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1. Introduction

Neutral differential equations are studied by many authors with or without delay, to model many
real situations in different fields like population studies, electronics, chemical kinetics and biological
science. The below system is used to describe the heat conduction materials in [2].

Lzt x) + [ er(ty — ©)z(€, 0)dé] = dAz(t) + [ exty — OAZE x) + f(tr,2(, ), 1y > 0,
z2(t1,x) =0, for x € 0Q),
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where (0 C R" is open, (#1, x) € [0, c0) X Q and z(#;, x) denotes the heat in x at any time #,. Letd > O;e¢; :
R — R represents the internal energy of fading memory materials. In [7, 8] Ezzinbi et al. proved the
existence and regularity of solutions of neutral equations by using resolvent operator theory and fixed
point theorems. In [3, 15, 21] the authors proved the existence solution of neutral integro-differential
equations by using fractional powers of operators and the Schauder fixed point theorem. Also, in [1,28],
the authors proved the existence of solutions of differential equations by using fractional powers of
operators under the condition of Krasnoselskii’s fixed point theorems. In [24] Murugesu and Suguna
proved the existence solution for neutral functional integro-differential equations by using fractional
powers of operators and Sadovskii’s fixed point theorem. The existence result for integro-differential
equations in [9,22,27] was proved by using resolvent operator theory and Monch-Krasnoselskii’s and
Sadovskii’s fixed point theorems. In [4,23] the authors established the existence of a mild solution for
neutral differential equations by using Schaefer fixed-point theorem.

The nonlocal initial conditions are more effective, realistic and accurate in the solutions and
uniqueness than the classical one proved by many researchers see [6,20]. Recently published [18, 19]
proves the existence and uniqueness of solutions of functional integro-differential equations with
nonlocal conditions; the authors also proved the existence of a strict solution by using an integrated
resolvent operator. The main tool for proving the uniqueness and existence of solutions of differential
equations by using the Banach fixed point theorem has been established in [12—14]. In [26] the authors
proved that the mild solution, strong solution and classical solutions obtained by using the semigroup
theory of evolution equations also explained the uniqueness of the solution. The semigroup and
resolvent operator theories are important methods to find the solutions of integro-differential equations
in Banach space(BS), and the authors established integrated semigroup theory in [16]. In recent years,
many differential equations have been reformed as integral equations and scholars have proved that
the existence of solutions can be obtained via appropriate fixed-point theorems, which is the common
technique for proving the existence of solutions of the integral equations. In [11, 17], proved the
existence solutions of integro-differential equations through the use of resolvent operators with finite
delay furthermore, the authors used the integrated resolvent operator in [11].

In the recently published article [29] the authors established the following system

{d%[x(t) - F(t, x(hi(1)))] = Ax(t) + fot B(t — s)x(s)ds + G(t, x(hy(1))), fort e [0,al],
x(0) + g(x) = xo.
For this problem they proved the existence of the solution of nondensely defined neutral equations
via the integrated resolvent operator technique. They also proved continuous dependence and
differentiability. They assumed that A is a closed linear operator on X and its domain does not equals
to X. Motivated by this above-mentioned article, we established the theory for the neutral integro-
differential equations with nonlocal and finite delay. This theory contains the integrated resolvent
operator in the proof of the existence of the solution and assumptions of Lipschitz continuity; we also
prove the uniqueness by applying Banach fixed-point theory and verified its differentiability.
Regarding this, we have to show the existence of the integral solution of the below system:

(1) - q(t,w)] = Dw(1) + [§ H(t — Hw()dS
+90(t, w [ h(t,¢, wg)dg) fort e [0,a] = I, (1.1)
w0)=¢ + g(w) € C([-r,0];E) =C.
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In this article, & denotes the BS and D is the closed linear operator on &; its domain m * &,
which satisfies the Hille-Yosida theorem. Let HH(f) be the set of bounded linear operators in & with
D(D) c D(B(t)), t > 0 from D(D) = Y into E. The functions g : IXC = E h: IXIXC — &
and ¢ : I X C X & — & are continuous as specified later. Let C = C([-r, 0]; X) be a set of continuous
functions on [—r, 0] in € and ¢, g be continuous functions defined on C.

Note that w belongs to the continuous function C([—r, 00); &), t > 0; the function w, € C given
that w,(0) = w(t + o) for o € [-r,0]. The general form of (1.1) is an abstract formation of a large
number of partial integro-differntial equations, particularly for applications such as electronic circuits,
economics, biological sciences, medicine and more. In this article we use the Banach theorem to prove
the existence of a solution to the nonlocal system given by Eq (1.1). The existence and uniqueness of
the abstract form given by Eq (1.1) have been established in previous articles and by using different
approaches this is particularly true for the existence of solutions and valid properties of differential
equations which have been established by applying the resolvent operator technique in [5,7,10].

This paper is summarized as follows. In Section 2, we provide the preliminary results and definitions
regarding integrated resolvent operator theory. In Section 3, we discuss the existence and uniqueness
of the solution and continuous dependence. In Section 4, we prove the differentiability of the solution;
in Section 5, we provide an example related to our basic results.

2. Basic results and definitions

Here, this section includes some basic results and definitions regarding integrated resolvent
operators. Let & ba a BS and D be a closed linear operator; 0 € p(D) then D! exists. Let Y be
the BS (D(D), || - ||) with a graph of the norm ||v|| = || Dv|| +|[v]l, Vv € D(D). Let L(Y, E) be the bounded
linear operator ¥ — & with the norm || - || and it is £(E) when Y = &. Let C([-r, 0]; &) represent the
functions on [—r, 0] denoted by C that are continuous in X and have the sup-norm || - ||¢.

Next we recall a few definitions and results about the integrated resolvent operators established
in [25] for linear nondensely defined integro-differential equations.

Consider the below homogeneous linear integro-differential system:

2.1

V() = Dv(r) + fot H(—Ov()dl  fort € [0,a]
v(0) = vy € &E.

Here, the operators O and HH(-) are defined already in Eq (2.1). Then the integrated resolvent operator
for Eq (2.1) is as follows:

Definition 2.1. [25] A set of operators (Q(t));s0 in L(E) constitute an integrated resolvent operator
for Eq (2.1) if it satisfies the following:

(R1) Yv € & Q()v € C([0, +0); E).
(R2) We& [[Q eY.

(R3) Qv —1tv =D [ Qwdl + [ H(t - Q) [} Qurivdrdl, Vv € &, 1 0.
R Quyv -1 = [ QODvAL + [ [F QU ~ nH(r)vdrdZ, ¥v € D(D), 1 > 0.
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Definition 2.2. ( [25]) The operator (Q(t));so defined in the above definition is locally Lipschitz
continuous (LLC) if Ya > Oand AK, = K(a) > 0 implies the following

Q1) — QI < Kilér — &, where &,,&> € [0,al.

Consider the following non homogeneous integro-differential system:

{v’(t) = D) + [ H(t = OWOdE + f(1)  fort € [0, al. 02

v(0) =vg € é&.

We follow a previous article see [25] to write the integral solution and strict solution of Eq (2.2) as
follows:

Definition 2.3. For f € L'([0, ); E) and vy € &, a function v : [0,a] — & is called an integral solution
of Eq (2.2) if

(1) v € C([0,a]; &),
(2) [, vd¢ € C([0,al;Y),

(3) V(1) = vo + D [ WQdL + [y H(t = ¢) [} WO)dédd + [} f)d¢ , 1 € [0, al

Lemma 2.4. ( [25]) Assume that (Q(t))o is an LLC integrated resolvent operator of Eq (2.2) with
o(D) £ O then, we have the following:

(i) If vo € D(D) and f € L([0, +0); E) then I a unique integral solution v(-) of problem Eq (2.2);
then,

d 1
v(t) = Q(t)v + 7 j(; Q- f(de, tel0,al. (2.3)

Further,
@Il < C(||V0|| +j(; ||f(§)||d§), t €[0,al. (2.4)

(i) Suppose that vy € D(D), f € W"([0,a); E) and Dvy + £(0) € D(D); I a unique strict solution
v(:) for Eq (2.2) and

VOl < C(IIDVo + Ol + fo IH(Lvo + f'(()lldé“), t€0,al.

Here Cy > 0 is a constant.

Remark 2.5. Suppose that (Q(t)),so is an LLC integrated resolvent operator; from [25, Theorem 2.7],
forv e D(D), t = Q(t)v is differentiable on [0, a].

Lemma 2.6. ( [25, Theorem 2.6]) The set of (G(1))»0 € L(E) is LLC with G(0) = O, then, we have the
following:
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(i) If f € L\[0.a1: ), then [ G(- — Df Q)L € C\([0.al: &) and
HMMSmlﬁﬂmmﬂmemﬂ. 2.5)

Here K = % fot Gt -0 f(O)d, t € 10,a] and Ky > 0 is Lipschitzian of {G(t) : t € [0,al}. Further
ifllf@l < Ko, AKy > 0, t € [0,a] and

1Kt + &) — K(e)ll < KoKrd + Krfo 1f({ + &) = fOllde for 11,4t + { €[0,a]l.  (2.6)

(ii) Suppose that f : [0,a] — & is a strongly bounded variation; then, K(-) is Lipschitz continuous
on [0, al.

3. Existence result

Here, we have to show the existence of the solution of Eq (1.1). Due to Lemma 2.4, the integral
solution of Eq (1.1) with the nonlocal condition is as follows:

Definition 3.1. Let wy € D(D). A function w € ([—r, +00); E) is an integral solution of the system given
by Eq (1.1) if it satisfies the following:
w(t) = q(t, ;) + Q(O[$(0) + gW)(0) — g0, wo)] + £ [ Qt - 5)
X[Z)q(s, w) + [ (s, ) HEE + go(s, ws, [ h(s, €, wsc)df)]ds, £>0. 3.1)
¢(1) + g(w)(@) for t € [-r,0].

Remark 3.2. From the above definition, if w(-) is an integral solution of Eq (1.1) on [0, a] then, for
eacht € [0, al, w(t) — q(t, w,) € D(D). Further w(0) — g(0, wy) € D(D).

To establish the solution of the existence of Eq (1.1), we need the support of the below assumptions:

(H1) The function g : I X C — D(D) is Lipschitz continuous; there exists a constant L; > 0; then,

1Dg(&, x1) — Dq(&, y)Il < Lillx; — yill and [|Dg(&, x)Il < Li(||lxql + 1)
forany 0 < ¢ <a,x;,y; €C.

(H2) The function ¢ : I X C X & — & is Lipschitz continuous; 4L, > 0 so that

e, &1, v1) = @(t, &2, vo)ll < La(||1 = &l + [Ivi = v2l))

and

lle@, &1, voll < La(liéille + vl

for every &,& € C,vy,v, € &.
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(H3) The map g : C([0, a]; &) — C is Lipschitz continuous and L3 > 0; then,

llg(v1) = g2l < Lallvi = vallc and llg@)ll < Lsllullc

for each vy, v, € ([0, a]; &) and for u € ([0, a]; &).

(H4) The map h : I X I X C — & is Lipschitz continuous; there exists a constant L, > 0; then,

1161, &2, @) = h(&1, &2, Il < Lillg — ¢l and ||a(&y, &2, Il < Lyl

foreach &,,& € 1, ¢, ¥ € C.

Theorem 3.3. Let wy € D(D), 0 € p(D) satisfy (HI-H4) and V¢ € C; then, the system given by
Eq (1.1) has at least one mild solution on [—r, +o0) provided that

ML, +C [L3 + (M, +a+ Myd®L, + Lya(l + Lh)] <1. (3.2)

Here C is from Lemma 2.4, M, = ||D7"|| and M> = sup ||H(?)|..

tel

Proof. Let a > 0 and C([0, a]; &) is a set of continuous maps from [0, a] into & with the uniform norm
topology. We prove this existence by using the Banach fixed point theorem.
The operator I' on C([0, a]; &) is defined by

W) = 4lt, ) + QIH(0) + gw)(0) - g0, wp)] + & [ Q1 - 5)
x| Dats, w0 + [} ats, wH 1

+g0(s, Wy, fos h(s, &, wf)df)]ds, for t > 0.
o(t) + g(w)(t) for t € [—r,0].

Tw)(®) = (3.3)

We prove that this operator I" has a fixed point inihe closed ball B, = {w € C([-r,a]; &), ||w|| £ r}.
Before we prove that I' is a map on B,, for each w € B, and t € [—r, 0], we take '} = ¢(r) + g(w)(?); we
have

[T1)@I = l¢@) + g(w)@)]
< oIl + lIg(w)Ol
< ol + Lslwl|
< lloll + Lar.

Next if ¢ € [0, a], let I, = w(¢); then,

Gl = an, w) + Q1) [(0) + g(@)(0) - (0, wo)]
d ! S
+ 2 fo Q- 9| Dgts, 0 + fo 4(s, ) H(@)dE
+ go(s,ws,fsh(s,f,wg)df)]ds
0

AIMS Mathematics Volume 8, Issue 11, 25611-25632.
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< Il w)ll + 1Q @) [(0) + g@)0) — g(0, wp)] |
d ! S
v |5 f Q- 9| Dy(s,0,) + f 405, YH@dE
0 0
+ go(s,wx,f h(s,f,wf)d.f)]ds.
0

Using the hypotheses, we have

IA

MiLi(lol + 1)+ C (161l + Lallooll + My LyClwol + 1))
v C f [1Dg(s, 001+ f lgs. w ) HEde
0 0

IT2w) (@)l

+

(5,0 fo (s, &, g | ds
MlLl(r + 1) +C [||¢|| + L3I" + MlLl(l" + 1)]
Ca(Li(r+ 1) +aM,Li(r + 1)+ Ly(r + L;,7))

MLi(r+ 1)+ c[||¢|| + Lyr+ (M, +a + Mya®)Li(r + 1) + Lo(r + Lhr)].

AN+ A

It follows from the above two cases that

|Tw)®)| < M Li(r+1)+ C[||¢>|| +Lir+(M; +a+ Mzaz)Ll(r + 1)+ Ly(r+ Lhr)] <r

Hence the operator I is well defined in B,; next, we show that I" is a contractive map on B,.
The map I is defined on B, as

d t
)0 = 4(t,0) + @ OIO) + g@)(O) - g0, w0)] + fo Q- )
x| Dats. w,) + f (s w)HE)E + o0, f s, we)dé)|ds, for 1> 0.
0 0

The extension @ : [-r,0] — & is as follows

i {(w)m, for t € [0, al,
() =
o(t) + g(w)(t), forte[-r0].

Let o(¢), 7(t) € B, represent the solution of Eq (1.1); for ¢ € [0, a] we have

ITor)(®) = T llg(, &) = q(@, Tl

IQOIH0) + @)(O0) - (0, ) — HO) — gD)O) + (0, T
d ! S
& [faa-sf|pac.ao+ [ asoomea

' Jo 0

os. . fo (5., GdE) - Dy(5,7,) - fo o5, 7 H(E)dE

o7 fo s £, 7|
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Then
ITo)(@) — TN < g, 7)) — q@, Tl
+ 1@ 0[(g(@)(0) — g(¥)(0)) — (g(0, Fo) — (0, To)]Il
d !
+ d—tfQ(t—S)[Ili)q(s,&s)—@q(s,ﬂ)ll
0
+ fo [H(©q(s, &) - (s, T)ldE
, 0, h(s, & 0:)dE) — , T h(s, & T)dE )| |ds.
+ Hgo(s o fo (5,6,0%) cf) go(s T f(; (s,&,7¢) cf)H )
By using the hypotheses

ITo)(®) = @)@l

IA

1M, L[|, — Fllc + C(LsG(0) — FHO)| + My Lyl T — 7o)
! S
+ C f [Lluffs ~ 70+ f MsL|IG, — 7, lldé
0 0

+ LIF, — 7l + L&, - fsu)]

IA

[MlLl +C(Ls + M\L, + aL, + Myd®’L, + al, + aLth)]Ilo:s — 7

IA

[MILI + C(L3 + (M, +a+ Mya®)Ly + Lya(l + Lh))]IIO' ")
Thus from Eq (3.2),

[T (@) = T < kollo(r) = T(D)I,

where
ko = [MlLl + C(L3 + (M, +a+ MLy + Lya(l + Lh))] <1

Hence I has a fixed point w(-) and is a unique integral solution of Eq (1.1) on [0, a].
Next we consider the continuous dependence of the solution for Eq (1.1) in the sense of the below
theorem:

Theorem 3.4. Suppose that the axioms of Theorem 3.3 hold and let u(-), v(-) be solutions of Eq (1.1)
with the initial conditions uy,vy € D(D) respectively, then, the solution of Eq (1.1) has continuous
dependence upon initial values, provided that

(CL3 + CMlLl)eC“[L‘ +MyLia+Ly+LoLy]

and My LyeCtbithiararabil < (3.4)

Proof. Let u = u(-), v = v(-) be two solutions of Eq (1.1). For ¢ € [0, a],

AIMS Mathematics Volume 8, Issue 11, 25611-25632.
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w0l = gltw) + @OHO) + gu)(0) - (0, up)]
d ! S

v 5 [ au-s| D+ [ e
tJo 0

¥ so(s, s, j; s, £ u,f)d.f)]ds.

Now,

A

lu(®) =vOll < llg(t, u) — g, vl
IIQ'(I)([g(u)(O) = 8MO)] + [¢(0, uo) — 4(0, VO)])”

+

+

d (" s
HE f Q- S)[D‘l(s’ us) = Dq(s, vs) + f Hlq(s, us) — q(s,v)dé
0 0

+ <p(s, Uy, fos h(s, &, uf)df)—go(s, vs,j: h(s, &, vf)df)]ds

IA

llu(®) = vl llg(z, ur) — (@, vl

4 ||Q'(r)([g(u)<0) — gO)] + [¢(0, uo) - g(0, vO)])n

+ Cj(;[IIDq(S,us)—DfJ(S,vs)IHj(; 1H [q(s, us) — q(s,vo)llldé

+ Hcp(s, us, ‘fos h(s, &, uf)dcf) - go(s, Vs, fOS h(s, ¢, Vf)dff)ds ]ds

MiLillu, — vl + C(L3||u<0> — (O] + M, Lyluo - V0||)

IA

!
e f (Ll = vl + MLl = vl + Lals = vl + Lullae = vel))
0

IA

M, Ly||lu; — vl + C[L3||M(0) = v(0)[| + M, Lilluo — voll

t

+ (L] + MzL]Cl + L2 + LQLh) sup ||I/t5 - Vs”dS].
0 0<é<s

Thus,

lu(r) = v(0)l| < M1L1||u[—vt||+<CL3+CM1L1>||uo—vO||]

t

+ C(L] + M2L1a + Lz + Lth) sup ||Lts - vsllds.
0 0<é<s

Hence by Gronwall’s lemma,

sup [[u(s) = v(Il < [MiLillu; — vi|| + (CL3 + CM, Ly)|lug — Vo||]6f°a[C(L]+M2L'“+L2+L2Lh)]ds.

0<s<t
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lut) = vl — MiLillu, = vylle!Ctrrihiertariatil

< (CL3 + CMILI)”MO _ v0||e[C“(L‘+M2L‘“+L2+L2L")].

llu(®) = vOII(1 = My Lyelc@brethhierbarbilly © < (CLy + CM| Ly)
X e[Ca(L1+M2L1a+L2+L2Lh)]||u0 _ vO”-

(CL3 + CMlLl)e[ca(Ll+M2L1a+L2+L2Lh)]
1 _ M]L] e[Cll(L1+M2L1a+L2+L2Lh)]

[lu(®) = vl <

llzg — voll.

Thus from Eq (3.4), the integral solution of Eq (1.1) has continuous dependence on the initial
conditions.

4. Existence of a strict solution
Here, we study the strict solution of the problem given by Eq (1.1), by using the integrated resolvent

operator theory and under some considerations.

Definition 4.1. A function w(:) : [-r,+00) — & is a strict solution of Eq (1.1), if w(t) — q(t,w;) €
CY([0, +0); E) N C([0, +0); Y) and w holds as in Eq (1.1) on [—r, +o0).

First we prove this in reflexive BS in the sense of the below theorem:

Theorem 4.2. Assume that the hypotheses of Theorem 3.3 hold, and that the following conditions are
satisfied:

(H5) $(0) + g(w)(0) € D(D), D[#(0) + g(w)(0) = g(0, wo)] + ¢(0, wo, 0) € D(D).

(H6) It holds that
(M, + K,a + K,Mya*)Ly + (1 + L)K,aly) < 1. 4.1)

Then Eq (1.1) has a strict solution on [—r, a].

Proof. Let the operator I' on C([-r,a]; &) be as given in Theorem 3.3. Let the closed ball B,, =
{we C([-r,al; & : ||wl|| £ ro, |lw(ty) — w(t)|| < LF|t, — 4|, 1,1 € [-r,a]}. Here L* > 0 is a constant and
we prove that I" has a fixed point on B,,. By Theorem 3.3, I'(B,,) C B,,; it suffices to show that

Tw)(t) — Tw)(t)I < LF|t, — t1] for w € B, 1,1, € [-r,a]. 4.2)

The extension of the operator solution I'(®(t)) is defined by

(@)@, 1 €[0,al,

I'((r)) =
@ {¢(r)+g(w><r>, € [-1,0].

Now,

ITw)(r2) = X))l < [1f (22, @r,) = g(t1, )|
+ Q1) — Q)I(¢(0) + g(@)(0) — g(0, o))l

AIMS Mathematics Volume 8, Issue 11, 25611-25632.
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+

+ so(s, o, fo (s, €, d)g)df)]ds

d 153 S
- f Qt: - 9| Dy(s,3) + f o(5, DY H(Ede
2 JO 0

d 11 S
- e [pase)+ [ o s
1 Jo 0
; tp(s, ., f h(s, £, &)g)df)]ds
0
= L+5L+15,
where
Iy = |lg(t2, y,) — q(ty, @),
L =[[Q () — Q (11)](¢(0) + g(@)(0) — q(0, @&))Il,
d %) _ S _
o= g [ ee-s[pasans [ aaomed
2 Jo 0
+ go(s, (Ds,f h(s, &, G)f)df)]ds
0
d 11 S
- [ @ - Dasen+ [ oo
1 Jo 0
+ tp(s, Cus,fk h(s, &, d)g)df)]ds .
0
Now take I;:
I < MLi(lt — ti| + ||@y, — @)
< MLi(|t, — ti| + L't — 11])
< (M\Ly + ML\ L")|t, — t,].
From (R4),
QAhHhw-w = QDw + f Q(t — )H(s)wds.
0
L < Q) — Q)IIDI#(0) + g(@)(0) — g(0, dp)]ll
+ ; IQ(t> — s) — Q(t; = HINH(E)[P(0) + g(@)(0) — g(0, dp)]llds
+ f IQ(t, — $IIH(E)[$(0) + g(@)(0) — q(0, dp)]llds
< KJD[#(0) + g(@)(0) — (0, wp)]lllt, — 1]
+  K.M:||D[¢(0) + g(@0)(0) — (0, wo)]llalt, — 1]
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+

sup [QIMD[¢(0) + g(@)(0) — (0, @)lllle> — 1]

rel0,a]
(Ky + K;Mya + MMy) My (|Igll + Lsrg — Li(ro + 1)) |12 — 1]

[K. M (1 + aMy) + MM, M,] (l|gll + Lzro)lt, — t1].

IA

IA

From I5, we note that

1Dg(s, W) + f(; H(&)q(&, Dp)dé + ¢ (S’ @.s,f(; h(s, &, @f)d-f) [
< [Ll + M2L1a + L2 + Lth] ro.

Now
13 < Ka[Ll + M,Lia+ L, + Lth]I"Qll‘g - l]l
3l
+ Kaf [||1)6](l2 — b+ 8, Oy vs) — Dg(s, @)l
0

+ f IH (s — Ollllg(ta — t1 + & Dry—16) — q(&, De)ldé

0

0

+ f IH (s — Eq(ta — ty + &, D4y 42)|dE

—(—11)

fh—t1+S
+ H‘P (12 —H+s, @zz—zlmf Wty =ty + 5,1, — 1) + &, @zz—tl+§)df)
0

@ (s, @y, fos h(s, &, (ﬁf)df) H]a’s,

I; < K, L+ MLia+ L, + Lth](}“o + 1)|[2 - tll
+ Kaa[Ll(l + L*) + (M,Lya(1 + L*)) + MoL(rg + 1) + Lr(1 + L+ LhL*) |ty — 4]

From the estimates of I;, I, I3, we have

ITw)(t) — Tw)(@)l < [(MILI + ML L") + [K,M (1 + aMy) + MM M,][|¢ll + Lsro]
+ Ka(Ll + M2L1a + L2 + Lth)(}"o + 1)
+ Kaa[Ll + LIL* + M2L1a + MleL*a + Mle(r() + 1)
+ (L2 + LQL* + LthL*)] |t2 — tll
< [C* + ((M] + K,a + KaM2a2)L1 +(1+ Lh)KaCle)L*:Illz -1,

where C* € R, and different from L*, w € B, ; thus, from (H6)

Tw)(#2) — Tw)EDIl < Ll — 1],

® 2 c*
where we assume that L* is large enough ( 2 Tan +Kaa+K,,M2a2)L1+(1+Lh)KaaL2))'
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Thus I" has a unique fixed point w(-) and is an integral solution of Eq (1.1). Further w(¢) is Lipschitz-
continuous on [0, a]; moreover,

sﬁmm%nﬁﬁm—m@%w+%w&£m@%w)

is also Lipschitz continuous on [0, a] and & is a reflexive BS; hence, by the Radon-Nikodym property,

Dq(s, wy) + f H(s — Eq(&, we)dé + go(s, Wy, f h(s, &, a)g)dg) e W0, al; &).
0 0

By Lemma 2.4, we have that w(f)—q(¢, w,) is differentiable on [0, a] and also a strict solution of Eq (1.1)
on [0, a]. Next we consider that & is a general BS; further, we assume the following:
(H7) The function ¢ € C'(R* x &;Y) and the partial derivatives D;q(-,-), D»q(-,-) are Lipschitz-

continuous with respect to the second variable; HL; > (; then,

IDig(t1, 51) = Dig(t1, o)l < Lilsy = sl

fort; € [0,a], 51,5, €C,i=1,2.
(H8) The function ¢ € C!(R* x Cx E; &) and the partial derivatives D, ¢(-, -, ), Dy¢(-, -, -) are Lipschitz-

continuous function with respect to second variable; HL; > 0; then,

IDig(t1, 11, 51) = Digp(t1, 72, )|l < Li(llry = ol + 151 = s2ll)
for any ) € [0,al,r,m €C,s1,50 €E.

Theorem 4.3. Suppose that (H1)—(H4), (H7) and (HS8) are true with ML, < 1. If w(-) is an integral
solution of Eq (1.1), ¢ + g(w) € D(D) and D[¢(0) + g(w)(0) — g(0, wy)] + ¢(0, wy, 0) € D(D); then,
w(-) is a strict solution of Eq (1.1).

Proof. Let w(-) be an integral solution of Eq (1.1); see the following system
¥(1) = Dig(t, ) + Dag(t, )y, + Q(DD[(0) + g(w)(0) — g0, wo)] + Q () Dyg(0, wp)
+ % f Q(t — $)H(5)q(0, wo)ds + Q' (H)(0, wy, 0)
0
d !
o j; Q@ — YH(5)($(0) + g(w)(0) — ¢(0, wo))ds
d [ (4.3)
+— f Q1 - S)[Dqu(s, wy) + DDyq(s, wy)ys
dt Jo
+ [ HEs - ODiate.0p) + Daate. wovelde

+ Dlga(s, Wy, j: h(s, &, w;)) + nga(s, Wy, j: h(s, &, w;))ys]ds.

From the Banach principle, there exists a unique solution y(-) € C([0, a]; &) to Eq (4.3). Let the map
z(t) be defined by

72(t) = ¢(0) + g(w)(0) + f y(s)ds for t € [0, a].
0
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We shall prove that w(-) = z(-) on [0, a].

(1) = ¢(0) + g(w)(0) + f [D1g(s, wy) + D2g(s, wy)y;lds
0
+QD[¢(0) + g(w)(0) = g0, wo)] + RD(¢(0, wp))

+ fo I Q1 — s)H(5)g(0, wp)ds + Q(1)(¢(0, wy, 0))

. fo QU - YHEB(O) + gw)0) - 4(0, wp)ds (4.4)
+ fo [ Q(t - s)[Z)qu(S, ws) + DD1q(s, wy)y

v fo H(s - OID1gE, w0) + Dag(é. ey lde

+ Dlgo(s, Wy, fos h(s, &, wg)) + ngo(s, Wy, fos h(s, &, wg))ys]ds.

From (R4),
QD[¢(0) + g(w)(0) = q(0, wo)] = Q' (N[$(0) + g(w)(0) — ¢(0, wo)]
~ (40) + £@)0) ~ 4(0,wx) 45)
- fo Qt — H)YH($)[$(0) + g(w)(0) — q(0, wo)lds.
Consequently,

q(0,z0) = q(t,z,) — f [D1g(s, zy) + Dag(s, zy)yslds. (4.6)
0

Further, we obtain
QDq(0, 7o) + f Q(t — )H(5)q(0, z0)ds + Qp(0, o, 0)
0
d ! S
-4 [ @u-s|pas+ [ He-oqezode
0 0
+ (s, zs,f h(s, &, Zg)df)]ds - f Q(t — s)[Dqu(s, z) + DDyq(s, 7,)ys 4.7
0 0
o [ HEs - ODiate. )+ Dagté.zomelie
+ Dlgo(s, Zss f h(s, &, Z_g)df) + Dz(,o(s, Zss f h(s, &, Zg)dg)ys]ds.
0 0
Since wy = zp putting Eqs (4.5)—(4.7) in Eq (4.4), we have

2D = qt,z)+ f [D1q(s, wy) + Dag(s, wy)y,lds — f [D1g(s. z5) + Dag(s. z5)ys1ds
0 0
+ Q(0[4(0) + g(w)(0) — (0, wy)]
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d ! S S
+ < f Q- 9| Dg(s, 2+ f H(s - E)a(€. %) + o .2, f s, &,z |ds
0 0 0
- fo Q(t—S)[[DDM(s,zs)+Dqu(s,zs)ys]+ fo H(s = ED1q(é, ze) + D2q(€, ze)ye1dE
+ Digfsz, f (5, €,2E) + D5, f s, & 2y Jds
0 0
+ f Q(t—S)[Dqu(s,ws)+Dqu(s,ws)ys+ f H(s = ED1q(¢, we) + Dag(€, we)y:1dé
0 0
+ chp(s,a)s,fl h(s,f,wg)d§)+D2<p(s,ws,f h(s,f,wg)df)ys]ds.
0 0
Now

z(t) — w(?)

0.2~ gt + 2 fo Q- 91Dg(s.2.) - Dals, 0l

. fo Q-5 fo Hs - OlalE z0) - a6 we)ldéds

e 5[ Q- sfelsa [ Hez0de) - ofson [ hsewoie)]as
+ fo I[qu(s, ws) — D1q(s,z,)lds + fo t[qu(s, wy) = Dag(s, z9)lysds

. fo QUi - DD 1g(5, w5) - DDq(s, 2,)1ds

N fo Q1 - 9IDDag(5, 5) - DDag(s,2,)lysds

; fo Q-5 fo H(s - E)D1g(é, w0 — Diglé, zo)ldéds

; fo Q-5 fo H(s — OLD2q(¢, @) — Daglé, ) lyedéds

) fot - S)[Dlgo(s’ o fos Hs. £, a)g)df) _ Dl(p(s, Zss fos h(s, ¢, Z.f)df)]ds

+ j: Q(t - s)[ngo(s, wS,fO‘s h(s, &, (,U‘f)df) - DzQD(S, Zs,j: h(s, ¢, zf)d.f)]yxds
= Ji+h+J;

where
d !
Il < IIq(t,zt)—q(t,wt)ll+EfoQ(r—s)||[1)q(s,zx)—Z)q(s,ws)]llds
d (7 s
+ o fo Q(t - ) fo IH (s — Oq(€, z¢) — 4(&, we)lldéds

D
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< MlLl Sup ”ws _Zs”
0<s<t
!
+ Ka(Ll + MyLia + Ly(|lzg — will + Lyllze — wg—‘”))f sup |lwg — z¢llds
0 0<é<s
!
< MLy sup |lws — zll + Ko(Ly + MyLia + Ly + Ly L) sup |lws — zelldss,
0<s<t 0 0<é<s
! !
12l < f I[D1g(s, wy) — D1g(s, z,)]llds + f I[D2g(s, wy) — Da2g(s, z)llllysllds
0 0
Tt
+ f IQ( = HINDD:1g(s, wy) — DD1g(s, z,)]llds
0
!
+ f IQ(z = HINDD2g(s, ws) — DD1q(s, z)]II[ysllds
0
! S
+ f lQ(r - S)Ilf IH (s — E)[D1g(€, we) — D1g(€, zo)]lldéd s
0 0
! S
+ f lQ(r - S)Ilf IH (s — EOD2g(€, we) — Drg(€, zo)llllyelldédss
0 0
<

! !
ML} f sup llwg — zellds + M, M3 L2 f sup |lwg — zellds
0 0

0<é<s 0<é<s

! !
+ sup 1LY [ sup e~ zelds + sup IQUIIML? [ sup o - zelds
0 0

0<s<a 0<é<s 0<s<a 0<é<s

!
v swp QML [ sup o~ zelds
0

0<s<a 0<é<s

!
¢ sup QI La [ sup floe - zlds
0

0<s<a 0<é<s
< [M1 (Ly+ M3LY) + sup |Q()I(L} + MsL, + MyLja + MyM;Lla)
0<s<a
f
X f sup |lwg — zelldss,
0 0<é<s

where M3 = sup ||y,

0<s<a

! A A}
Wl < f 1@ = [ Dig( 5,0 f (5,6, 0)de) - Dig(5, 2. f s, &, 2o |
0 0 0
! A A
. f 1@ = | Dage( 5,0 f (5,6, w0e)de) - Dag(5,2. f h(s,f,Zg)df)”IIysllds
0 0 0
!
< sup 1QI LI, — 2l + Lillo - z) f sup flog — zellds
0<s<a 0 0<é<s
!
+ sup ||Q(s)||(L;,+L;L,,+M3L§+M3L§,Lh) f sup llwg — z¢llds
0<s<a 0 0<é<s
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25627

!
sup [QEI(LL(1 + L) + MsLZ(1 + L) f sup llog — zellds
0

<
0<s<a 0<é<s
!
< sup QUL+ L)L, + ML2) | sup llwg — zlids.
0<s<a 0 0<é<s

By the values of Jy, J,, J5 we have

sup |lws — z5ll < MLy sup |lwy — z,l| + [Ka(Ll + MyLya + Ly + LyLy) + My(L + M3L})

0<s<t 0<s<t

+ sup IIQ(s)ll(L; + ML} + MyLia + MyMsLia

0<s<a

!
+ (L+Ly) (L, + M3Lf;))] f sup |lwg — z¢lld's.
0 0<é<s

Since M L; < 1, we obtain that

N t
s sl S ——— | s — zllds,
up [lws =zl 1—M1L1fo up [lwg — z¢llds

0<s<t 0<é<s
where
N =Ky(L + MyLia + Ly + Ly L)) + My(L}, + M5L})
+ sup QU)LY + MsL2 + Mala+ MoMsLa+ (1 + L)L + Ms2))

0<s<a

Then by the Gronwall lemma, it follows that w, = z, for all + € [-r,a], which shows that w() is
continuously differentiable on [—r, a]; consequently, w(:) is a strict solution of Eq (1.1).

5. Example
The application of this theory, we consider the following system:

et ) — [ gt w(t +6,x))d6) = Leo(t, %)

+ fot p(t — s)aa—;w(s, x)ds + fot f_or c(t,w( + 0, x)w(t, x)dods for t > 0,x € [0, 1],
w(t,0) = w(t,1) forr € [0, 1],
w(0, x) + il j(;l ni(x, y)w(t;, y)dy = wo(x) for t € [-r,0], x,y € [0, 1],

(5.1)

where the function p is a locally bounded variation from R* toR, 0 <, <1, < ... <t, < 1, wp(x) is an

initial function on the BS & = C([0, 1];R) and wy : [-r,0] X [0, 1] = R, g : R* xR — R is continuous;

we further assume the following

(A1) We have the function g € C*([-r,0] x [0, 1]; R) with g(-,0) = g(-, 1) = 0 and 3¢, (-, -) € L'([0, 1] x
[0, 1];R) then,

2 62
ﬁg(xl,)ﬁ) - ﬁg(xz,)b) < qi(|x1 = x2| + [y1 = y2l)
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and

< q\(Ix;] + 1) for x;, x, € [0, 1], y1,y2 € R.

82
‘@g(xl,yﬂ

(A2) The map c : [0, 1] Xx R — R is Lipschitz continuous 4L, > 0 and
lc(t,vi) —c(ty = v)| < L(Ity — o] + [vi =) for O < 1,1, < 1, vy, v, €R
and
le(t,v)| € L(Jv] + 1) for (¢,v) € [0, 1] X R.
(A3) The functions n; : [0,1] x [0,1] — R are continuous with 7;(0,-) = n(1,-) = 0 and
ki=supn(x,y);0<x<1,0<y<1<1,i=1,2,..p.
Now, we write Eq (5.1) as an abstract form of Eq (1.1) in &. Let D be the operator by Dv = v and
the domain
D(D)=ve& V' e€Eandv0) =v(l)=0.
Let the operators H(t) : D(D) c & — &, > 0 be defined by
H(tyv = p(t)v’, and D(H (1)) = D(D).

Hence (H(t)) ¢ L(Y,E) and H(-)v € BV;,.(R; E), v € D(D). Here Y is already explained in Section 2,
so there exists an LLC integrated resolvent operator Q- related to Eq (5.1).

Further let w(t)(x) = w(t,x),q : [0,1]XC = &E,¢ : [0,1] XCXxE — &E,g: C([-r,0];E) — D(D)
be respectively,

0
q(t,v)(x) = f g(t,v(0))do,v € &,

r

t 0
o(t, u,v)(x) = f f c(t, w(t + 0, x))w(t, x)dods,
0 J-r

P 0
RCOEDY f nix Yt y)dy, € C(1=1, 01; &).
i=1 -

r

Under the above assumptions Eq (5.1) is rewritten in the form (1.1) and conditions of Theorems 3.3
and 3.4 are fulfilled. Also the functions g, ¢ satisfy the Lipschitz-continuous conditions in (H1) and
(H2) respectively. In fact for t,,1, € [0, 1] and v, v, € & we have

0 52 2
0 0
1Dq(t1,v1) — Dg(t,vo)ll < sup f ﬁg(ﬁ, vi(6)) — 5582, v2(6))|doO
xe[0,1] J-r 10X ox
0
< sup f q1(x, y)(111 = o] + [v1(0) — v2(0))dO
xe0.1] J-r
< Ly (Ity = oo + [y = valD),
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where L, > 0 is a Lipschitz constant of ¢ that is Lipschitz continuous on its domain C?; also
clearly, ¢ is satisfies (H2) with L, = L.. On the other hand, under the condition of (A3), for
wi, w; € C([-1,0];6),

A

p
lg(@i () = gan@)l < Y. sup

=1 *€[0.1]

0
f e Wl (1)) = ()OIl

Mm

< killw (£;) — w, ()|

1

< Ljlwy - wslle

Il
—

which shows that g satisfies (H3). According to Theorems 3.3 and 3.4, we state that the following:

() If
ML, +C[L,+ (M, +1+ ML, +L.]<1

from Theorem 3.3, for the initial map wy(x) € & and wy(0) = wy(1) = 0, 9 a unique integral
solution of Eq (5.1) on [0,1]. Further from Theorem 3.4, if

Mqu eC[qu+M2qu +L.] < 1
1
then the estimates of Eq (3.4) holds such that the solution of Eq (5.1) has continuous dependence
upon the initial data.
(2) Further assume that wy(-) € C*([0, 1] x R) with wy(0) = wy(1) = 0, (0, w(0,0)) = c(0, w(0, 1))
the function w(-,-) € C([0, 1] x [0, 1];R) and n; € C*([-r, 0] x [0, 1]; R). Thus
D[#(0) + g(w)(0) — g(0, wo)] + ¢(0, wo, 0) € D(D).

Moreover ¢ € C*([0, 1] X R; R); then, it is clear that (H7) and (H8) are hold. If M 1L, < 1 then by
Theorem 4.3, the integral solution of Eq (5.1) becomes a strict solution.

6. Conclusions

In this work, we obtained the existence results for the system of neutral integro-differential equations
given by (1.1) with the nonlocal condition in finite delay situations by using the Banach fixed point
theorem. Also, we verified that the integral solution of the system given by (1.1) has continuous
dependence with respect to the initial data, and we proved the existence of a strict solution by using
integrated resolvent operator theory and Gronwall’s lemma. We considered most of the functions in
Eq (1.1) to be Lipschitz continuous and then obtained the results. The future work will consider the
partial neutral functional integro-differential equations with the initial conditions and we will apply the
integrated resolvent operator technique to this system.
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