Research article

Interpretation on nonlocal neutral functional differential equations with delay

  • Received: 07 May 2023 Revised: 24 July 2023 Accepted: 15 August 2023 Published: 05 September 2023
  • MSC : 34B10, 35B65, 37L05, 45K05, 47H10, 47N20

  • This work deals with the existence and continuous dependence of an integral solution for neutral integro-differential equations with a nonlocal condition. This result is established by using an integrated resolvent operator under conditions of Lipschitz continuity and uniqueness via the Banach fixed point technique. We also study the existence of a strict solution on reflexive and general Banach spaces. In the last section, an example is provided related to this theory.

    Citation: Kottakkaran Sooppy Nisar, Kasilingam Munusamy, Chokkalingam Ravichandran, Sriramulu Sabarinathan. Interpretation on nonlocal neutral functional differential equations with delay[J]. AIMS Mathematics, 2023, 8(11): 25611-25632. doi: 10.3934/math.20231307

    Related Papers:

    [1] Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861
    [2] Ahmed Morsy, Kottakkaran Sooppy Nisar, Chokkalingam Ravichandran, Chandran Anusha . Sequential fractional order Neutral functional Integro differential equations on time scales with Caputo fractional operator over Banach spaces. AIMS Mathematics, 2023, 8(3): 5934-5949. doi: 10.3934/math.2023299
    [3] Ye Li, Biao Qu . Mild solutions for fractional non-instantaneous impulses integro-differential equations with nonlocal conditions. AIMS Mathematics, 2024, 9(5): 12057-12071. doi: 10.3934/math.2024589
    [4] Qi Wang, Chenxi Xie, Qianqian Deng, Yuting Hu . Controllability results of neutral Caputo fractional functional differential equations. AIMS Mathematics, 2023, 8(12): 30353-30373. doi: 10.3934/math.20231550
    [5] Saowaluck Chasreechai, Sadhasivam Poornima, Panjaiyan Karthikeyann, Kulandhaivel Karthikeyan, Anoop Kumar, Kirti Kaushik, Thanin Sitthiwirattham . A study on the existence results of boundary value problems of fractional relaxation integro-differential equations with impulsive and delay conditions in Banach spaces. AIMS Mathematics, 2024, 9(5): 11468-11485. doi: 10.3934/math.2024563
    [6] Theodore A. Burton, Ioannis K. Purnaras . Progressive contractions, product contractions, quadratic integro-differential equations. AIMS Mathematics, 2019, 4(3): 482-496. doi: 10.3934/math.2019.3.482
    [7] Dumitru Baleanu, Ramkumar Kasinathan, Ravikumar Kasinathan, Varshini Sandrasekaran . Existence, uniqueness and Hyers-Ulam stability of random impulsive stochastic integro-differential equations with nonlocal conditions. AIMS Mathematics, 2023, 8(2): 2556-2575. doi: 10.3934/math.2023132
    [8] Maryam G. Alshehri, Hassen Aydi, Hasanen A. Hammad . Solving delay integro-differential inclusions with applications. AIMS Mathematics, 2024, 9(6): 16313-16334. doi: 10.3934/math.2024790
    [9] Veliappan Vijayaraj, Chokkalingam Ravichandran, Thongchai Botmart, Kottakkaran Sooppy Nisar, Kasthurisamy Jothimani . Existence and data dependence results for neutral fractional order integro-differential equations. AIMS Mathematics, 2023, 8(1): 1055-1071. doi: 10.3934/math.2023052
    [10] Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Suliman Alsaeed, Kottakkaran Sooppy Nisar . New interpretation of topological degree method of Hilfer fractional neutral functional integro-differential equation with nonlocal condition. AIMS Mathematics, 2023, 8(7): 17154-17170. doi: 10.3934/math.2023876
  • This work deals with the existence and continuous dependence of an integral solution for neutral integro-differential equations with a nonlocal condition. This result is established by using an integrated resolvent operator under conditions of Lipschitz continuity and uniqueness via the Banach fixed point technique. We also study the existence of a strict solution on reflexive and general Banach spaces. In the last section, an example is provided related to this theory.



    Neutral differential equations are studied by many authors with or without delay, to model many real situations in different fields like population studies, electronics, chemical kinetics and biological science. The below system is used to describe the heat conduction materials in [2].

    {t[z(t1,x)+t1e1(t1ξ)z(ξ,x)dξ]=dΔz(t1)+t1e2(t1ξ)Δz(ξ,x)+f(t1,z(,x)),t10,z(t1,x)=0, for xΩ,

    where ΩRn is open, (t1,x)[0,)×Ω and z(t1,x) denotes the heat in x at any time t1. Let d>0;ei:RR represents the internal energy of fading memory materials. In [7,8] Ezzinbi et al. proved the existence and regularity of solutions of neutral equations by using resolvent operator theory and fixed point theorems. In [3,15,21] the authors proved the existence solution of neutral integro-differential equations by using fractional powers of operators and the Schauder fixed point theorem. Also, in [1,28], the authors proved the existence of solutions of differential equations by using fractional powers of operators under the condition of Krasnoselskii's fixed point theorems. In [24] Murugesu and Suguna proved the existence solution for neutral functional integro-differential equations by using fractional powers of operators and Sadovskii's fixed point theorem. The existence result for integro-differential equations in [9,22,27] was proved by using resolvent operator theory and Monch-Krasnoselskii's and Sadovskii's fixed point theorems. In [4,23] the authors established the existence of a mild solution for neutral differential equations by using Schaefer fixed-point theorem.

    The nonlocal initial conditions are more effective, realistic and accurate in the solutions and uniqueness than the classical one proved by many researchers see [6,20]. Recently published [18,19] proves the existence and uniqueness of solutions of functional integro-differential equations with nonlocal conditions; the authors also proved the existence of a strict solution by using an integrated resolvent operator. The main tool for proving the uniqueness and existence of solutions of differential equations by using the Banach fixed point theorem has been established in [12,13,14]. In [26] the authors proved that the mild solution, strong solution and classical solutions obtained by using the semigroup theory of evolution equations also explained the uniqueness of the solution. The semigroup and resolvent operator theories are important methods to find the solutions of integro-differential equations in Banach space(BS), and the authors established integrated semigroup theory in [16]. In recent years, many differential equations have been reformed as integral equations and scholars have proved that the existence of solutions can be obtained via appropriate fixed-point theorems, which is the common technique for proving the existence of solutions of the integral equations. In [11,17], proved the existence solutions of integro-differential equations through the use of resolvent operators with finite delay furthermore, the authors used the integrated resolvent operator in [11].

    In the recently published article [29] the authors established the following system

    {ddt[x(t)F(t,x(h1(t)))]=Ax(t)+t0B(ts)x(s)ds+G(t,x(h2(t))), for t[0,a],x(0)+g(x)=x0.

    For this problem they proved the existence of the solution of nondensely defined neutral equations via the integrated resolvent operator technique. They also proved continuous dependence and differentiability. They assumed that A is a closed linear operator on X and its domain does not equals to X. Motivated by this above-mentioned article, we established the theory for the neutral integro-differential equations with nonlocal and finite delay. This theory contains the integrated resolvent operator in the proof of the existence of the solution and assumptions of Lipschitz continuity; we also prove the uniqueness by applying Banach fixed-point theory and verified its differentiability.

    Regarding this, we have to show the existence of the integral solution of the below system:

    {ddt[ω(t)q(t,ωt)]=Dω(t)+t0H(tζ)ω(ζ)dζ+φ(t,ωt,t0h(t,ζ,ωζ)dζ) for t[0,a]=I,ω(0)=ϕ+g(ω)C([r,0];E)=C. (1.1)

    In this article, E denotes the BS and D is the closed linear operator on E; its domain ¯D(D)E, which satisfies the Hille-Yosida theorem. Let H(t) be the set of bounded linear operators in E with D(D)D(B(t)), t0 from D(D)=Y into E. The functions q:I×CE, h:I×I×CE and φ:I×C×EE are continuous as specified later. Let C=C([r,0];X) be a set of continuous functions on [r,0] in E and ϕ,g be continuous functions defined on C.

    Note that ω belongs to the continuous function C([r,);E), t0; the function ωtC given that ωt(σ)=ω(t+σ) for σ[r,0]. The general form of (1.1) is an abstract formation of a large number of partial integro-differntial equations, particularly for applications such as electronic circuits, economics, biological sciences, medicine and more. In this article we use the Banach theorem to prove the existence of a solution to the nonlocal system given by Eq (1.1). The existence and uniqueness of the abstract form given by Eq (1.1) have been established in previous articles and by using different approaches this is particularly true for the existence of solutions and valid properties of differential equations which have been established by applying the resolvent operator technique in [5,7,10].

    This paper is summarized as follows. In Section 2, we provide the preliminary results and definitions regarding integrated resolvent operator theory. In Section 3, we discuss the existence and uniqueness of the solution and continuous dependence. In Section 4, we prove the differentiability of the solution; in Section 5, we provide an example related to our basic results.

    Here, this section includes some basic results and definitions regarding integrated resolvent operators. Let E ba a BS and D be a closed linear operator; 0ρ(D) then D1 exists. Let Y be the BS (D(D),) with a graph of the norm v=Dv+v, vD(D). Let L(Y,E) be the bounded linear operator YE with the norm and it is L(E) when Y=E. Let C([r,0];E) represent the functions on [r,0] denoted by C that are continuous in X and have the sup-norm C.

    Next we recall a few definitions and results about the integrated resolvent operators established in [25] for linear nondensely defined integro-differential equations.

    Consider the below homogeneous linear integro-differential system:

    {v(t)=Dv(t)+t0H(tζ)v(ζ)dζ for t[0,a]v(0)=v0E. (2.1)

    Here, the operators D and H() are defined already in Eq (2.1). Then the integrated resolvent operator for Eq (2.1) is as follows:

    Definition 2.1. [25] A set of operators (Q(t))t0 in L(E) constitute an integrated resolvent operator for Eq (2.1) if it satisfies the following:

    (R1) vE, Q()vC([0,+);E).

    (R2) vE, 0Q(ζ)Y.

    (R3) Q(t)vtv=Dt0Q(ζ)vdζ+t0H(tζ)ζ0Q(r)vdrdζ, vE, t0.

    (R4) Q(t)vtv=t0Q(ζ)Dvdζ+t0ζ0Q(ζr)H(r)vdrdζ, vD(D), t0.

    Definition 2.2. ([25]) The operator (Q(t))t0 defined in the above definition is locally Lipschitz continuous (LLC) if a>0and Ka=K(a)>0 implies the following

    Q(ξ1)Q(ξ2)Ka|ξ1ξ2|, where ξ1,ξ2[0,a].

    Consider the following non homogeneous integro-differential system:

    {v(t)=Dv(t)+t0H(tζ)v(ζ)dζ+f(t) for t[0,a].v(0)=v0E. (2.2)

    We follow a previous article see [25] to write the integral solution and strict solution of Eq (2.2) as follows:

    Definition 2.3. For fL1([0,);E) and v0E, a function v:[0,a]E is called an integral solution of Eq (2.2) if

    (1) vC([0,a];E),

    (2) 0v(ζ)dζC([0,a];Y),

    (3) v(t)=v0+Dt0v(ζ)dζ+t0H(tζ)ζ0v(ξ)dξdζ+t0f(ζ)dζ, t[0,a].

    Lemma 2.4. ([25]) Assume that (Q(t))t0 is an LLC integrated resolvent operator of Eq (2.2) with ρ(D) then, we have the following:

    (i) If v0¯D(D) and fL1([0,+);E) then a unique integral solution v() of problem Eq (2.2); then,

    v(t)=Q(t)v0+ddtt0Q(tζ)f(ζ)dζ,t[0,a]. (2.3)

    Further,

    v(t)C(v0+t0f(ζ)dζ),t[0,a]. (2.4)

    (ii) Suppose that v0D(D), fW1,1([0,a];E) and Dv0+f(0)¯D(D); a unique strict solution v() for Eq (2.2) and

    v(t)C(Dv0+f(0)+t0H(ζ)v0+f(ζ)dζ),t[0,a].

    Here C1>0 is a constant.

    Remark 2.5. Suppose that (Q(t))t0 is an LLC integrated resolvent operator; from [25, Theorem 2.7], for v¯D(D), tQ(t)v is differentiable on [0,a].

    Lemma 2.6. ([25, Theorem 2.6]) The set of (G(t))t0L(E) is LLC with G(0)=0; then, we have the following:

    (i) If fL1([0,a];E), then 0G(ζ)f(ζ)dζC1([0,a];E) and

    K(t)KTt0f(ζ)dζfort[0,a]. (2.5)

    Here K=ddtt0G(tζ)f(ζ)dζ, t[0,a] and KT>0 is Lipschitzian of {G(t):t[0,a]}. Further if f(t)K0, K0>0, t[0,a] and

    K(t1+ζ)K(t1)K0KTζ+KTt10f(ζ+ξ)f(ξ)dξfort1,ζ,t+ζ[0,a]. (2.6)

    (ii) Suppose that f:[0,a]E is a strongly bounded variation; then, K() is Lipschitz continuous on [0,a].

    Here, we have to show the existence of the solution of Eq (1.1). Due to Lemma 2.4, the integral solution of Eq (1.1) with the nonlocal condition is as follows:

    Definition 3.1. Let ω0¯D(D). A function ω([r,+);E) is an integral solution of the system given by Eq (1.1) if it satisfies the following:

    {ω(t)=q(t,ωt)+Q(t)[ϕ(0)+g(ω)(0)q(0,ω0)]+ddtt0Q(ts)×[Dq(s,ωs)+s0q(s,ωs)H(ξ)dξ+φ(s,ωs,s0h(s,ξ,ωξ)dξ)]ds,t0.ϕ(t)+g(ω)(t) for t[r,0]. (3.1)

    Remark 3.2. From the above definition, if ω() is an integral solution of Eq (1.1) on [0,a] then, for each t[0,a],ω(t)q(t,ωt)¯D(D). Further ω(0)q(0,ω0)¯D(D).

    To establish the solution of the existence of Eq (1.1), we need the support of the below assumptions:

    (H1) The function q:I×CD(D) is Lipschitz continuous; there exists a constant L1>0; then,

    Dq(ξ,x1)Dq(ξ,y1)L1x1y1 and Dq(ξ,x1)L1(x1+1)

    for any 0ξa,x1,y1C.

    (H2) The function φ:I×C×EE is Lipschitz continuous; L2>0 so that

    φ(t,ξ1,ν1)φ(t,ξ2,ν2)L2(ξ1ξ2+ν1ν2)

    and

    φ(t,ξ1,ν1)L2(ξ1C+ν1)

    for every ξ1,ξ2C,ν1,ν2E.

    (H3) The map g:C([0,a];E)C is Lipschitz continuous and L3>0; then,

    g(v1)g(v2)L3v1v2C and g(u)L3uC

    for each v1,v2([0,a];E) and for u([0,a];E).

    (H4) The map h:I×I×CE is Lipschitz continuous; there exists a constant Lh>0; then,

    h(ξ1,ξ2,ϕ)h(ξ1,ξ2,ψ)Lhϕψ and h(ξ1,ξ2,ϕ)Lhϕ

    for each ξ1,ξ2I, ϕ,ψC.

    Theorem 3.3. Let ω0¯D(D), 0ρ(D) satisfy (H1–H4) and ϕC; then, the system given by Eq (1.1) has at least one mild solution on [r,+) provided that

    M1L1+C[L3+(M1+a+M2a2)L1+L2a(1+Lh)]<1. (3.2)

    Here C is from Lemma 2.4, M1=D1 and M2=suptIH(t).

    Proof. Let a>0 and C([0,a];E) is a set of continuous maps from [0,a] into E with the uniform norm topology. We prove this existence by using the Banach fixed point theorem.

    The operator Γ on C([0,a];E) is defined by

    (Γω)(t)={ω(t)=q(t,ωt)+Q(t)[ϕ(0)+g(ω)(0)q(0,ω0)]+ddtt0Q(ts)×[Dq(s,ωs)+s0q(s,ωs)H(ξ)dξ+φ(s,ωs,s0h(s,ξ,ωξ)dξ)]ds, for t0.ϕ(t)+g(ω)(t) for t[r,0]. (3.3)

    We prove that this operator Γ has a fixed point in the closed ball Br={ωC([r,a];E),ωr}. Before we prove that Γ is a map on Br, for each ω¯Br and t[r,0], we take Γ1=ϕ(t)+g(ω)(t); we have

    (Γ1ω)(t)=ϕ(t)+g(ω)(t)ϕ(t)+g(ω)(t)ϕ+L3ωϕ+L3r.

    Next if t[0,a], let Γ2=ω(t); then,

    (Γ2ω)(t)=q(t,ωt)+Q(t)[ϕ(0)+g(ω)(0)q(0,ω0)]+ddtt0Q(ts)[Dq(s,ωs)+s0q(s,ωs)H(ξ)dξ+φ(s,ωs,s0h(s,ξ,ωξ)dξ)]dsq(t,ωt)+Q(t)[ϕ(0)+g(ω)(0)q(0,ω0)]+ddtt0Q(ts)[Dq(s,ωs)+s0q(s,ωs)H(ξ)dξ+φ(s,ωs,s0h(s,ξ,ωξ)dξ)]ds.

    Using the hypotheses, we have

    (Γ2ω)(t)M1L1(ωt+1)+C(ϕ+L3ω+M1L1(ω0+1))+Ct0[Dq(s,ωs)+s0q(s,ωs)H(ξ)dξ+φ(s,ωs,s0h(s,ξ,ωξ)dξ)]dsM1L1(r+1)+C[ϕ+L3r+M1L1(r+1)]+Ca(L1(r+1)+aM2L1(r+1)+L2(r+Lhr))M1L1(r+1)+C[ϕ+L3r+(M1+a+M2a2)L1(r+1)+L2(r+Lhr)].

    It follows from the above two cases that

    (Γω)(t)M1L1(r+1)+C[ϕ+L3r+(M1+a+M2a2)L1(r+1)+L2(r+Lhr)]r.

    Hence the operator Γ is well defined in Br; next, we show that Γ is a contractive map on Br.

    The map Γ is defined on Br as

    (Γω)(t)=q(t,ωt)+Q(t)[ϕ(0)+g(ω)(0)q(0,ω0)]+ddtt0Q(ts)×[Dq(s,ωs)+s0q(s,ωs)H(ξ)dξ+φ(s,ωs,s0h(s,ξ,ωξ)dξ)]ds, for t0.

    The extension ˜ω:[r,0]E is as follows

    ˜ω(t)={(ω)(t), for t[0,a],ϕ(t)+g(ω)(t), for t[r,0].

    Let σ(t),τ(t)Br represent the solution of Eq (1.1); for t[0,a] we have

    (Γσ)(t)(Γτ)(t)q(t,~σt)q(t,~τt)+Q(t)[ϕ(0)+g(˜σ)(0)q(0,~σ0)ϕ(0)g(˜τ)(0)+q(0,~τ0)]+ddtt0Q(ts)[Dq(s,˜σs)+s0q(s,˜σs)H(ξ)dξ+φ(s,˜σs,s0h(s,ξ,˜σξ)dξ)Dq(s,˜τs)s0q(s,˜τs)H(ξ)dξφ(s,˜τs,s0h(s,ξ,˜τξ)dξ)]ds.

    Then

    (Γσ)(t)(Γτ)(t)q(t,~σt)q(t,~τt)+Q(t)[(g(˜ω)(0)g(˜τ)(0))(q(0,~σ0)q(0,~τ0))]+ddtt0Q(ts)[Dq(s,˜σs)Dq(s,˜τs)+s0H(ξ)q(s,˜σs)q(s,˜τs)dξ+φ(s,˜σs,s0h(s,ξ,˜σξ)dξ)φ(s,˜τs,s0h(s,ξ,˜τξ)dξ)]ds.

    By using the hypotheses

    (Γσ)(t)(Γτ)(t)M1L1~σt~τtC+C(L3~σt(0)~τt(0)+M1L1~σ0~τ0)+Ct0[L1~σs~τs+s0M2L1~σs~τsdξ+L2(~σs~τs+Lh~σs~τs)][M1L1+C(L3+M1L1+aL1+M2a2L1+aL2+aL2Lh)]~σs~τs[M1L1+C(L3+(M1+a+M2a2)L1+L2a(1+Lh))]στ.

    Thus from Eq (3.2),

    (Γσ)(t)(Γτ)(t)k0σ(t)τ(t),

    where

    k0=[M1L1+C(L3+(M1+a+M2a2)L1+L2a(1+Lh))]<1.

    Hence Γ has a fixed point ω() and is a unique integral solution of Eq (1.1) on [0,a].

    Next we consider the continuous dependence of the solution for Eq (1.1) in the sense of the below theorem:

    Theorem 3.4. Suppose that the axioms of Theorem 3.3 hold and let u(), v() be solutions of Eq (1.1) with the initial conditions u0,v0¯D(D) respectively; then, the solution of Eq (1.1) has continuous dependence upon initial values, provided that

    u(t)v(t)(CL3+CM1L1)eCa[L1+M2L1a+L2+L2Lh]1M1L1eCa[L1+M2L1a+L2+L2Lh]u0v0
    andM1L1eCa[L1+M2L1a+L2+L2Lh]<1. (3.4)

    Proof. Let u=u(),v=v() be two solutions of Eq (1.1). For t[0,a],

    u(t)=q(t,ut)+Q(t)[ϕ(0)+g(u)(0)q(0,u0)]+ddtt0Q(ts)[Dq(s,us)+s0q(s,us)H(ξ)dξ+φ(s,us,s0h(s,ξ,uξ)dξ)]ds.

    Now,

    u(t)v(t)q(t,ut)q(t,vt)+Q(t)([g(u)(0)g(v)(0)]+[q(0,u0)q(0,v0)])+ddtt0Q(ts)[Dq(s,us)Dq(s,vs)+s0H[q(s,us)q(s,vs)]dξ+φ(s,us,s0h(s,ξ,uξ)dξ)φ(s,vs,s0h(s,ξ,vξ)dξ)]ds.
    u(t)v(t)q(t,ut)q(t,vt)+Q(t)([g(u)(0)g(v)(0)]+[q(0,u0)q(0,v0)])+Ct0[Dq(s,us)Dq(s,vs)+s0H[q(s,us)q(s,vs)]dξ+φ(s,us,s0h(s,ξ,uξ)dξ)φ(s,vs,s0h(s,ξ,vξ)dξ)ds]dsM1L1utvt+C(L3u(0)v(0)+M1L1u0v0)+Ct0(L1usvs+M2L1ausvs+L2(usvs+Lhuξvξ))M1L1utvt+C[L3u(0)v(0)+M1L1u0v0+(L1+M2L1a+L2+L2Lh)t0sup0ξsusvsds].

    Thus,

    u(t)v(t)[M1L1utvt+(CL3+CM1L1)u0v0]+C(L1+M2L1a+L2+L2Lh)t0sup0ξsusvsds.

    Hence by Gronwall's lemma,

    sup0stu(s)v(s)[M1L1utvt+(CL3+CM1L1)u0v0]ea0[C(L1+M2L1a+L2+L2Lh)]ds.
    u(t)v(t)M1L1utvte[Ca(L1+M2L1a+L2+L2Lh)](CL3+CM1L1)u0v0e[Ca(L1+M2L1a+L2+L2Lh)].
    u(t)v(t)(1M1L1e[Ca(L1+M2L1a+L2+L2Lh)])(CL3+CM1L1)×e[Ca(L1+M2L1a+L2+L2Lh)]u0v0.
    u(t)v(t)(CL3+CM1L1)e[Ca(L1+M2L1a+L2+L2Lh)]1M1L1e[Ca(L1+M2L1a+L2+L2Lh)]u0v0.

    Thus from Eq (3.4), the integral solution of Eq (1.1) has continuous dependence on the initial conditions.

    Here, we study the strict solution of the problem given by Eq (1.1), by using the integrated resolvent operator theory and under some considerations.

    Definition 4.1. A function ω():[r,+)E is a strict solution of Eq (1.1), if ω(t)q(t,ωt)C1([0,+);E)C([0,+);Y) and ω holds as in Eq (1.1) on [r,+).

    First we prove this in reflexive BS in the sense of the below theorem:

    Theorem 4.2. Assume that the hypotheses of Theorem 3.3 hold, and that the following conditions are satisfied:

    (H5) ϕ(0)+g(ω)(0)D(D),D[ϕ(0)+g(ω)(0)q(0,ω0)]+φ(0,ω0,0)¯D(D).

    (H6) It holds that

    ((M1+Kaa+KaM2a2)L1+(1+Lh)KaaL2)<1. (4.1)

    Then Eq (1.1) has a strict solution on [r,a].

    Proof. Let the operator Γ on C([r,a];E) be as given in Theorem 3.3. Let the closed ball Br0={ωC([r,a];E:ωr0,ω(t2)ω(t1)L|t2t1|,t1,t2[r,a]}. Here L>0 is a constant and we prove that Γ has a fixed point on Br0. By Theorem 3.3, Γ(Br0)Br0; it suffices to show that

    (Γω)(t2)(Γω)(t1)L|t2t1| for ωBr0,t1,t2[r,a]. (4.2)

    The extension of the operator solution Γ(˜ω(t)) is defined by

    Γ(˜ω(t))={(˜ω)(t),t[0,a],ϕ(t)+g(˜ω)(t),t[r,0].

    Now,

    (Γω)(t2)(Γω)(t1)f(t2,˜ωt2)q(t1,˜ωt1)+[Q(t2)Q(t1)](ϕ(0)+g(˜ω)(0)q(0,˜ω0))+ddt2t20Q(t2s)[Dq(s,˜ωs)+s0q(s,˜ωs)H(ξ)dξ+φ(s,˜ωs,s0h(s,ξ,˜ωξ)dξ)]dsddt1t10Q(t1s)[Dq(s,˜ωs)+s0q(s,˜ωs)H(ξ)dξ+φ(s,˜ωs,s0h(s,ξ,˜ωξ)dξ)]ds=:I1+I2+I3,

    where

    I1=q(t2,˜ωt2)q(t1,˜ωt1),
    I2=[Q(t2)Q(t1)](ϕ(0)+g(˜ω)(0)q(0,˜ω0)),
    I3=ddt2t20Q(t2s)[Dq(s,˜ωs)+s0q(s,˜ωs)H(ξ)dξ+φ(s,˜ωs,s0h(s,ξ,˜ωξ)dξ)]dsddt1t10Q(t1s)[Dq(s,˜ωs)+s0q(s,˜ωs)H(ξ)dξ+φ(s,˜ωs,s0h(s,ξ,˜ωξ)dξ)]ds.

    Now take I1:

    I1M1L1(|t2t1|+˜ωt2˜ωt1)M1L1(|t2t1|+L|t2t1|)(M1L1+M1L1L)|t2t1|.

    From (R4),

    Q(t)ωω=QDω+t0Q(ts)H(s)ωds.I2Q(t2)Q(t1)D[ϕ(0)+g(˜ω)(0)q(0,~ω0)]+t10Q(t2s)Q(t1s)H(ξ)[ϕ(0)+g(˜ω)(0)q(0,~ω0)]ds+t2t1Q(t2s)H(ξ)[ϕ(0)+g(˜ω)(0)q(0,~ω0)]dsKaD[ϕ(0)+g(˜ω)(0)q(0,~ω0)]|t2t1|+KaM2D[ϕ(0)+g(˜ω)(0)q(0,~ω0)]a|t2t1|+supt[0,a]Q(t)M2D[ϕ(0)+g(˜ω)(0)q(0,~ω0)]|t2t1|(Ka+KaM2a+MM2)M1(ϕ+L3r0L1(r0+1))|t2t1|[KaM1(1+aM2)+MM1M2](ϕ+L3r0)|t2t1|.

    From I3, we note that

    Dq(s,~ωs)+s0H(ξ)q(ξ,~ωξ)dξ+φ(s,~ωs,s0h(s,ξ,~ωξ)dξ)[L1+M2L1a+L2+L2Lh]r0.

    Now

    I3Ka[L1+M2L1a+L2+L2Lh]r0|t2t1|+Kat10[Dq(t2t1+s,˜ωt2t1+s)Dq(s,~ωs)+s0H(sξ)q(t2t1+ξ,˜ωt2t1+ξ)q(ξ,~ωξ)dξ+0(t2t1)H(sξ)q(t2t1+ξ,˜ωt2t1+ξ)dξ+φ(t2t1+s,˜ωt2t1+s,t2t1+s0h(t2t1+s,t2t1+ξ,˜ωt2t1+ξ)dξ)φ(s,˜ωs,s0h(s,ξ,~ωξ)dξ)]ds,
    I3Ka[L1+M2L1a+L2+L2Lh](r0+1)|t2t1|+Kaa[L1(1+L)+(M2L1a(1+L))+M2L1(r0+1)+L2(1+L+LhL)]|t2t1|.

    From the estimates of I1,I2,I3, we have

    (Γω)(t2)(Γω)(t1)[(M1L1+M1L1L)+[KaM1(1+aM2)+MM1M2][ϕ+L3r0]+Ka(L1+M2L1a+L2+L2Lh)(r0+1)+Kaa[L1+L1L+M2L1a+M2L1La+M2L1(r0+1)+(L2+L2L+L2LhL)]]|t2t1|[C+((M1+Kaa+KaM2a2)L1+(1+Lh)KaaL2)L]|t2t1|,

    where CR, and different from L, ωBr0; thus, from (H6)

    (Γω)(t2)(Γω)(t1)L|t2t1|,

    where we assume that L is large enough (C1((M1+Kaa+KaM2a2)L1+(1+Lh)KaaL2)).

    Thus Γ has a unique fixed point ω() and is an integral solution of Eq (1.1). Further ω(t) is Lipschitz-continuous on [0,a]; moreover,

    sDq(s,ωs)+s0H(sξ)q(ξ,ωξ)dξ+φ(s,ωs,s0h(s,ξ,ωξ)dξ)

    is also Lipschitz continuous on [0,a] and E is a reflexive BS; hence, by the Radon-Nikodym property,

    Dq(s,ωs)+s0H(sξ)q(ξ,ωξ)dξ+φ(s,ωs,s0h(s,ξ,ωξ)dξ)W1,1([0,a];E).

    By Lemma 2.4, we have that ω(t)q(t,ωt) is differentiable on [0,a] and also a strict solution of Eq (1.1) on [0,a]. Next we consider that E is a general BS; further, we assume the following:

    (H7) The function qC1(R+×E;Y) and the partial derivatives D1q(,),D2q(,) are Lipschitz-continuous with respect to the second variable; Liq>0; then,

    Diq(t1,s1)Diq(t1,s2)Liqs1s2

    for t1[0,a],s1,s2C,i=1,2.

    (H8) The function φC1(R+×C×E;E) and the partial derivatives D1φ(,,),D2φ(,,) are Lipschitz-continuous function with respect to second variable; Liφ>0; then,

    Diφ(t1,r1,s1)Diφ(t1,r2,s2)Liφ(r1r2+s1s2)

    for any t1[0,a],r1,r2C,s1,s2E.

    Theorem 4.3. Suppose that (H1)–(H4), (H7) and (H8) are true with M1L1<1. If ω() is an integral solution of Eq (1.1), ϕ+g(ω)D(D) and D[ϕ(0)+g(ω)(0)q(0,ω0)]+φ(0,ω0,0)¯D(D); then, ω() is a strict solution of Eq (1.1).

    Proof. Let ω() be an integral solution of Eq (1.1); see the following system

    y(t)=D1q(t,ωt)+D2q(t,ωt)yt+Q(t)D[ϕ(0)+g(ω)(0)q(0,ω0)]+Q(t)Dq(0,ω0)+ddtt0Q(ts)H(s)q(0,ω0)ds+Q(t)φ(0,ω0,0)+ddtt0Q(ts)H(s)(ϕ(0)+g(ω)(0)q(0,ω0))ds+ddtt0Q(ts)[DD1q(s,ωs)+DD2q(s,ωs)ys+s0H(sξ)[D1q(ξ,ωξ)+D2q(ξ,ωξ)yξ]dξ+D1φ(s,ωs,s0h(s,ξ,ωξ))+D2φ(s,ωs,s0h(s,ξ,ωξ))ys]ds. (4.3)

    From the Banach principle, there exists a unique solution y()C([0,a];E) to Eq (4.3). Let the map z(t) be defined by

    z(t)=ϕ(0)+g(ω)(0)+t0y(s)ds for t[0,a].

    We shall prove that ω()=z() on [0,a].

    z(t)=ϕ(0)+g(ω)(0)+t0[D1q(s,ωs)+D2q(s,ωs)ys]ds+QD[ϕ(0)+g(ω)(0)q(0,ω0)]+QD(q(0,ω0))+t0Q(ts)H(s)q(0,ω0)ds+Q(t)(φ(0,ω0,0))+t0Q(ts)H(s)(ϕ(0)+g(ω)(0)q(0,ω0))ds+t0Q(ts)[DD1q(s,ωs)+DD2q(s,ωs)ys+s0H(sξ)[D1q(ξ,ωξ)+D2q(ξ,ωξ)yξ]dξ+D1φ(s,ωs,s0h(s,ξ,ωξ))+D2φ(s,ωs,s0h(s,ξ,ωξ))ys]ds. (4.4)

    From (R4),

    QD[ϕ(0)+g(ω)(0)q(0,ω0)]=Q(t)[ϕ(0)+g(ω)(0)q(0,ω0)](ϕ(0)+g(ω)(0)q(0,ω0))t0Q(ts)H(s)[ϕ(0)+g(ω)(0)q(0,ω0)]ds. (4.5)

    Consequently,

    q(0,z0)=q(t,zt)t0[D1q(s,zs)+D2q(s,zs)ys]ds. (4.6)

    Further, we obtain

    QDq(0,z0)+t0Q(ts)H(s)q(0,z0)ds+Qφ(0,z0,0)=ddtt0Q(ts)[Dq(s,zs)+s0H(sξ)q(ξ,zξ)dξ+φ(s,zs,s0h(s,ξ,zξ)dξ)]dst0Q(ts)[DD1q(s,zs)+DD2q(s,zs)ys+s0H(sξ)[D1q(ξ,zξ)+D2q(ξ,zξ)yξ]dξ+D1φ(s,zs,s0h(s,ξ,zξ)dξ)+D2φ(s,zs,s0h(s,ξ,zξ)dξ)ys]ds. (4.7)

    Since ω0=z0 putting Eqs (4.5)–(4.7) in Eq (4.4), we have

    z(t)=q(t,zt)+t0[D1q(s,ωs)+D2q(s,ωs)ys]dst0[D1q(s,zs)+D2q(s,zs)ys]ds+Q(t)[ϕ(0)+g(ω)(0)q(0,ω0)]+ddtt0Q(ts)[Dq(s,zs)+s0H(sξ)q(ξ,zξ)dξ+φ(s,zs,s0h(s,ξ,zξ)dξ)]dst0Q(ts)[[DD1q(s,zs)+DD2q(s,zs)ys]+s0H(sξ)[D1q(ξ,zξ)+D2q(ξ,zξ)yξ]dξ+D1φ(s,zs,s0h(s,ξ,zξ)dξ)+D2φ(s,zs,s0h(s,ξ,zξ)dξ)ys]ds+t0Q(ts)[DD1q(s,ωs)+DD2q(s,ωs)ys+s0H(sξ)[D1q(ξ,ωξ)+D2q(ξ,ωξ)yξ]dξ+D1φ(s,ωs,s0h(s,ξ,ωξ)dξ)+D2φ(s,ωs,s0h(s,ξ,ωξ)dξ)ys]ds.

    Now

    z(t)ω(t)=q(t,zt)q(t,ωt)+ddtt0Q(ts)[Dq(s,zs)Dq(s,ωs)]ds+ddtt0Q(ts)s0H(sξ)[q(ξ,zξ)q(ξ,ωξ)]dξds+ddtt0Q(ts)[φ(s,zs,s0h(s,ξ,zξ)dξ)φ(s,ωs,s0h(s,ξ,ωξ)dξ)]ds+t0[D1q(s,ωs)D1q(s,zs)]ds+t0[D2q(s,ωs)D2q(s,zs)]ysds+t0Q(ts)[DD1q(s,ωs)DD1q(s,zs)]ds+t0Q(ts)[DD2q(s,ωs)DD2q(s,zs)]ysds+t0Q(ts)s0H(sξ)[D1q(ξ,ωξ)D1q(ξ,zξ)]dξds+t0Q(ts)s0H(sξ)[D2q(ξ,ωξ)D2q(ξ,zξ)]yξdξds+t0Q(ts)[D1φ(s,ωs,s0h(s,ξ,ωξ)dξ)D1φ(s,zs,s0h(s,ξ,zξ)dξ)]ds+t0Q(ts)[D2φ(s,ωs,s0h(s,ξ,ωξ)dξ)D2φ(s,zs,s0h(s,ξ,zξ)dξ)]ysds:=J1+J2+J3

    where

    J1q(t,zt)q(t,ωt)+ddtt0Q(ts)[Dq(s,zs)Dq(s,ωs)]ds+ddtt0Q(ts)s0H(sξ)[q(ξ,zξ)q(ξ,ωξ)]dξds+ddtt0Q(ts)[φ(s,zs,s0h(s,ξ,zξ)dξ)φ(s,ωs,s0h(s,ξ,ωξ)dξ)]dsM1L1sup0stωszs+Ka(L1+M2L1a+L2(zsws+Lhzξωξ))t0sup0ξsωξzξdsM1L1sup0stωszs+Ka(L1+M2L1a+L2+L2Lh)t0sup0ξsωξzξds,
    J2t0[D1q(s,ωs)D1q(s,zs)]ds+t0[D2q(s,ωs)D2q(s,zs)]ysds+t0Q(ts)[DD1q(s,ωs)DD1q(s,zs)]ds+t0Q(ts)[DD2q(s,ωs)DD2q(s,zs)]ysds+t0Q(ts)s0H(sξ)[D1q(ξ,ωξ)D1q(ξ,zξ)]dξds+t0Q(ts)s0H(sξ)[D2q(ξ,ωξ)D2q(ξ,zξ)]yξdξdsM1L1qt0sup0ξsωξzξds+M1M3L2qt0sup0ξsωξzξds+sup0saQ(s)L1qt0sup0ξsωξzξds+sup0saQ(s)M3L2qt0sup0ξsωξzξds+sup0saQ(s)M2L1qat0sup0ξsωξzξds+sup0saQ(s)M2M3L2qat0sup0ξsωξzξds[M1(L1q+M3L2q)+sup0saQ(s)(L1q+M3L2q+M2L1qa+M2M3L2qa)]×t0sup0ξsωξzξds,

    where M3=sup0says,

    J3t0Q(ts)[D1φ(s,ωs,s0h(s,ξ,ωξ)dξ)D1φ(s,zs,s0h(s,ξ,zξ)dξ)]ds+t0Q(ts)[D2φ(s,ωs,s0h(s,ξ,ωξ)dξ)D2φ(s,zs,s0h(s,ξ,zξ)dξ)]ysdssup0saQ(s)(L1φ(ωszs+Lhωξzξ))t0sup0ξsωξzξds+sup0saQ(s)(L1φ+L1φLh+M3L2φ+M3L2φLh)t0sup0ξsωξzξdssup0saQ(s)(L1φ(1+Lh)+M3L2φ(1+Lh))t0sup0ξsωξzξdssup0saQ(s)(1+Lh)(L1φ+M3L2φ)t0sup0ξsωξzξds.

    By the values of J1,J2,J3 we have

    sup0stωszsM1L1sup0stωszs+[Ka(L1+M2L1a+L2+L2Lh)+M1(L1q+M3L2q)+sup0saQ(s)(L1q+M3L2q+M2L1qa+M2M3L2qa+(1+Lh)(L1φ+M3L2φ))]t0sup0ξsωξzξds.

    Since M1L1<1, we obtain that

    sup0stωszsN1M1L1t0sup0ξsωξzξds,

    where

    N=Ka(L1+M2L1a+L2+L2Lh)+M1(L1q+M3L2q)+sup0saQ(s)(L1q+M3L2q+M2L1qa+M2M3L2qa+(1+Lh)(L1φ+M3L2φ)).

    Then by the Gronwall lemma, it follows that ωt=zt for all t[r,a], which shows that ω(t) is continuously differentiable on [r,a]; consequently, ω() is a strict solution of Eq (1.1).

    The application of this theory, we consider the following system:

    {t[ω(t,x)0rg(t,ω(t+θ,x))dθ]=2x2ω(t,x)+t0p(ts)2x2ω(s,x)ds+t00rc(t,ω(t+θ,x))ω(t,x)dθds for t0,x[0,1],ω(t,0)=ω(t,1) for t[0,1],ω(0,x)+pi=110ηi(x,y)ω(ti,y)dy=ω0(x) for t[r,0],x,y[0,1], (5.1)

    where the function p is a locally bounded variation from R+ to R, 0<t1<t2<....<tp<1, ω0(x) is an initial function on the BS E=C([0,1];R) and ω0:[r,0]×[0,1]R, g:R+×RR is continuous; we further assume the following

    (A1) We have the function gC2([r,0]×[0,1];R) with g(,0)=g(,1)=0 and q1(,)L1([0,1]×[0,1];R) then,

    |2x2g(x1,y1)2x2g(x2,y2)|<q1(|x1x2|+|y1y2|)

    and

    |2x2g(x1,y1)|<q1(|x1|+1) for x1,x2[0,1],y1,y2R.

    (A2) The map c:[0,1]×RR is Lipschitz continuous Lc>0 and

    |c(t1,v1)c(t2v2)|Lc(|t1t2|+|v1v2|) for 0t1,t21,v1,v2R

    and

    |c(t,v)|Lc(|v|+1) for (t,v)[0,1]×R.

    (A3) The functions ηi:[0,1]×[0,1]R are continuous with ηi(0,)=ηi(1,)=0 and ki=sup|ηi(x,y)|;0x1,0y1<1,i=1,2,...p.

    Now, we write Eq (5.1) as an abstract form of Eq (1.1) in E. Let D be the operator by Dv=v and the domain

    D(D)=vE;vE and v(0)=v(1)=0.

    Let the operators H(t):D(D)EE,t0 be defined by

    H(t)v=p(t)v, and D(H(t))=D(D).

    Hence (H(t))L(Y,E) and H()vBVloc(R;E), vD(D). Here Y is already explained in Section 2, so there exists an LLC integrated resolvent operator Qt0 related to Eq (5.1).

    Further let ω(t)(x)=ω(t,x), q:[0,1]×CE,φ:[0,1]×C×EE,g:C([r,0];E)¯D(D) be respectively,

    q(t,v)(x)=0rg(t,v(θ))dθ,vE,φ(t,u,v)(x)=t00rc(t,ω(t+θ,x))ω(t,x)dθds,g(ω(t))=pi=10rηi(x,y)ω(ti,y)dy,ωC([r,0];E).

    Under the above assumptions Eq (5.1) is rewritten in the form (1.1) and conditions of Theorems 3.3 and 3.4 are fulfilled. Also the functions q,φ satisfy the Lipschitz-continuous conditions in (H1) and (H2) respectively. In fact for t1,t2[0,1] and v1,v2E we have

    Dq(t1,v1)Dq(t2,v2)supx[0,1]0r|2x2g(t1,v1(θ))2x2g(t2,v2(θ))|dθsupx[0,1]0rq1(x,y)(|t1t2|+|v1(θ)v2(θ))dθLq1(|t1t2|+v1v2),

    where Lq1>0 is a Lipschitz constant of q that is Lipschitz continuous on its domain C2; also clearly, φ is satisfies (H2) with L2=Lc. On the other hand, under the condition of (A3), for ω1,ω2C([r,0];E),

    g(ω1(t))g(ω2(t))pi=1supx[0,1]0r|ηi(x,y)|ω1(ti)(y)ω2(ti)(y)dypi=1kiω1(ti)ω2(ti)Lηω1ω2C

    which shows that g satisfies (H3). According to Theorems 3.3 and 3.4, we state that the following:

    (1) If

    M1Lq1+C[Lη+(M1+1+M2)Lq1+Lc]<1

    from Theorem 3.3, for the initial map ω0(x)E and ω0(0)=ω0(1)=0, a unique integral solution of Eq (5.1) on [0, 1]. Further from Theorem 3.4, if

    M1Lq1eC[Lq1+M2Lq1+Lc]<1

    then the estimates of Eq (3.4) holds such that the solution of Eq (5.1) has continuous dependence upon the initial data.

    (2) Further assume that ω0()C2([0,1]×R) with ω0(0)=ω0(1)=0,c(0,ω(0,0))=c(0,ω(0,1)) the function ω(,)C([0,1]×[0,1];R) and ηiC2([r,0]×[0,1];R). Thus

    D[ϕ(0)+g(ω)(0)q(0,ω0)]+φ(0,ω0,0)¯D(D).

    Moreover cC2([0,1]×R;R); then, it is clear that (H7) and (H8) are hold. If M1Lq1<1 then by Theorem 4.3, the integral solution of Eq (5.1) becomes a strict solution.

    In this work, we obtained the existence results for the system of neutral integro-differential equations given by (1.1) with the nonlocal condition in finite delay situations by using the Banach fixed point theorem. Also, we verified that the integral solution of the system given by (1.1) has continuous dependence with respect to the initial data, and we proved the existence of a strict solution by using integrated resolvent operator theory and Gronwall's lemma. We considered most of the functions in Eq (1.1) to be Lipschitz continuous and then obtained the results. The future work will consider the partial neutral functional integro-differential equations with the initial conditions and we will apply the integrated resolvent operator technique to this system.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This study was supported by funding from Prince Sattam bin Abdulaziz University project number (PSAU/2023/R/1444).

    The authors declares that they have no conflicts of interest.



    [1] S. Belmor, C. Ravichandran, F. Jarad, Nonlinear generalized fractional differential equations with generalized fractional integral conditions, J. Taibah Univ. Sci., 14 (2020), 114–123. https://doi.org/10.1080/16583655.2019.1709265 doi: 10.1080/16583655.2019.1709265
    [2] P. Cannarsa, D. Sforza, Global solutions of abstract semilinear parabolic equations with memory terms, Nonlinear Differ. Equ. Appl., 10 (2003), 399–430. https://doi.org/10.1007/s00030-003-1004-2 doi: 10.1007/s00030-003-1004-2
    [3] N. Cao, X. Fu, Existence results of solutions for a neutral evolution equation with nonlocal conditions on infinite interval, J. Math. Anal. Appl., 510 (2022), 126008. https://doi.org/10.1016/j.jmaa.2022.126008 doi: 10.1016/j.jmaa.2022.126008
    [4] J. P. Dauer, K. Balachandran, Existence of solutions of nonlinear neutral integrodifferential equations in Banach space, J. Math. Anal. Appl., 251 (2000), 93–105. https://doi.org/10.1006/jmaa.2000.7022 doi: 10.1006/jmaa.2000.7022
    [5] W. Desch, R. Grimmer, W. Schappacher, Some considerations for linear integrodifferential equations, J. Math. Anal. Appl., 104 (1984), 219–234. https://doi.org/10.1016/0022-247X(84)90044-1 doi: 10.1016/0022-247X(84)90044-1
    [6] A. Diop, M. Dieye, M. A. Diop, K. Ezzinbi, Integrodifferential equations of volterra type with nonlocal and impulsive conditions, J. Integral Equ. Appl., 34 (2022), 19–37. https://doi.org/10.1216/jie.2022.34.19 doi: 10.1216/jie.2022.34.19
    [7] K. Ezzinbi, H. Toure, I. Zabsonre, Existence and regularity of solutions for some partial functional integrodifferential equations in Banach spaces, Nonlinear Anal.: Theory Methods Appl., 70 (2009), 2761–2771. https://doi.org/10.1016/j.na.2008.04.001 doi: 10.1016/j.na.2008.04.001
    [8] K. Ezzinbi, S. Ghnimi, Existence and regularity of solutions for neutral partial functional integrodifferential equations, Nonlinear Anal.: Real World Appl., 11 (2010), 2335–2344. https://doi.org/10.1016/j.nonrwa.2009.07.007 doi: 10.1016/j.nonrwa.2009.07.007
    [9] K. Ezzinbi, S. Ghnimi, M. A. Taoudi, Existence results for some partial integrodifferential equations with nonlocal conditions, Glas. Mat., 51 (2016), 413–430. https://doi.org/10.3336/GM.51.2.09 doi: 10.3336/GM.51.2.09
    [10] K. Ezzinbi, M. Ziat, Nonlocal integrodifferential equations without the assumption of equicontinuity on the resolvent operator in Banach spaces, Differ. Equ. Dyn. Syst., 30 (2022), 315–333. https://doi.org/10.1007/s12591-018-0423-9 doi: 10.1007/s12591-018-0423-9
    [11] K. Ezzinbi, S. Ghnimi, Solvability of nondensely defined partial functional integrodifferential equations using the integrated resolvent operators, Electron. J. Qual. Theo. Differ. Equ., 88 (2019), 1–21. https://doi.org/10.14232/ejqtde.2019.1.88 doi: 10.14232/ejqtde.2019.1.88
    [12] R. Ferdausi, A. Hossain, M. Hasan, A. Islam, Existence and uniqueness of solutions to system of linear equations and integral equations using Banach fixed point theorem, Int. J. Adv. Res., 6 (2018), 494–500.
    [13] E. Hernandez, V. Rolnik, T. M. Ferrari, Existence and uniqueness of solutions for abstract integro-differential equations with state-dependent delay and applications, Mediterr. J. Math., 19 (2022), 101. https://doi.org/10.1007/s00009-022-02009-2 doi: 10.1007/s00009-022-02009-2
    [14] E. Hernández, Existence and uniqueness of global solution for abstract second order differential equations with state-dependent delay, Math. Nachr., 295 (2022), 124–139. https://doi.org/10.1002/mana.201900463 doi: 10.1002/mana.201900463
    [15] K. Jothimani, K. Kaliraj, S. K. Panda, K. S. Nisar, C. Ravichandran, Results on controllability of non-densely characterized neutral fractional delay differential system, Evol. Equ. Control The., 10 (2021), 619–631. https://doi.org/10.3934/eect.2020083 doi: 10.3934/eect.2020083
    [16] H. Kellerman, M. Hieber, Integrated semigroups, J. Funct. Anal., 84 (1989), 160–180. https://doi.org/10.1016/0022-1236(89)90116-X doi: 10.1016/0022-1236(89)90116-X
    [17] S. Koumla, K. Ezzinbi, R. Bahloul, Mild solutions for some partial functional integrodifferential equations with finite delay in Frechet spaces, SeMA J., 74 (2017), 489–501. https://doi.org/10.1007/s40324-016-0096-7 doi: 10.1007/s40324-016-0096-7
    [18] K. S. Nisar, K. Munusamy, C. Ravichandran, Results on existence of solutions in nonlocal partial functional integrodifferential equations with finite delay in nondense domain, Alex. Eng. J., 73 (2023), 377–384. https://doi.org/10.1016/j.aej.2023.04.050 doi: 10.1016/j.aej.2023.04.050
    [19] A. Lunardi, On the linear heat equation with fading memory, SIAM J. Math. Anal., 21 (1990), 1213–1224. https://doi.org/10.1137/0521066 doi: 10.1137/0521066
    [20] K. Manoj, K. Kumar, R. Kumar, Existence of mild solution for neutral functional mixed integrodifferential evolution equations with nonlocal conditions, J. Abstr. Comput. Math., 6 (2021), 32–40.
    [21] A. Morsy, K. S. Nisar, C. Ravichandran, C. Anusha, Sequential fractional order Neutral functional Integro differential equations on time scales with Caputo fractional operator over Banach spaces, AIMS Math., 8 (2023), 5934–5949. https://doi.org/10.3934/math.2023299 doi: 10.3934/math.2023299
    [22] K. Munusamy, C. Ravichandran, K. S. Nisar, B. Ghanbari, Existence of solutions for some functional integrodifferential equations with nonlocal conditions, Math. Methods Appl. Sci., 43 (2020), 10319–10331. https://doi.org/10.1002/mma.6698 doi: 10.1002/mma.6698
    [23] K. Munusamy, C. Ravichandran, K. S. Nisar, R. Jagatheeshwari, N. Valliammal, Results on neutral integrodifferential system using Krasnoselskii-Schaefer theorem with initial conditions, AIP Conf. Proc., 2718 (2023), 040001. https://doi.org/10.1063/5.0137023 doi: 10.1063/5.0137023
    [24] R. Murugesu, S. Suguna, Existence of solutions for neutral functional integrodifferential equations, Tamkang J. Math., 41 (2010), 117–128. https://doi.org/10.5556/j.tkjm.41.2010.663 doi: 10.5556/j.tkjm.41.2010.663
    [25] H. Oka, Integrated resolvent operators, J. Integral Equ. Appl., 7 (1995), 193–232.
    [26] A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-5561-1
    [27] C. Ravichandran, K. Munusamy, K. S. Nisar, N. Valliammal, Results on neutral partial integrodifferential equations using Monch-Krasnosel'Skii fixed point theorem with nonlocal conditions, Fractal Fract., 6 (2022), 75. https://doi.org/10.3390/fractalfract6020075 doi: 10.3390/fractalfract6020075
    [28] V. Vijayaraj, C. Ravichandran, T. Botmart, K. S. Nisar, K. Jothimani, Existence and data dependence results for neutral fractional order integro-differential equations, AIMS Math., 8 (2023), 1055–1071. https://doi.org/10.3934/math.2023052 doi: 10.3934/math.2023052
    [29] J. Zhu, X. Fu, Existence and differentiablity of solutions for nondensely defined neutral integro-differential evolution equations, Bull. Malays. Math. Sci. Soc., 46 (2023), 30. https://doi.org/10.1007/s40840-022-01428-4 doi: 10.1007/s40840-022-01428-4
  • This article has been cited by:

    1. Asifa Tassaddiq, Muhammad Tanveer, Muhammad Azhar, Farha Lakhani, Waqas Nazeer, Zeeshan Afzal, Escape criterion for generating fractals using Picard–Thakur hybrid iteration, 2024, 100, 11100168, 331, 10.1016/j.aej.2024.03.074
    2. K. Munusamy, C. Ravichandran, Kottakkaran Sooppy Nisar, Shankar Rao Munjam, Investigation on continuous dependence and regularity solutions of functional integrodifferential equations, 2024, 14, 26667207, 100376, 10.1016/j.rico.2024.100376
    3. Chandran Anusha, Chokkalingam Ravichandran, Kottakkaran Sooppy Nisar, Suliman Alsaeed, Shankar Rao Munjam, Periodic Boundary Value problem for the Dynamical system with neutral integro-differential equation on time scales, 2024, 10, 26668181, 100691, 10.1016/j.padiff.2024.100691
    4. Shuya Guo, Defeng Kong, Jalil Manafian, Khaled H. Mahmoud, A.S.A. Alsubaie, Neha Kumari, Rohit Sharma, Nafis Ahmad, Modulational stability and multiple rogue wave solutions for a generalized (3+1)-D nonlinear wave equation in fluid with gas bubbles, 2024, 106, 11100168, 1, 10.1016/j.aej.2024.06.053
    5. Ndolane Sene, Ameth Ndiaye, Existence and uniqueness study for partial neutral functional fractional differential equation under Caputo derivative, 2024, 14, 2146-5703, 208, 10.11121/ijocta.1464
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1517) PDF downloads(86) Cited by(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog