In this article, we aim to introduce and explore a new class of preinvex functions called $ \mathfrak{n} $-polynomial $ m $-preinvex functions, while also presenting algebraic properties to enhance their numerical significance. We investigate novel variations of Pachpatte and Hermite-Hadamard integral inequalities pertaining to the concept of preinvex functions within the framework of the Caputo-Fabrizio fractional integral operator. By utilizing this direction, we establish a novel fractional integral identity that relates to preinvex functions for differentiable mappings of first-order. Furthermore, we derive some novel refinements for Hermite-Hadamard type inequalities for functions whose first-order derivatives are polynomial preinvex in the Caputo-Fabrizio fractional sense. To demonstrate the practical utility of our findings, we present several inequalities using specific real number means. Overall, our investigation sheds light on convex analysis within the context of fractional calculus.
Citation: Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon. Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator[J]. AIMS Mathematics, 2023, 8(11): 25572-25610. doi: 10.3934/math.20231306
In this article, we aim to introduce and explore a new class of preinvex functions called $ \mathfrak{n} $-polynomial $ m $-preinvex functions, while also presenting algebraic properties to enhance their numerical significance. We investigate novel variations of Pachpatte and Hermite-Hadamard integral inequalities pertaining to the concept of preinvex functions within the framework of the Caputo-Fabrizio fractional integral operator. By utilizing this direction, we establish a novel fractional integral identity that relates to preinvex functions for differentiable mappings of first-order. Furthermore, we derive some novel refinements for Hermite-Hadamard type inequalities for functions whose first-order derivatives are polynomial preinvex in the Caputo-Fabrizio fractional sense. To demonstrate the practical utility of our findings, we present several inequalities using specific real number means. Overall, our investigation sheds light on convex analysis within the context of fractional calculus.
[1] | G. H. Hardy, J. E. Little, G. Polya, Inequalities, Cambridge University Press, 1952. |
[2] | T. Pennanen, Convex duality in stochastic optimization and mathematical finance, Math. Oper. Res., 36 (2011), 340–362. https://doi.org/10.1287/moor.1110.0485 doi: 10.1287/moor.1110.0485 |
[3] | A. Föllmer, A. Schied, Convex measures of risk and trading constraints, Financ. Stoch., 6 (2002), 429–447. https://doi.org/10.1007/s007800200072 doi: 10.1007/s007800200072 |
[4] | Z. Q. Luo, W. Yu, An introduction to convex optimization for communications and signal processing, IEEE J. Sel. Areas Comm., 24 (2006), 1426–1438. https://doi.org/10.1109/JSAC.2006.879347 doi: 10.1109/JSAC.2006.879347 |
[5] | S. Boyd, C. Crusius, A. Hansson, New advances in convex optimization and control applications, IFAC Proc., 30 (1997), 365–393. https://doi.org/10.1016/S1474-6670(17)43183-1 doi: 10.1016/S1474-6670(17)43183-1 |
[6] | V. Chandrasekarana, M. I. Jordan, Computational and statistical tradeoffs via convex relaxation, P. Natl. A. Sci., 110 (2013), E1181–E1190. https://doi.org/10.1073/pnas.1302293110 doi: 10.1073/pnas.1302293110 |
[7] | B. S. Mordukhovich, N. M. Nam, An easy path to convex analysis and applications, 2013. |
[8] | W. Zhang, X. Lu, X. Li, Similarity constrained convex nonnegative matrix factorization for hyperspectral anomaly detection, IEEE T. Geosci Remote, 57 (2019), 4810–4822. https://doi.org/10.1109/TGRS.2019.2893116 doi: 10.1109/TGRS.2019.2893116 |
[9] | J. Green, P. H. Walter, Chapter 1 Mathematical analysis and convexity with applications to economics, Handbook Math. Econ., 1 (1981), 15–52. https://doi.org/10.1016/S1573-4382(81)01005-9 doi: 10.1016/S1573-4382(81)01005-9 |
[10] | R. T. Rockafellar, Convex analysis, Princeton: Princeton University Press, 1970. https://doi.org/10.1515/9781400873173 |
[11] | S. Boyd, L. Vandenberghe, Convex optimization, Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511804441 |
[12] | Y. Nesterov, Introductory lectures on convex optimization: A basic course, New York: Springer, 2004. https://doi.org/10.1007/978-1-4419-8853-9 |
[13] | J. B. Hiriart-Urruty, C. Lemarechal, Convex analysis and minimization algorithms II: Advanced theory and bundle methods, Berlin: Springer, 1993. https://doi.org/10.1007/978-3-662-06409-2 |
[14] | J. M. Borwein, A. S. Lewis, Convex analysis and nonlinear optimization: Theory and examples, New York: Springer, 2000. https://doi.org/10.1007/978-1-4757-9859-3 |
[15] | F. Cingano, Trends in income inequality and its impact on economic growth, OECD Publishing, 2014. https://doi.org/10.1787/5jxrjncwxv6j-en |
[16] | M. J. Cloud, B. C. Drachman, L. P. Lebedev, Inequalities with applications to engineering, Springer, 2014. |
[17] | R. P. Bapat, Applications of inequality in information theory to matrices, Linear Algebra Appl., 78 (1986), 107–117. https://doi.org/10.1016/0024-3795(86)90018-2 doi: 10.1016/0024-3795(86)90018-2 |
[18] | C. J. Thompson, Inequality with applications in statistical mechanics, J. Math. Phys., 6 (1965), 1812–1813. https://doi.org/10.1063/1.1704727 doi: 10.1063/1.1704727 |
[19] | S. I. Butt, L. Horváth, D. Pečarić, J. Pečarić, Cyclic improvements of Jensen's inequalities (Cyclic inequalities in information theory), Monogr. Inequal., 18 (2020). |
[20] | T. Rasheed, S. I. Butt, D. Pečarić, J. Pečarić, Generalized cyclic Jensen and information inequalities, Chaos Soliton. Fract., 163 (2022), 112602. https://doi.org/10.1016/j.chaos.2022.112602 doi: 10.1016/j.chaos.2022.112602 |
[21] | S. I. Butt, D. Pečarić, J. Pečarić, Several Jensen-Gruss inequalities with applications in information theory, Ukrain. Mate. Zhurnal, 74 (2023), 1654–1672. https://doi.org/10.37863/umzh.v74i12.6554 doi: 10.37863/umzh.v74i12.6554 |
[22] | N. Mehmood, S. I. Butt, D. Pečarić, J. Pečarić, Generalizations of cyclic refinements of Jensen's inequality by Lidstone's polynomial with applications in information theory, J. Math. Inequal., 14 (2020), 249–271. https://doi.org/10.7153/jmi-2020-14-17 doi: 10.7153/jmi-2020-14-17 |
[23] | M. Z. Sarikaya, E. Set, H. Yaldiz, N. Aşak, Hermite-Hadamard inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048 |
[24] | P. Agarwal, Some inequalities involving Hadamard-type $k$-fractional integral operators, Math. Method. Appl. Sci., 40 (2017), 3882–3891. https://doi.org/10.1002/mma.4270 doi: 10.1002/mma.4270 |
[25] | S. I. Butt, M. Umar, S. Rashid, A. O. Akdemir, Y. M. Chu, New Hermite-Mercer type inequalities via k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 635. https://doi.org/10.1186/s13662-020-03093-y doi: 10.1186/s13662-020-03093-y |
[26] | Q. Kang, S. I. Butt, W. Nazeer, M. Nadeem, J. Nasir, H. Yang, New variants of Hermite-Jensen-Mercer inequalities Via Riemann-Liouville fractional integral operators, J. Math., 2020 (2020), 4303727. https://doi.org/10.1155/2020/4303727 doi: 10.1155/2020/4303727 |
[27] | S. I. Butt, M. Umar, K. A. Khan, A. Kashuri, H. Emadifar, Fractional Hermite-Jensen-Mercer integral inequalities with respect to another function and application, Complexiy, 2021 (2021), 9260828. https://doi.org/10.1155/2021/9260828 doi: 10.1155/2021/9260828 |
[28] | M. Tariq, S. K. Ntouyas, A. A. Shaikh, A comprehensive review of the Hermite-Hadamard inequality pertaining to fractional integral operators, Mathematics, 11 (2023), 1953. https://doi.org/10.3390/math11081953 doi: 10.3390/math11081953 |
[29] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201 |
[30] | M. U. Rahman, S. Ahmad, R. T. Matoog, N. A. Alshehri, T. Khan, Study on the mathematical modelling of COVID-19 with Caputo-Fabrizio operator, Chaos Soliton. Frac., 150 (2021), 111121. https://doi.org/10.1016/j.chaos.2021.111121 doi: 10.1016/j.chaos.2021.111121 |
[31] | S. Ahmad, D. Qiu, M. U. Rehman, Dynamics of a fractional-order COVID-19 model under the nonsingular kernel of Caputo-Fabrizio operator, Math. Model. Numer. Simul. Appl., 4 (2022), 228–243. https://doi.org/10.53391/mmnsa.2022.019 doi: 10.53391/mmnsa.2022.019 |
[32] | S. Ahmad, M. U. Rehman, M. Arfan, On the analysis of semi-analytical solutions of Hepatitis B epidemic model under the Caputo-Fabrizio operator, Chaos Soliton. Fract., 146 (2021), 110892. https://doi.org/10.1016/j.chaos.2021.110892 doi: 10.1016/j.chaos.2021.110892 |
[33] | B. Li, T. Zhang, C. Zhang, Investigation of financial bubble mathematical model under fractal-fractional Caputo derivative, Fractals, 31 (2023), 2350050. https://doi.org/10.1142/S0218348X23500500 doi: 10.1142/S0218348X23500500 |
[34] | A. Atangana, D. Baleanu, Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer, J. Eng. Mech., 143 (2017), D4016005. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001091 doi: 10.1061/(ASCE)EM.1943-7889.0001091 |
[35] | J. L. W. V. Jensen, Sur les fonctions convexes et les inegalites entre les valeurs moyennes, Acta Math., 30 (1906), 175–193. https://doi.org/10.1007/BF02418571 doi: 10.1007/BF02418571 |
[36] | C. P. Niculescu, L. E. Persson, Convex functions and their applications, New York: Springer, 2006. |
[37] | J. Hadamard, Étude sur les propriétés des fonctions entiéres en particulier d'une fonction considéréé par Riemann, J. Math. Pure. Appl., 9 (1893), 171–215. |
[38] | H. Ahmad, M. Tariq, S. K. Sahoo, J. Baili, C. Cesarano, New estimations of Hermite-Hadamard type integral inequalities for special functions, Fractal Fract., 5 (2021), 144. https://doi.org/10.3390/fractalfract5040144 doi: 10.3390/fractalfract5040144 |
[39] | M. Tariq, S. K. Sahoo, H. Ahmad, T. Sitthiwirattham, J. Soontharanon, Several integral inequalities of Hermite-Hadamard type related to k-fractional conformable integral operators, Symmetry, 13 (2021), 1880. https://doi.org/10.3390/sym13101880 doi: 10.3390/sym13101880 |
[40] | M. Tariq, H. Ahmad, S. K. Sahoo, L. S. Aljoufi, S. K. Awan, A novel comprehensive analysis of the refinements of Hermite-Hadamard type integral inequalities involving special functions, J. Math. Comput. Sci., 26 (2022), 330–348. http://dx.doi.org/10.22436/jmcs.026.04.02 doi: 10.22436/jmcs.026.04.02 |
[41] | T. S. Du, J. G. Liao, Y. J. Li, Properties and integral inequalities of Hadamard-Simpson type for the generalized $(s, m)$-preinvex functions, J. Nonlinear Sci. Appl., 9 (2016), 3112–3126. |
[42] | Y. Deng, H. Kalsoom, S. Wu, Some new Quantum Hermite-Hadamard-type estimates within a class of generalized $(s, m)$-preinvex functions, Symmetry, 11 (2019), 1283. https://doi.org/10.3390/sym11101283 doi: 10.3390/sym11101283 |
[43] | T. S. Du, J. G. Liao, L. G. Chen, M. U. Awan, Properties and Riemann-Liouville fractional Hermite-Hadamard inequalities for the generalized $(\alpha, m)$-preinvex functions, J. Inequal. Appl., 2016 (2016), 306. https://doi.org/10.1186/s13660-016-1251-5 doi: 10.1186/s13660-016-1251-5 |
[44] | M. Tariq, H. Ahmad, S. K. Sahoo, A. Kashuri, T. A. Nofal, C. H. Hsu, Inequalities of Simpson-Mercer-type including Atangana-Baleanu fractional operators and their applications, AIMS Math., 7 (2021), 15159–15181. https://doi.org/10.3934/math.2022831 doi: 10.3934/math.2022831 |
[45] | M. Gürbüz, A. O. Akdemir, S. Rashid, E. Set, Hermite-Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities, J. Inequl. Appl., 2020 (2020), 172. https://doi.org/10.1186/s13660-020-02438-1 doi: 10.1186/s13660-020-02438-1 |
[46] | E. R. Nwaeze, M. A. Khan, A. Ahmadian, M. N. Ahmad, A. K. Mahmood, Fractional inequalities of the Hermite-Hadamard type for $m$-polynomial convex and harmonically convex functions, AIMS Math., 6 (2021), 1889–1904. https://doi.org/10.3934/math.2021115 doi: 10.3934/math.2021115 |
[47] | M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17 (2016), 1049–1059. https://doi.org/10.18514/MMN.2017.1197 doi: 10.18514/MMN.2017.1197 |
[48] | S. K. Sahoo, M. Tariq, H. Ahmad, J. Nasir, H. Aydi, A. Mukheimer, New Ostrowski-type fractional integral inequalities via generalized exponential-type convex functions and applications, Symmetry, 13 (2021), 8. https://doi.org/10.3390/sym13081429 doi: 10.3390/sym13081429 |
[49] | S. K. Sahoo, H. Ahmad, M. Tariq, B. Kodamasingh, H. Aydi, M. De la Sen, Hermite-Hadamard type inequalities involving $k$-fractional operator for $(\overline{h}, m)$-convex functions, Symmetry, 13 (2021), 1686. https://doi.org/10.3390/sym13091686 doi: 10.3390/sym13091686 |
[50] | T. Abdeljawad, S. Rashid, Z. Hammouch, Y. M. Chu, Some new local fractional inequalities associated with generalized $(s, m)$-convex functions and applications, Adv. Differ. Equ., 2020 (2020), 406. https://doi.org/10.1186/s13662-020-02865-w doi: 10.1186/s13662-020-02865-w |
[51] | S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means for real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. https://doi.org/10.1016/S0893-9659(98)00086-X doi: 10.1016/S0893-9659(98)00086-X |
[52] | H. Kalsoom, M. Idrees, D. Baleanu, Y. M. Chu, New estimates of $q_{1}q_{2}$-Ostrowski-type inequalities within a class of $\mathfrak{n}$-polynomial prevexity of function, J. Funct. Space., 2020 (2020), 3720798. https://doi.org/10.1155/2020/3720798 doi: 10.1155/2020/3720798 |
[53] | T. Weir, B. Mond, Pre-inven functions in multiple objective optimization, J. Math. Anal. Appl., 136 (1988), 29–38. https://doi.org/10.1016/0022-247X(88)90113-8 doi: 10.1016/0022-247X(88)90113-8 |
[54] | C. P. Niculescu, L. E. Persson, Convex functions and their applications, New York: Springer, 2006. |
[55] | S. K. Mishra, G. Giorgi, Invexity and Optimization, Springer Science & Business Media, 2008. |
[56] | B. Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Space. Appl., 2012 (2012), 980438. https://doi.org/10.1155/2012/980438 doi: 10.1155/2012/980438 |
[57] | K. Mehren, P. Agarwal, New Hermite-Hadamard type integral inequalities for the convex functions and theirs applications, J. Comput. Appl. Math., 350 (2019), 274–285. https://doi.org/10.1016/j.cam.2018.10.022 doi: 10.1016/j.cam.2018.10.022 |
[58] | U. S. Kirmaci, On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 147 (2004), 137–146. https://doi.org/10.1016/S0096-3003(02)00657-4 doi: 10.1016/S0096-3003(02)00657-4 |
[59] | H. Hudzik, L. Maligranda, Some remarks on $s$-convex functions, Aeq. Math., 48 (1994), 100–111. https://doi.org/10.1007/BF01837981 doi: 10.1007/BF01837981 |
[60] | S. S. Dragomir, S. Fitzpatrik, The Hadamard inequality for $s$-convex functions in the second sense, Demonstr. Math., 32 (1999), 687–696. https://doi.org/10.1515/dema-1999-0403 doi: 10.1515/dema-1999-0403 |
[61] | S. Özcan, İ. İşcan, Some new Hermite-Hadamard type integral inequalities for the $s$-convex functions and theirs applications, J. Inequal. Appl., 2019 (2019), 201. https://doi.org/10.1186/s13660-019-2151-2 doi: 10.1186/s13660-019-2151-2 |
[62] | S. I. Butt, A. Kashuri, M. Tariq, J. Nasir, A. Aslam, W. Geo, Hermite-Hadamard-type inequalities via $\mathfrak{n}$-polynomial exponential-type convexity and their applications, Adv. Differ. Equ., 2020 (2020), 508. https://doi.org/10.1186/s13662-020-02967-5 doi: 10.1186/s13662-020-02967-5 |
[63] | S. Rashid, İ. İşcan, D. Baleanu, Y. M. Chu, Generation of new fractional inequalities via $\mathfrak{n}$-polynomials $s$-type convexity with applications, Adv. Differ. Equ., 2020 (2020), 264. https://doi.org/10.1186/s13662-020-02720-y doi: 10.1186/s13662-020-02720-y |
[64] | T. Toplu, M. Kadakal, İ. İşcan, On $n$-polynomial convexity and some related inequalities, AIMS Math., 5 (2020), 1304–1318. https://doi.org/10.3934/math.2020089 doi: 10.3934/math.2020089 |
[65] | M. A. Noor, Hermite-Hadamard integral inequalities for $\log$-preinvex functions, J. Math. Anal. Approx. Theory, 2 (2007), 126–131. |
[66] | A. Barani, G. Ghazanfari, S. S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, J. Inequal. Appl., 2012 (2012), 247. https://doi.org/10.1186/1029-242X-2012-247 doi: 10.1186/1029-242X-2012-247 |
[67] | M. A. Noor, K. I. Noor, M. Awan, J. Li, On Hermite-Hadamard inequalities for $h$-preinvex functions, Filomat, 28 (2014), 1463–1474. https://doi.org/10.2298/FIL1407463N doi: 10.2298/FIL1407463N |
[68] | S. Wu, I. A. Baloch, İ. İşcan, On harmonically $(p, h, m)$-preinvex functions, J. Funct. Space., 2017 (2017), 2148529. https://doi.org/10.1155/2017/2148529 |
[69] | J. Park, Simpson-like and Hermite-Hadamard-like type integral inequalities for twice differentiable preinvex functions, Int. J. Pure. Appl. Math., 79 (2012), 623–640. |
[70] | M. Z. Sarikaya, N. Alp, H. Bozkurt, On Hermite-Hadamard type integral inequalities for preinvex and log-preinvex functions, 2012. https://doi.org/10.48550/arXiv.1203.4759 |
[71] | S. H. Wang, X. M. Liu, Hermite-Hadamard type inequalities for operator $s$-preinvex functions, J. Nonlinear Sci. Appl., 8 (2015), 1070–1081. http://dx.doi.org/10.22436/jnsa.008.06.17 doi: 10.22436/jnsa.008.06.17 |
[72] | İ. İşcan, New refinements for integral and sum forms of Holder inequality, J. Inequal. Appl., 2019 (2019), 304. https://doi.org/10.1186/s13660-019-2258-5 doi: 10.1186/s13660-019-2258-5 |
[73] | M. Kadakal, İ. Íscan, H. Kadakal, On improvements of some integral inequalities, J. Honam Math., 43 (2021), 441–452. |
[74] | W. N. Li, Some Pachpatte-type inequalities on time scales, Comput. Math. Appl., 57 (2009), 275–282. https://doi.org/10.1016/j.camwa.2008.09.040 doi: 10.1016/j.camwa.2008.09.040 |
[75] | S. I. Butt, S. Yousaf, K. A. Khan, R. M. Mabela, A. M. Alsharif, Fejér-Pachpatte-Mercer-type inequalities for harmonically convex functions involving exponential function in kernel, Math. Probl. Eng., 2022 (2022), 7269033. https://doi.org/10.1155/2022/7269033 doi: 10.1155/2022/7269033 |
[76] | S. K. Sahoo, M. A. Latif, O. M. Alsalami, S. Treanta, W. Sudsutad, J. Kongson, Hermite-Hadamard, Fejér and Pachpatte-type integral inequalities for center-radius order interval-valued preinvex functions, Fractal Fract., 6 (2022), 506. https://doi.org/10.3390/fractalfract6090506 doi: 10.3390/fractalfract6090506 |
[77] | H. M. Srivastava, S. K. Sahoo, P. O. Mohammed, B. Kodamasingh, K. Nonlaopon, M. Abualnaja, Interval valued Hadamard-Fejér and Pachpatte type inequalities pertaining to a new fractional integral operator with exponential kernel, AIMS Math., 7 (2022), 15041–15063. https://doi.org/10.3934/math.2022824 doi: 10.3934/math.2022824 |
[78] | M. Tariq, S. K. Sahoo, S. K. Ntouyas, O. M. Alsalami, A. A. AShaikh, K. Nonlaopon, Some Hermite-Hadamard and Hermite-Hadamard-Fejér type fractional inclusions pertaining to different kinds of generalized preinvexities, Symmetry, 14 (2022), 1957. https://doi.org/10.3390/sym14101957 doi: 10.3390/sym14101957 |