T2(x,y)(t)=1Γ(β)m∑i=1∫t0(t−τ)β−1Gi(τ)dτ+tβ−1ψ′(m∑i=1∫T0(T−τ)Gi(τ)dτ−ωΓ(2β)m∑i=1∫γ0(γ−τ)2β−2Gi(τ)dτ) | (3.3) |
where
Hi(τ)=fi(τ,x(τ),y(τ),φ1x(τ),ϕ1y(τ)) |
and
Gi(τ)=gi(τ,x(τ),y(τ),φ2x(τ),ϕ2y(τ)). |
We obtain
φiT1(x,y)(t)=∫t0Ai(t,s)T1(x,y)(s)ds, ϕiT2(x,y)(t)=∫t0Bi(t,s)T2(x,y)(s)ds |
where i=1,2.
We shall now prove that T is contractive.
Let T1(x1,y1),T2(x2,y2)∈E. Then, for each t∈[0,T], we have
|T1(x1,y1)−T1(x2,y2)|≤[1Γ(α)m∑i=1∫t0(t−τ)α−1dτ+tα−1ψ(m∑i=1∫T0(T−τ)dτ−θΓ(2α)m∑i=1∫η0(η−τ)2α−2dτ)]×maxτ∈[0,T]m∑i=1|(fi(τ,x1(τ),y1(τ),φ1x1(τ),ϕ1y1(τ))−fi(τ,x2(τ),y2(τ),φ1x2(τ),ϕ1y2(τ)))|≤TαΓ(α+1)maxτ∈[0,T]m∑i=1|(fi(τ,x1(τ),y1(τ),φ1x1(τ),ϕ1y1(τ))−fi(τ,x2(τ),y2(τ),φ1x2(τ),ϕ1y2(τ)))|. |
By (H2), it follows that
||T1(x1,y1)−T1(x2,y2)||≤TαΓ(α+1)m∑i=1(ξi1+ξi2+ξi3+ξi4)×max(||x1−x2||,||y1−y2||,||φ1(x1−x2)||,||φ2(x1−x2)||,||ϕ1(y1−y2)||,||ϕ2(y1−y2)||). |
Hence,
||T1(x1,y1)−T1(x2,y2)||≤A1||x1−x2,y1−y2||E. | (3.4) |
With the same arguments as before, we can show that
||T2(x1,y1)−T2(x2,y2)||≤A2||x1−x2,y1−y2||E. | (3.5) |
On the other hand, we have
||φ1(T1(x1,y1)−T1(x2,y2))||≤∫t0||A′1(t,s)||||T1(x1,y1)−T1(x2,y2)||ds≤maxt,s∈[0,1]||A′1(t,s)||×A1||x1−x2,y1−y2||E. |
Hence,
||φ1(T1(x1,y1)−T1(x2,y2))||≤A3||x1−x2,y1−y2||E | (3.6) |
and
||φ2(T1(x1,y1)−T1(x2,y2))||≤A4||x1−x2,y1−y2||E. | (3.7) |
Also, we have
||ϕ1(T2(x1,y1)−T2(x2,y2))||≤A5||x1−x2,y1−y2||E | (3.8) |
and
||ϕ2(T2(x1,y1)−T2(x2,y2))||≤A6||x1−x2,y1−y2||E. | (3.9) |
Thanks to (3.4)–(3.9), we get
||T(x1,y1)−T(x2,y2)||≤max(A1,A2,A3,A4,A5,A6)×||(x1−x2,y1−y2)||E. | (3.10) |
Thanks to (3.10), we conclude that T is a contractive operator. Therefore, by Banach fixed point theorem, T has a unique fixed point which is the solution of the system (1.1).
Our second main result is based on Lemma 2.1. We have
Theorem 3.2. Assume that the hypotheses (H1) and (H3) are satisfied. Then, system (1.1) has at least a solution on [0,T].
Proof. The operator T is continuous on E in view of the continuity of fi and gi (hypothesis (H1)).
Now, we show that T is completely continuous:
(i) First, we prove that T maps bounded sets of E into bounded sets of E. Taking λ>0, and (x,y)∈Ωλ={(x,y)∈E;||(x,y)||≤λ}, then for each t∈[0,T], we have:
|T1(x,y)|≤[1Γ(α)∫t0(t−τ)α−1dτ+tα−1ψ(∫T0(T−τ)dτ−θΓ(2α)∫η0(η−τ)2α−2dτ)]×supt∈[0,T]m∑i=1|fi(t,x(t),y(t),φ1x(t),ϕ1y(t))|≤[TαΓ(α+1)+1ψ(Tα+12+θT3α−2(2α−1)2Γ(2α−1))]×supt∈[0,T]m∑i=1|fi(t,x(t),y(t),φ1x(t),ϕ1y(t))|, |
Thanks to (H3), we can write
||T1(x,y)||≤[TαΓ(α+1)+1ψ(Tα+12+θT3α−2(2α−1)2Γ(2α−1))]m∑i=1Li. |
Thus,
||T1(x,y)||≤ν1m∑i=1Li. | (3.11) |
As before, we have
||T2(x,y)||≤ν2m∑i=1Ki. | (3.12) |
On the other hand, for all j=1,2, we get
|ϕjT1(x,y)(t)|=|∫t0A′j(t,s)T1(x,y)(s)ds|≤maxt,s∈[0,1]|A′j(t,s)|ν1m∑i=1Li. |
This implies that
||ϕ1T1(x,y)(t)||≤ν3m∑i=1Li, | (3.13) |
||ϕ2T1(x,y)(t)||≤ν4m∑i=1Li. | (3.14) |
Similarly, we have
||φ1T2(x,y)(t)||≤ν5m∑i=1Ki, | (3.15) |
||φ2T2(x,y)(t)||≤ν6m∑i=1Ki. | (3.16) |
It follows from (3.11)–(3.16) that:
||T(x,y)||E≤max(ν1m∑i=1Li,ν2m∑i=1Ki,ν3m∑i=1Li,ν4m∑i=1Li,,ν5m∑i=1,ν6m∑i=1). |
Thus,
||T(x,y)||E<∞. |
(ii) Second, we prove that T is equi-continuous:
For any 0≤t1<t2≤T and (x,y)∈Ωλ, we have
|T1(x,y)(t2)−T1(x,y)(t1)|≤[1Γ(α)∫t10(t2−τ)α−1−(t1−τ)α−1dτ+1Γ(α)∫t2t1(t2−τ)α−1dτ+tα−12−tα−11ψ(T22−θη2α−1Γ(2α−1)2Γ(2α−1))]×supt∈[0,T]m∑i=1|fi(t,x(t),y(t),φ1x(t),ϕ1y(t))|≤[2Γ(α+1)(t2−t1)α−1+(tα−12−tα−11)[T22ψ−θη2α−1ψΓ(2α−1)2Γ(2α−1)+1Γ(α+1)]]×m∑i=1Li. |
Therefore,
||T1(x,y)(t2)−T1(x,y)(t1)||E[2Γ(α+1)(t2−t1)α−1+(tα−12−tα−11)[T22ψ+1Γ(α+1)]]×m∑i=1Li. | (3.17) |
We also have
||T2(x,y)(t2)−T2(x,y)(t1)||E[2Γ(β+1)(t2−t1)β−1+(tβ−12−tβ−11)[T22ψ′+1Γ(β+1)]]×m∑i=1Ki. | (3.18) |
On the other hand,
|ϕiT1(x,y)(t2)−ϕiT1(x,y)(t1)|≤[maxs∈[0,1]|A′i(t2,s)−A′i(t1,s)|+(t2−t1)maxs∈[0,1]|A′i(t1,s)|]×sups∈[0,1]|T1(x,y)(s)|. |
Consequently, for all i=1,2, we obtain
||ϕiT1(x,y)(t2)−ϕiT1(x,y)(t1)||≤[maxs∈[0,1]|A′i(t2,s)−A′i(t1,s)|+(t2−t1)maxs∈[0,1]|A′i(t1,s)|]ν1m∑i=1Li. | (3.19) |
Similarly,
||φiT1(x,y)(t2)−φiT1(x,y)(t1)||≤[maxs∈[0,1]|B′i(t2,s)−B′i(t1,s)|+(t2−t1)maxs∈[0,1]|B′i(t1,s)|]ν2m∑i=1Ki. | (3.20) |
where i=1,2. Using (3.17)–(3.20), we deduce that
||T(x,y)(t2)−T(x,y)(t1)||E⟶0 |
as t2→t1.
Combining (i) and (ii), we conclude that T is completely continuous.
(iii) Finally, we shall prove that the set F defined by
F={(x,y)∈E,(x,y)=ρT(x,y), 0<ρ<1} |
is bounded.
Let (x,y)∈F, then (x,y)=ρT(x,y), for some 0<ρ<1. Thus, for each t∈[0,T], we have:
x(t)=ρT1(x,y)(t), y(t)=ρT2(x,y)(t). | (3.21) |
Thanks to (H3) and using (3.11) and (3.12), we deduce that
||x||≤ρν1m∑i=1Li, ||y||≤ρν2m∑i=1Ki. | (3.22) |
Using (3.13)–(3.16), it yields that
{||ϕ1x||≤ρν3∑mi=1Li||ϕ2x||≤ρν4∑mi=1Li||φ1y||≤ρν5∑mi=1Ki||φ2y||≤ρν6∑mi=1Ki. | (3.23) |
It follows from (3.22) and (3.23) that
||T(x,y)||E≤ρmax(ν1∑mi=1Li,ν2∑mi=1Ki,ν3∑mi=1Li,ν4∑mi=1Li,,ν5∑mi=1,ν6∑mi=1). |
Consequently,
||(x,y)||E<∞. |
This shows that F is bounded. By Lemma (2.1), we deduce that T has a fixed point, which is a solution of (1.1).
To illustrate our main results, we treat the following examples.
Example 4.1. Consider the following system:
{D32x(t)=cos(πt)(x+y+φ1x(t)+ϕ1y(t))10π(x+y+φ1x(t)+ϕ1y(t))+132π2e(cosx(t)+cosy(t)+φ1x(t)+ϕ1y(t)4π),D32y(t)=18π3(t+1)(x+y+φ2x(t)+ϕ2y(t)3+x+y+φ2x(t)+ϕ2y(t))+1(10π+et)e(t+1)(sinx(t)+siny(t)+cosφ2x(t)+cosϕ2y(t)2+sinx(t)+siny(t)+cosφ2x(t)+cosϕ2y(t)),I12x(0)=0, D−12x(T)=I12(x(1)),I12y(0)=0, D−12y(T)=I12(y(1)). | (4.1) |
We have
α=32, β=32, T=1, θ=1, ω=1, γ=1, m=2, η=1. |
Also,
f1(t,x(t),y(t),φ1x(t),ϕ1y(t))=cos(πt)(x+y+φ1x(t)+ϕ1y(t))10π(1+x+y+φ1x(t)+ϕ1y(t)), | (4.2) |
f2(t,x(t),y(t),φ1x(t),ϕ1y(t))=132π2e(cosx(t)+cosy(t)+φ1x(t)+ϕ1y(t)4π). | (4.3) |
For t∈[0,1] and (x1,y1,φ1x1,ϕ1y1),(x2,y2,φ1x2,ϕ1y2)∈R4, we have
|f1(t,x1,y1,φ1x1,ϕ1y1)−f1(t,x2,y2,φ1x2,ϕ1y2)|≤|cos(πt)|10π|x1+y1+φ1x1+ϕ1y11+x1+y1+φ1x1+ϕ1y1−x2+y2+φ1x2+ϕ1y2)1+x2+y2+φ1x2+ϕ1y2)|≤110π(|x1−x2|+|y1−y2|+|φ1x1−φ1x2|+|ϕ1y1−ϕ1y2|) | (4.4) |
and
|f2(t,x1,y1,φ1x1,ϕ1y1)−f2(t,x2,y2,φ1x2,ϕ1y2)|≤132πe(|x1−x2|+|y1−y2|+|φ1x1−φ1x2|+|ϕ1y1−ϕ1y2|). | (4.5) |
So, we can take
ξ11=ξ12=ξ13=ξ14=110π, |
ξ21=ξ22=ξ23=ξ24=132πe. |
We also have
g1(t,x(t),y(t),φ2x(t),ϕ2y(t))=18π3(t+1)(x+y+φ2x(t)+ϕ2y(t)3+x+y+φ2x(t)+ϕ2y(t)) |
and
g2(t,x(t),y(t),φ2x(t),ϕ2y(t))=1(10π+et)et+1(sinx(t)+siny(t)+cosφ2x(t)+cosϕ2y(t)2+sinx(t)+siny(t)+cosφ2x(t)+cosϕ2y(t)) | (4.6) |
For t∈[0,1] and (x1,y1,φ2x1,ϕ2y1),(x2,y2,φ2x2,ϕ2y2)∈R4, we can write
|g1(t,x1,y1,φ2x1,ϕ2y1)−g1(t,x2,y2,φ2x2,ϕ2y2)|≤18π3(|x1−x2|+|y1−y2|+|φ2x1−φ2x2|+|ϕ2y1−ϕ2y2|), | (4.7) |
and
|g2(t,x1,y1,φ2x1,ϕ2y1)−g2(t,x2,y2,φ2x2,ϕ2y2)|≤110πe2(|x1−x2|+|y1−y2|+|φ2x1−φ2x2|+|ϕ2y1−ϕ2y2|). | (4.8) |
Hence,
χ11=χ12=χ13=χ14=18π3, |
χ21=χ22=χ23=χ24=110πe2. |
Therefore,
A1=0.0589009676,A2=0.0250930393. |
Suppose
A′i=B′i=1, i=1,2, |
so,
A1=A3=A4,A2=A5=A6. |
Thus,
max(A1,A2,A3,A4,A5,A6)<1, | (4.9) |
and by Theorem 3.1, we conclude that the system (4.1) has a unique solution on [0,1].
Example 4.2.
{D32x(t)=π(t+1)sin(φ1x(t)+ϕ1y(t))2−cos(x(t)+y(t))+et2π+cos(x(t)+φ1x(t))+sin(sin(y(t)+ϕ1y(t)), t∈[0,1],D43y(t)=e2sin(x(t)+y(t))2π+cos(φ2x(t)+ϕ2y(t))+3t2cosy(t)et3+1−cos(x(t)+y(t)−φ2x(t)−ϕ2y(t)), t∈[0,1],I12x(0)=0, D−12x(T)=I12(x(1)),I23y(0)=0, D−23y(T)=I13(y(1)). | (4.10) |
We have
α=32, β=43, T=1, θ=1, ω=1, γ=1, m=2, η=1. |
Since
|f1(t,x(t),y(t),φ1x(t),ϕ1y(t))|=|π(t+1)sin(φ1x(t)+ϕ1y(t))2−cos(x(t)+y(t))|≤2π,|f2(t,x(t),y(t),φ1x(t),ϕ1y(t))|=|et2π+cos(x(t)+φ1x(t))+sin(sin(y(t)+ϕ1y(t))|≤e2π+2,|g1(t,x(t),y(t),φ2x(t),ϕ2y(t))|=|e2sin(x(t)+y(t))2π+cos(φ2x(t)+ϕ2y(t))|≤e22π+1,|g2(t,x(t),y(t),φ2x(t),ϕ2y(t))|=|3t2cosy(t)et3+1−cos(x(t)+y(t)−φ2x(t)−ϕ2y(t))|≤3e−1. |
The functions f1, f2, g1 and g2 are continuous and bounded on [0,1]×R4. So, by Theorem 3.2, the system (4.10) has at least one solution on [0,1].
We have proved the existence of solutions for fractional differential equations with integral and multi-point boundary conditions. The problem is solved by applying some fixed point theorems. We also provide examples to make our results clear.
The authors declare that they have no conflicts of interest in this paper.
[1] | G. H. Hardy, J. E. Little, G. Polya, Inequalities, Cambridge University Press, 1952. |
[2] |
T. Pennanen, Convex duality in stochastic optimization and mathematical finance, Math. Oper. Res., 36 (2011), 340–362. https://doi.org/10.1287/moor.1110.0485 doi: 10.1287/moor.1110.0485
![]() |
[3] |
A. Föllmer, A. Schied, Convex measures of risk and trading constraints, Financ. Stoch., 6 (2002), 429–447. https://doi.org/10.1007/s007800200072 doi: 10.1007/s007800200072
![]() |
[4] |
Z. Q. Luo, W. Yu, An introduction to convex optimization for communications and signal processing, IEEE J. Sel. Areas Comm., 24 (2006), 1426–1438. https://doi.org/10.1109/JSAC.2006.879347 doi: 10.1109/JSAC.2006.879347
![]() |
[5] |
S. Boyd, C. Crusius, A. Hansson, New advances in convex optimization and control applications, IFAC Proc., 30 (1997), 365–393. https://doi.org/10.1016/S1474-6670(17)43183-1 doi: 10.1016/S1474-6670(17)43183-1
![]() |
[6] |
V. Chandrasekarana, M. I. Jordan, Computational and statistical tradeoffs via convex relaxation, P. Natl. A. Sci., 110 (2013), E1181–E1190. https://doi.org/10.1073/pnas.1302293110 doi: 10.1073/pnas.1302293110
![]() |
[7] | B. S. Mordukhovich, N. M. Nam, An easy path to convex analysis and applications, 2013. |
[8] |
W. Zhang, X. Lu, X. Li, Similarity constrained convex nonnegative matrix factorization for hyperspectral anomaly detection, IEEE T. Geosci Remote, 57 (2019), 4810–4822. https://doi.org/10.1109/TGRS.2019.2893116 doi: 10.1109/TGRS.2019.2893116
![]() |
[9] |
J. Green, P. H. Walter, Chapter 1 Mathematical analysis and convexity with applications to economics, Handbook Math. Econ., 1 (1981), 15–52. https://doi.org/10.1016/S1573-4382(81)01005-9 doi: 10.1016/S1573-4382(81)01005-9
![]() |
[10] | R. T. Rockafellar, Convex analysis, Princeton: Princeton University Press, 1970. https://doi.org/10.1515/9781400873173 |
[11] | S. Boyd, L. Vandenberghe, Convex optimization, Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511804441 |
[12] | Y. Nesterov, Introductory lectures on convex optimization: A basic course, New York: Springer, 2004. https://doi.org/10.1007/978-1-4419-8853-9 |
[13] | J. B. Hiriart-Urruty, C. Lemarechal, Convex analysis and minimization algorithms II: Advanced theory and bundle methods, Berlin: Springer, 1993. https://doi.org/10.1007/978-3-662-06409-2 |
[14] | J. M. Borwein, A. S. Lewis, Convex analysis and nonlinear optimization: Theory and examples, New York: Springer, 2000. https://doi.org/10.1007/978-1-4757-9859-3 |
[15] | F. Cingano, Trends in income inequality and its impact on economic growth, OECD Publishing, 2014. https://doi.org/10.1787/5jxrjncwxv6j-en |
[16] | M. J. Cloud, B. C. Drachman, L. P. Lebedev, Inequalities with applications to engineering, Springer, 2014. |
[17] |
R. P. Bapat, Applications of inequality in information theory to matrices, Linear Algebra Appl., 78 (1986), 107–117. https://doi.org/10.1016/0024-3795(86)90018-2 doi: 10.1016/0024-3795(86)90018-2
![]() |
[18] |
C. J. Thompson, Inequality with applications in statistical mechanics, J. Math. Phys., 6 (1965), 1812–1813. https://doi.org/10.1063/1.1704727 doi: 10.1063/1.1704727
![]() |
[19] | S. I. Butt, L. Horváth, D. Pečarić, J. Pečarić, Cyclic improvements of Jensen's inequalities (Cyclic inequalities in information theory), Monogr. Inequal., 18 (2020). |
[20] |
T. Rasheed, S. I. Butt, D. Pečarić, J. Pečarić, Generalized cyclic Jensen and information inequalities, Chaos Soliton. Fract., 163 (2022), 112602. https://doi.org/10.1016/j.chaos.2022.112602 doi: 10.1016/j.chaos.2022.112602
![]() |
[21] |
S. I. Butt, D. Pečarić, J. Pečarić, Several Jensen-Gruss inequalities with applications in information theory, Ukrain. Mate. Zhurnal, 74 (2023), 1654–1672. https://doi.org/10.37863/umzh.v74i12.6554 doi: 10.37863/umzh.v74i12.6554
![]() |
[22] |
N. Mehmood, S. I. Butt, D. Pečarić, J. Pečarić, Generalizations of cyclic refinements of Jensen's inequality by Lidstone's polynomial with applications in information theory, J. Math. Inequal., 14 (2020), 249–271. https://doi.org/10.7153/jmi-2020-14-17 doi: 10.7153/jmi-2020-14-17
![]() |
[23] |
M. Z. Sarikaya, E. Set, H. Yaldiz, N. Aşak, Hermite-Hadamard inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048
![]() |
[24] |
P. Agarwal, Some inequalities involving Hadamard-type k-fractional integral operators, Math. Method. Appl. Sci., 40 (2017), 3882–3891. https://doi.org/10.1002/mma.4270 doi: 10.1002/mma.4270
![]() |
[25] |
S. I. Butt, M. Umar, S. Rashid, A. O. Akdemir, Y. M. Chu, New Hermite-Mercer type inequalities via k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 635. https://doi.org/10.1186/s13662-020-03093-y doi: 10.1186/s13662-020-03093-y
![]() |
[26] |
Q. Kang, S. I. Butt, W. Nazeer, M. Nadeem, J. Nasir, H. Yang, New variants of Hermite-Jensen-Mercer inequalities Via Riemann-Liouville fractional integral operators, J. Math., 2020 (2020), 4303727. https://doi.org/10.1155/2020/4303727 doi: 10.1155/2020/4303727
![]() |
[27] |
S. I. Butt, M. Umar, K. A. Khan, A. Kashuri, H. Emadifar, Fractional Hermite-Jensen-Mercer integral inequalities with respect to another function and application, Complexiy, 2021 (2021), 9260828. https://doi.org/10.1155/2021/9260828 doi: 10.1155/2021/9260828
![]() |
[28] |
M. Tariq, S. K. Ntouyas, A. A. Shaikh, A comprehensive review of the Hermite-Hadamard inequality pertaining to fractional integral operators, Mathematics, 11 (2023), 1953. https://doi.org/10.3390/math11081953 doi: 10.3390/math11081953
![]() |
[29] |
M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
![]() |
[30] |
M. U. Rahman, S. Ahmad, R. T. Matoog, N. A. Alshehri, T. Khan, Study on the mathematical modelling of COVID-19 with Caputo-Fabrizio operator, Chaos Soliton. Frac., 150 (2021), 111121. https://doi.org/10.1016/j.chaos.2021.111121 doi: 10.1016/j.chaos.2021.111121
![]() |
[31] |
S. Ahmad, D. Qiu, M. U. Rehman, Dynamics of a fractional-order COVID-19 model under the nonsingular kernel of Caputo-Fabrizio operator, Math. Model. Numer. Simul. Appl., 4 (2022), 228–243. https://doi.org/10.53391/mmnsa.2022.019 doi: 10.53391/mmnsa.2022.019
![]() |
[32] |
S. Ahmad, M. U. Rehman, M. Arfan, On the analysis of semi-analytical solutions of Hepatitis B epidemic model under the Caputo-Fabrizio operator, Chaos Soliton. Fract., 146 (2021), 110892. https://doi.org/10.1016/j.chaos.2021.110892 doi: 10.1016/j.chaos.2021.110892
![]() |
[33] |
B. Li, T. Zhang, C. Zhang, Investigation of financial bubble mathematical model under fractal-fractional Caputo derivative, Fractals, 31 (2023), 2350050. https://doi.org/10.1142/S0218348X23500500 doi: 10.1142/S0218348X23500500
![]() |
[34] |
A. Atangana, D. Baleanu, Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer, J. Eng. Mech., 143 (2017), D4016005. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001091 doi: 10.1061/(ASCE)EM.1943-7889.0001091
![]() |
[35] |
J. L. W. V. Jensen, Sur les fonctions convexes et les inegalites entre les valeurs moyennes, Acta Math., 30 (1906), 175–193. https://doi.org/10.1007/BF02418571 doi: 10.1007/BF02418571
![]() |
[36] | C. P. Niculescu, L. E. Persson, Convex functions and their applications, New York: Springer, 2006. |
[37] | J. Hadamard, Étude sur les propriétés des fonctions entiéres en particulier d'une fonction considéréé par Riemann, J. Math. Pure. Appl., 9 (1893), 171–215. |
[38] |
H. Ahmad, M. Tariq, S. K. Sahoo, J. Baili, C. Cesarano, New estimations of Hermite-Hadamard type integral inequalities for special functions, Fractal Fract., 5 (2021), 144. https://doi.org/10.3390/fractalfract5040144 doi: 10.3390/fractalfract5040144
![]() |
[39] |
M. Tariq, S. K. Sahoo, H. Ahmad, T. Sitthiwirattham, J. Soontharanon, Several integral inequalities of Hermite-Hadamard type related to k-fractional conformable integral operators, Symmetry, 13 (2021), 1880. https://doi.org/10.3390/sym13101880 doi: 10.3390/sym13101880
![]() |
[40] |
M. Tariq, H. Ahmad, S. K. Sahoo, L. S. Aljoufi, S. K. Awan, A novel comprehensive analysis of the refinements of Hermite-Hadamard type integral inequalities involving special functions, J. Math. Comput. Sci., 26 (2022), 330–348. http://dx.doi.org/10.22436/jmcs.026.04.02 doi: 10.22436/jmcs.026.04.02
![]() |
[41] | T. S. Du, J. G. Liao, Y. J. Li, Properties and integral inequalities of Hadamard-Simpson type for the generalized (s,m)-preinvex functions, J. Nonlinear Sci. Appl., 9 (2016), 3112–3126. |
[42] |
Y. Deng, H. Kalsoom, S. Wu, Some new Quantum Hermite-Hadamard-type estimates within a class of generalized (s,m)-preinvex functions, Symmetry, 11 (2019), 1283. https://doi.org/10.3390/sym11101283 doi: 10.3390/sym11101283
![]() |
[43] |
T. S. Du, J. G. Liao, L. G. Chen, M. U. Awan, Properties and Riemann-Liouville fractional Hermite-Hadamard inequalities for the generalized (α,m)-preinvex functions, J. Inequal. Appl., 2016 (2016), 306. https://doi.org/10.1186/s13660-016-1251-5 doi: 10.1186/s13660-016-1251-5
![]() |
[44] |
M. Tariq, H. Ahmad, S. K. Sahoo, A. Kashuri, T. A. Nofal, C. H. Hsu, Inequalities of Simpson-Mercer-type including Atangana-Baleanu fractional operators and their applications, AIMS Math., 7 (2021), 15159–15181. https://doi.org/10.3934/math.2022831 doi: 10.3934/math.2022831
![]() |
[45] |
M. Gürbüz, A. O. Akdemir, S. Rashid, E. Set, Hermite-Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities, J. Inequl. Appl., 2020 (2020), 172. https://doi.org/10.1186/s13660-020-02438-1 doi: 10.1186/s13660-020-02438-1
![]() |
[46] |
E. R. Nwaeze, M. A. Khan, A. Ahmadian, M. N. Ahmad, A. K. Mahmood, Fractional inequalities of the Hermite-Hadamard type for m-polynomial convex and harmonically convex functions, AIMS Math., 6 (2021), 1889–1904. https://doi.org/10.3934/math.2021115 doi: 10.3934/math.2021115
![]() |
[47] |
M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17 (2016), 1049–1059. https://doi.org/10.18514/MMN.2017.1197 doi: 10.18514/MMN.2017.1197
![]() |
[48] |
S. K. Sahoo, M. Tariq, H. Ahmad, J. Nasir, H. Aydi, A. Mukheimer, New Ostrowski-type fractional integral inequalities via generalized exponential-type convex functions and applications, Symmetry, 13 (2021), 8. https://doi.org/10.3390/sym13081429 doi: 10.3390/sym13081429
![]() |
[49] |
S. K. Sahoo, H. Ahmad, M. Tariq, B. Kodamasingh, H. Aydi, M. De la Sen, Hermite-Hadamard type inequalities involving k-fractional operator for (¯h,m)-convex functions, Symmetry, 13 (2021), 1686. https://doi.org/10.3390/sym13091686 doi: 10.3390/sym13091686
![]() |
[50] |
T. Abdeljawad, S. Rashid, Z. Hammouch, Y. M. Chu, Some new local fractional inequalities associated with generalized (s,m)-convex functions and applications, Adv. Differ. Equ., 2020 (2020), 406. https://doi.org/10.1186/s13662-020-02865-w doi: 10.1186/s13662-020-02865-w
![]() |
[51] |
S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means for real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. https://doi.org/10.1016/S0893-9659(98)00086-X doi: 10.1016/S0893-9659(98)00086-X
![]() |
[52] |
H. Kalsoom, M. Idrees, D. Baleanu, Y. M. Chu, New estimates of q1q2-Ostrowski-type inequalities within a class of n-polynomial prevexity of function, J. Funct. Space., 2020 (2020), 3720798. https://doi.org/10.1155/2020/3720798 doi: 10.1155/2020/3720798
![]() |
[53] |
T. Weir, B. Mond, Pre-inven functions in multiple objective optimization, J. Math. Anal. Appl., 136 (1988), 29–38. https://doi.org/10.1016/0022-247X(88)90113-8 doi: 10.1016/0022-247X(88)90113-8
![]() |
[54] | C. P. Niculescu, L. E. Persson, Convex functions and their applications, New York: Springer, 2006. |
[55] | S. K. Mishra, G. Giorgi, Invexity and Optimization, Springer Science & Business Media, 2008. |
[56] |
B. Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Space. Appl., 2012 (2012), 980438. https://doi.org/10.1155/2012/980438 doi: 10.1155/2012/980438
![]() |
[57] |
K. Mehren, P. Agarwal, New Hermite-Hadamard type integral inequalities for the convex functions and theirs applications, J. Comput. Appl. Math., 350 (2019), 274–285. https://doi.org/10.1016/j.cam.2018.10.022 doi: 10.1016/j.cam.2018.10.022
![]() |
[58] |
U. S. Kirmaci, On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 147 (2004), 137–146. https://doi.org/10.1016/S0096-3003(02)00657-4 doi: 10.1016/S0096-3003(02)00657-4
![]() |
[59] |
H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aeq. Math., 48 (1994), 100–111. https://doi.org/10.1007/BF01837981 doi: 10.1007/BF01837981
![]() |
[60] |
S. S. Dragomir, S. Fitzpatrik, The Hadamard inequality for s-convex functions in the second sense, Demonstr. Math., 32 (1999), 687–696. https://doi.org/10.1515/dema-1999-0403 doi: 10.1515/dema-1999-0403
![]() |
[61] |
S. Özcan, İ. İşcan, Some new Hermite-Hadamard type integral inequalities for the s-convex functions and theirs applications, J. Inequal. Appl., 2019 (2019), 201. https://doi.org/10.1186/s13660-019-2151-2 doi: 10.1186/s13660-019-2151-2
![]() |
[62] |
S. I. Butt, A. Kashuri, M. Tariq, J. Nasir, A. Aslam, W. Geo, Hermite-Hadamard-type inequalities via n-polynomial exponential-type convexity and their applications, Adv. Differ. Equ., 2020 (2020), 508. https://doi.org/10.1186/s13662-020-02967-5 doi: 10.1186/s13662-020-02967-5
![]() |
[63] |
S. Rashid, İ. İşcan, D. Baleanu, Y. M. Chu, Generation of new fractional inequalities via n-polynomials s-type convexity with applications, Adv. Differ. Equ., 2020 (2020), 264. https://doi.org/10.1186/s13662-020-02720-y doi: 10.1186/s13662-020-02720-y
![]() |
[64] |
T. Toplu, M. Kadakal, İ. İşcan, On n-polynomial convexity and some related inequalities, AIMS Math., 5 (2020), 1304–1318. https://doi.org/10.3934/math.2020089 doi: 10.3934/math.2020089
![]() |
[65] | M. A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory, 2 (2007), 126–131. |
[66] |
A. Barani, G. Ghazanfari, S. S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, J. Inequal. Appl., 2012 (2012), 247. https://doi.org/10.1186/1029-242X-2012-247 doi: 10.1186/1029-242X-2012-247
![]() |
[67] |
M. A. Noor, K. I. Noor, M. Awan, J. Li, On Hermite-Hadamard inequalities for h-preinvex functions, Filomat, 28 (2014), 1463–1474. https://doi.org/10.2298/FIL1407463N doi: 10.2298/FIL1407463N
![]() |
[68] | S. Wu, I. A. Baloch, İ. İşcan, On harmonically (p,h,m)-preinvex functions, J. Funct. Space., 2017 (2017), 2148529. https://doi.org/10.1155/2017/2148529 |
[69] | J. Park, Simpson-like and Hermite-Hadamard-like type integral inequalities for twice differentiable preinvex functions, Int. J. Pure. Appl. Math., 79 (2012), 623–640. |
[70] | M. Z. Sarikaya, N. Alp, H. Bozkurt, On Hermite-Hadamard type integral inequalities for preinvex and log-preinvex functions, 2012. https://doi.org/10.48550/arXiv.1203.4759 |
[71] |
S. H. Wang, X. M. Liu, Hermite-Hadamard type inequalities for operator s-preinvex functions, J. Nonlinear Sci. Appl., 8 (2015), 1070–1081. http://dx.doi.org/10.22436/jnsa.008.06.17 doi: 10.22436/jnsa.008.06.17
![]() |
[72] |
İ. İşcan, New refinements for integral and sum forms of Holder inequality, J. Inequal. Appl., 2019 (2019), 304. https://doi.org/10.1186/s13660-019-2258-5 doi: 10.1186/s13660-019-2258-5
![]() |
[73] | M. Kadakal, İ. Íscan, H. Kadakal, On improvements of some integral inequalities, J. Honam Math., 43 (2021), 441–452. |
[74] |
W. N. Li, Some Pachpatte-type inequalities on time scales, Comput. Math. Appl., 57 (2009), 275–282. https://doi.org/10.1016/j.camwa.2008.09.040 doi: 10.1016/j.camwa.2008.09.040
![]() |
[75] |
S. I. Butt, S. Yousaf, K. A. Khan, R. M. Mabela, A. M. Alsharif, Fejér-Pachpatte-Mercer-type inequalities for harmonically convex functions involving exponential function in kernel, Math. Probl. Eng., 2022 (2022), 7269033. https://doi.org/10.1155/2022/7269033 doi: 10.1155/2022/7269033
![]() |
[76] |
S. K. Sahoo, M. A. Latif, O. M. Alsalami, S. Treanta, W. Sudsutad, J. Kongson, Hermite-Hadamard, Fejér and Pachpatte-type integral inequalities for center-radius order interval-valued preinvex functions, Fractal Fract., 6 (2022), 506. https://doi.org/10.3390/fractalfract6090506 doi: 10.3390/fractalfract6090506
![]() |
[77] |
H. M. Srivastava, S. K. Sahoo, P. O. Mohammed, B. Kodamasingh, K. Nonlaopon, M. Abualnaja, Interval valued Hadamard-Fejér and Pachpatte type inequalities pertaining to a new fractional integral operator with exponential kernel, AIMS Math., 7 (2022), 15041–15063. https://doi.org/10.3934/math.2022824 doi: 10.3934/math.2022824
![]() |
[78] |
M. Tariq, S. K. Sahoo, S. K. Ntouyas, O. M. Alsalami, A. A. AShaikh, K. Nonlaopon, Some Hermite-Hadamard and Hermite-Hadamard-Fejér type fractional inclusions pertaining to different kinds of generalized preinvexities, Symmetry, 14 (2022), 1957. https://doi.org/10.3390/sym14101957 doi: 10.3390/sym14101957
![]() |