Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Research article

Existence, uniqueness and Hyers-Ulam stability of random impulsive stochastic integro-differential equations with nonlocal conditions

  • Received: 06 August 2022 Revised: 14 October 2022 Accepted: 24 October 2022 Published: 07 November 2022
  • MSC : 35R12, 60H15

  • In this article, we study the existence and stability results of mild solutions for random impulsive stochastic integro-differential equations (RISIDEs) with noncompact semigroups and resolvent operators in Hilbert spaces. Initially, we prove the existence of mild solutions using Hausdorff measures of noncompactness and M¨onch fixed point theorem. Then, we explore the stability results which includes continuous dependence of initial conditions, Hyers-Ulam stability and mean-square stability of the system by developing some new analysis techniques and establishing an improved inequality. Finally, we propose an example to validate the obtained results.

    Citation: Dumitru Baleanu, Ramkumar Kasinathan, Ravikumar Kasinathan, Varshini Sandrasekaran. Existence, uniqueness and Hyers-Ulam stability of random impulsive stochastic integro-differential equations with nonlocal conditions[J]. AIMS Mathematics, 2023, 8(2): 2556-2575. doi: 10.3934/math.2023132

    Related Papers:

    [1] J. Vanterler da C. Sousa, E. Capelas de Oliveira, F. G. Rodrigues . Ulam-Hyers stabilities of fractional functional differential equations. AIMS Mathematics, 2020, 5(2): 1346-1358. doi: 10.3934/math.2020092
    [2] Fan Wan, Xiping Liu, Mei Jia . Ulam-Hyers stability for conformable fractional integro-differential impulsive equations with the antiperiodic boundary conditions. AIMS Mathematics, 2022, 7(4): 6066-6083. doi: 10.3934/math.2022338
    [3] Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244
    [4] Hasanen A. Hammad, Hassen Aydi, Hüseyin Işık, Manuel De la Sen . Existence and stability results for a coupled system of impulsive fractional differential equations with Hadamard fractional derivatives. AIMS Mathematics, 2023, 8(3): 6913-6941. doi: 10.3934/math.2023350
    [5] Thanin Sitthiwirattham, Rozi Gul, Kamal Shah, Ibrahim Mahariq, Jarunee Soontharanon, Khursheed J. Ansari . Study of implicit-impulsive differential equations involving Caputo-Fabrizio fractional derivative. AIMS Mathematics, 2022, 7(3): 4017-4037. doi: 10.3934/math.2022222
    [6] Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut . On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function. AIMS Mathematics, 2022, 7(5): 7817-7846. doi: 10.3934/math.2022438
    [7] Kaihong Zhao, Shuang Ma . Ulam-Hyers-Rassias stability for a class of nonlinear implicit Hadamard fractional integral boundary value problem with impulses. AIMS Mathematics, 2022, 7(2): 3169-3185. doi: 10.3934/math.2022175
    [8] Wedad Albalawi, Muhammad Imran Liaqat, Fahim Ud Din, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty . Well-posedness and Ulam-Hyers stability results of solutions to pantograph fractional stochastic differential equations in the sense of conformable derivatives. AIMS Mathematics, 2024, 9(5): 12375-12398. doi: 10.3934/math.2024605
    [9] Amjad Ali, Kamal Shah, Dildar Ahmad, Ghaus Ur Rahman, Nabil Mlaiki, Thabet Abdeljawad . Study of multi term delay fractional order impulsive differential equation using fixed point approach. AIMS Mathematics, 2022, 7(7): 11551-11580. doi: 10.3934/math.2022644
    [10] Xiaoming Wang, Rizwan Rizwan, Jung Rey Lee, Akbar Zada, Syed Omar Shah . Existence, uniqueness and Ulam's stabilities for a class of implicit impulsive Langevin equation with Hilfer fractional derivatives. AIMS Mathematics, 2021, 6(5): 4915-4929. doi: 10.3934/math.2021288
  • In this article, we study the existence and stability results of mild solutions for random impulsive stochastic integro-differential equations (RISIDEs) with noncompact semigroups and resolvent operators in Hilbert spaces. Initially, we prove the existence of mild solutions using Hausdorff measures of noncompactness and M¨onch fixed point theorem. Then, we explore the stability results which includes continuous dependence of initial conditions, Hyers-Ulam stability and mean-square stability of the system by developing some new analysis techniques and establishing an improved inequality. Finally, we propose an example to validate the obtained results.



    In general, impulsive effects are a widespread natural phenomena caused by instantaneous perturbations at certain moments, such as various biological models involving thresholds, bursting explosive models in medicine biological theory, the optimal control model in economics and so on [1,2,3]. In the past few decades, differential equations (DEs) with impulses are utilized to model the processes subjected to abrupt changes at discrete moments and the dynamics of impulsive DEs have attracted the attention of a large number of scholars, see [4,5,6,7,8]. Furthermore, since real-world systems and natural phenomena are almost inevitably affected by stochastic perturbations, mathematical models cannot ignore the stochastic factors due to a combination of uncertainties and complexities. (Partial) DEs driven by stochastic processes or equations with random impulses provide a natural and effective method for explicating a variety of impulsive occurrences in order to take them into consideration. The study of stochastic differential equations have been considered by many researchers, such as [9,10,11,12,13,14,15], and the references therein. In particular, Wu and his teams first investigated random impulsive DEs, in [16]. Then, they applied the random impulsive stochastic differential equations (SDEs) to study the stock pricing models [17] combining Brownian motions through the empirical analysis of the historical data. Wu et al. [18] investigated the existence and uniqueness of SDEs with random impulses. Zhou and Wu [19] developed the existence and uniqueness of solutions with random impulses under Lipschitz conditions. Yang et al. [20] existence and stability results of mild solutions for random impulsive stochastic PDEs with noncomact semigroups in Hilbert spaces using M¨onch fixed point theorem.

    However, there are not many papers considering the Hyers-Ulam stability problem of stochastic impulsive differential equations. Recently, Li et al. [21] investigated the existence and Hyers-Ulam stability of mild solutions for random impulsive stochastic functional ordinary differential equations using Krasnoselskii's fixed point theorem. Anguraj et al. [22] established the stability of random impulsive stochastic functional differential equations driven by Poisson jumps with finite delays by using Banach fixed point theorem. Many authors have studied the various kinds of integro-differential equations with random impulses [23,24]. Recently, there have been massive studies covering existence and stability of solutions to partial differential equations (PDEs) with impulses or randomness. Chan [25] established a new impulsive integral inequality to obtain the sufficient conditions in order to prove the existence and stability of mild solutions for impulsive stochastic PDEs with delays. Gao and Li [26] developed a new criterion in proving the mean-square exponential stability of the proposed existence of mild solutions for the impulsive stochastic PDEs with noncompact semigroup.

    To the best of our knowledge, no notable work has yet been published that conducts research on RISIDEs with nonlocal conditions combining the M¨onch fixed point theorem and the Hausdorff measure of noncompactness via resolvent operator. In this paper, we consider the following RISIDEs with nonlocal conditions of the form:

    dϑ(t)=[Aϑ(t)+t0Θ(ts)ϑ(s)ds+f(t,ϑ(t))]dt+g(t,ϑ(t))dω(t),  tt0,  tξk,ϑ(ξk)=bk(δk)ϑ(ξk),k=1,2,,ϑ(0)=h(ϑ)+ϑ0, (1.1)

    where A is the infinitesimal generator of a strongly continuous semigroup (S(t))t0 on X with domain D(A). (Θ(t))t0 is a closed linear operators on X with D(Θ(t))D(A) which is independent of t and ω(t) is a standard Wiener process on X. Let Y be another separable Hilbert space. We may denote L2(Ω,X) the collection of all strongly measurable, square-integrable X-valued random variables. Then ϑ(.)L2=(Eϑ(.,ω)2)1/2 is a Banach space.

    Throughout this work, we may consider the subspace of L2(Ω,X) given by L02(Ω,X)={ϑL02(Ω,X)ϑ is F0-measurable }. We denote C([t0,];L2(Ω,X)) the space of all continuous Ftadapted measurable processes from [t0,] to L2(Ω,X) satisfying supt[t0,]Eϑ(t)2<. Then, it is obvious that C([t0,];L2(Ω,X)) is a Banach space equipped with the subnorm

    ϑC=(supt[t0,]Eϑ(t)2)1/2.

    The map f:[t0,+]×XX, g:[t0,+]×XL02(Y,X), h:C([t0,+];L2(Ω,X))X are Borel measurable functions. Let δk be a random variable from Ω to Dk:=(0,dk) with 0<dk<+ for k=1,2, and suppose that δi and δj are independent of each other as ij for i,j=1,2,. Here bk:DkX, and ξ0=t0 and ξk=ξk1+δk for k=1,2,, where t0[δ,+] is an arbitrary given non-negative number. It is obvious that

    t0=ξ0<ξ1<<limkξk=+,

    then, {ξk} is a process with independent increments. Denoting ϑ(ξk):=limϑξkϑ(t), the norm

    ϑt:=suptδstϑX,

    with the jump

    Δϑ(ξk):=[bk(δk)1]ϑ(ξk),

    represents the random impulsive effect in the state ϑ at time ξk. The preliminary data φ:[δ,0]X is a function with respect to ϑ when t=t0. Let us suppose, {N(t),t0} is a simple counting process generated by {ξk}, (1)t be the σalgebra generated by {N(t),t0} and (2)t indicates the σalgebra generated by {ω(t):t0} where (1),(2) and ξ being mutually independent.

    The novelties of this paper are the following aspects:

    ● Motivated by the previously mentioned literatures [25,26,27], we add the random impulses into the system. We discover how stochastic integro-differential equations with nonlocal conditions driven by Brownian motions interact with random impulses in the proof of existence of mild solutions by using Hausdorff measure of noncompactness and M¨onch fixed point theorem via resolvent operator.

    ● Under the influence of both white noises and random impulses, we investigate stability with continuous dependence of initial conditions, Hyers-Ulam stability and mean-square exponential stability of mild solution for the RISIDEs with nonlocal conditions.

    Let X and Y be real separable Hilbert space with norms ., .Y and L(Y,X) denotes the space of bounded linear operators from Y to X. (Ω,F,P) be a complete filtered probability space provided the filtration (1)t(2)t(t0) satisfies the usual notation. In the probability space (Ω,F,P), {βn(t),t0} represents a real-valued one dimensional standard Brownian motion being mutually independent. For the probability measure P, L2(Ω) be the space of square-integrable random variables. Let QL(Y,X) be a positive trace class operator on L2(X) and (λn,en)n symbolizes its spectral elements. The Weiner process ω(t) is exhibited as:

    ω(t)=+n=1λnβn(t)en,

    with trQ=+n=1λn<+. Then, the Yvalued stochastic process ω(t) is called a QWeiner process.

    Definition 2.1. [20] Let ΞL(Y,X), we define

    Ξ2L02:=tr(ΞQΞ)={+n=1λnΞen2}.

    If Ξ2L02<+, then Ξ is called a QHilbert-Schmidt operator and L02 is the space of all QSchmidt operators Ξ:YX.

    Partial integro-differential equations: Let X and Y be two Banach spaces such that

    |y|Y:=|Ay|+|y|foryY.

    A and Θ(t) are closed linear operator on X.

    Let C([0,+);Y), stand for the space of all continuous functions from [0,+) into Y, the set of all bounded linear operators from Y into X. For further purposes, let us consider the following system

    ν(t)=Aν(t)+t0Θ(ts)ν(s)ds,   t0,ν(0)=ν0X. (2.1)

    Definition 2.2. [28] A resolvent for Eq (2.1) is a bounded linear operator valued function R(t)L(X) for t0, having the following properties:

    (i) R(0)=I and R(t)Meλt for some constants M and λ.

    (ii) For each νX, R(t)ν is continuous for t0.

    (iii) R(t)L(Y), for t0. For νY,R()νC1([0,+);X)C([0,+);Y) and

    R(t)ν=AR(t)ν+t0Θ(ts)R(s)νds=R(t)Aν+t0R(ts)Θ(s)νds, t0.

    The resolvent operator is supposed to be exponentially stable as Definition 2.2 (i) holds for λ>0. The following constrains acquired from Grimmer [28] are enough to ensure the existence of solutions for (2.1).

    (H1) The operator A is an infinitesimal generator of a strongly continuous semigroup on X.

    (H2) For all t0, Θ(t) represents a closed continuous linear operator from D(A) to X and Θ(t)L(Y,X). For any yY, the map tΘ(t)y is bounded, differentiable and its derivative tΘ(t)y is bounded and uniformly continuous on R+.

    Theorem 2.1. [28] Assume that (H1)–(H2) hold. Then, there exists a unique resolvent operator for the Cauchy problem 2.1.

    Now, consider the conditions that ensure the existence of solutions to the deterministic integro-differential equation.

    ν(t)=Aν(t)+t0Θ(ts)ν(s)ds+m(t),  t0,ν(0)=ν0X, (2.2)

    where m:[0,+)X is a continuous function.

    Lemma 2.1. [28] If ν is a strict solution of [2.2], then

    ν(t)=R(t)ν0+t0R(ts)m(s)ds,t0. (2.3)

    Lemma 2.2. [28] Assuming (H1), (H2) holds, the resolvent operator R(t) is continuous for t0 on the operator norm, namely for t00,

    limτ0R(t0+τ)R(t0)=0.

    Lemma 2.3. [28] Assume (H1), (H2) gets satisfied, then G>0

    R(t+ϵ)R(ϵ)R(t)Gϵ.

    Lemma 2.4. [20] For any p0 and for arbitrary L02(Y,X)-valued predictable process Ψ(), we have

    sups[0,t]s0Ψ(s)dω(s)pCp(t0(EΨ(s)pL02)2pds)2p, tl,

    where Cp=(p(p1)2)p2.

    The Hausdorff measure of noncompactness α(.) defined on a bounded subset E of a Banach space X by

    α(E)=inf{ε>0:Ehas a finiteεnet inX}.

    Lemma 2.5. [20] Let X be a real Banach space and M,NX be bounded. Then we have the following properties:

    (1) M is precompact if and only if α(M)=0.

    (2) α(M)=α(¯M)=α(convM), where ¯M and convM are the closure and the convex hull.

    (3) α(M)α(N) while MN.

    (4) α(M+N)α(M)+α(N), wherever M+N={ϑ+ϖ:ϑM,ϖN}.

    (5) α(MN)max{α(M),α(N)}.

    (6) α(λM)|λ|α(N) for any λR.

    (7) If KC([0,T]) is bounded, then

    α(K(t))α(K)t[0,T],

    where K(t)={m(t):mKX}. Further, if K is equicontinuous on [0,T], then tK(t) is continuous on [0,T], and α(K)=sup{K(t):t[0,T]}.

    (8) If KC([0,T],X) is bounded and equicontinuous, then tα(K(t)) is continuous on [0,T] and α(t0K(s)ds)t0α(K(s))ds t[0,T] where t0K(s)ds={t0m(s)ds:mK}.

    (9) Let {mn}n=1 be a sequence of Bochner integrable functions from [0,T] to X with mn(t)ˆu(t) t[0,T] and n1, where ˆu(t)L([0,T],R+), then Ψ(t)=α({mn(t)}n=1)L([0,T],R+) and satisfies

    α({t0mn(s)ds:n1})2t0Ψ(s)ds.

    Lemma 2.6. [20] If KC([0,T],L02(Y,X)) and ω being a Weiner process,

    α(t0K(s)dω(s))Tα(K(t)),

    where,

    t0K(s)dω(s)={t0m(s)dω(s):mK,t[0,T]}.

    Lemma 2.7. [20] Let D be a closed convex subset of X with 0D. Suppose Ψ:DD is a continuous map of M¨onch type which satisfies:

    MDcountableandM¯co({0}Ψ(M))impliesthatMisrelativelycompact,

    then, Ψ has a fixed point in D.

    Definition 3.1. For T(t0,+), an Xvalued stochastic process {ϑ(t),t[t0,T]} is said to be a mild solution of [1.1] provided,

    (i) ϑ(t) is an tadapted process for tt0;

    (ii) ϑ(t)X contains cadlag path on t[t0,T] almost surely,

    (iii) ϑ(t)=φ, t[t0,T],

    ϑ(t)=+k=0[ki=1bi(δi)R(tt0)[φ(0)+h(ϑ)]+ki=1kj=ibj(δj)ξkξk1R(ts)f(s,ϑ(s))ds+tξkR(ts)f(s,ϑ(s))ds+ki=1kj=ibj(δj)ξkξk1R(ts)g(s,ϑ(s))dω(s)+tξkR(ts)g(s,ϑ(s))dω(s)]I[ξk,ξk+1)(t),

    where kj=i(.)=1 as i>k, kj=ibj(δj)=bk(δk)bk1(δk1)bi(δi), IA(.) be the indicator function expressed as,

    IA(t)={1,iftA,0,iftA.

    We may take into consideration the following hypotheses

    (A1) There exists a positive constant H, such that for all t0, R(t)H,

     (A2) The map f:[t0,T]×XX satisfies

    (i) For ϑX, f(.,ϑ):[t0,,T]X is measurable and f(t,.):XX being continuous for t[t0,T].

    (ii) As in there, a continuous νf(t):[t0,T]R+ and a continuous non-decreasing function Γf:R+R+ and ϑ2r such that

    f(t,ϑ)2νf(t)Γf(ϑ2)νf(t)Γf(r).

    (iii) There exists a positive function Cf(t)L1([t0,T],R+) such that, for any bounded subsets β1X, we have

    α(f(t,ϑ))Cf(t)supθ(δ,0]α(β1(θ)).

    (A3) The function g:[t0,T]×XL02(Y,X) satisfies

    (i) g(.,ϑ):[t0,T]L02(Y,X) is measurable for ϑX and g(t,.):XL02(Y,X) be continuous for t[t0,T].

    (ii) There appears a continuous function νg(t):[t0,T]R+ and a continuous non-decreasing function Γg:R+R+ such that

    g(t,ϑ)2νg(t)Γg(ϑ2)νg(t)Γg(r).

    (iii) There exists a positive function Cg(t)L1([t0,T],R+) such that, for any bounded subsets β2X, we have

    α(g(t,ϑ))Cg(t)supθ(δ,0]α(β2(θ)).

    (A4) (i) The nonlocal function h:C([t0,T],L2(Ω,X))X is continuous and compact.

    (ii) a constant m>0 and a nondecreasing continuous function Γh:R+R+

    Eh(ϑ)2Γh(r)andliminfr+Γh(r)r:=m<+.

    (A5)E[maxi,k{kj=ibj(δj)}]<+. In other words, there exists a constant B>0 such that

    E(maxi,k{kj=ibj(δj)})Bfor allδjDj,jN.

    (A6)

    4B2H2m+4max{1,B2}(Tt0)H2[limr+Γf(r)rtt0νf(s)ds+limr+Γg(r)rtt0νg(s)ds]1.

    Theorem 3.1. Assume the conditions (A1)–(A6) holds, then there exist at least one mild solution for [1.1] provided:

    B2H2m+max{1,B2}H2(Tt0)CfL1([t0,T],R+)+max{1,B2}H2(Tt0)12CgL2([t0,T],R+)<1. (3.1)

    Proof. Let us initiate the set ΥT:PC([t0δ,T],L2(Ω,X)) endowed with the norm

    ϑ2ΥT=supt[t0,T]Eϑ2t=supt[t0,T]E(suptδstϑ(s)2).

    It is clear that ΥT is a Banach space and, furthermore, we consider the closed subset of ΥT defined by

    ¯ΥT={ϑΥT:ϑ(s)=φ(s),fors[δ,0]}

    with the norm ϑ2ΥT. Thus, [1.1] can be modified to a fixed point problem. Define an operator Θ:¯ΥT¯ΥT by

    (Θϑ)(t)=+k=0[ki=1bi(δi)R(tt0)[φ(0)+h(ϑ)]+ki=1kj=ibj(δj)ξkξk1R(ts)f(s,ϑ(s)))ds+tξkR(ts)f(s,ϑ(s)))ds+ki=1kj=ibj(δj)ξkξk1R(ts)g(s,ϑ(s))dω(s)+tξkR(ts)g(s,ϑ(s))dω(s)]I[ξk,ξk+1)(t),t[t0,T],and(Θϑ)=φ(θ),t[δ,0].

    Let us split the proof into four steps.

    Step 1: Initially, we need to verify that the operator Θ satisfies the property N(Br)Br, where Br={ϑΥT:ϑ2ΥTr}. If the result contradicts, for ϑBr, N(Br). Thus, we may find \mathfrak{t}\in [\mathfrak{t}_{0}, \mathtt{T}] satisfying \mathbb{E}\Vert (\Theta \vartheta)(\mathfrak{t})\Vert^{2} > \mathfrak{r} . By the aforementioned assumptions, we have

    \mathbb{E}\Vert (\Theta \vartheta)(\mathfrak{t})\Vert^{2} = \mathbb{E}\bigg\|\sum\limits^{+\infty}_{\mathrm{k} = 0}\bigg[ \prod \limits^{\mathrm{k}}_{i = 1}\mathfrak{b}_{i}(\delta _{i})\mathfrak{R}(\mathfrak{t}-\mathfrak{t}_{0})[\varphi (0)+\mathfrak{h}(\vartheta)]+\sum\limits^{\mathrm{k}}_{i = 1}\prod\limits^{\mathrm{k}}_{j = i}\mathfrak{b}_{j}(\delta _{j})\int^{\xi _{\mathrm{k}}}_{\xi _{\mathrm{k}-1}}\mathfrak{R}(\mathfrak{t}-s)\mathfrak{f}(s, \vartheta (s))ds\\ \quad+ \int^{\mathfrak{t}}_{\xi _{\mathrm{k}}}\mathfrak{R}(\mathfrak{t}-s)\mathfrak{f}(s, \vartheta (s))ds+\sum\limits^{\mathrm{k}}_{i = 1}\prod\limits^{\mathrm{k}}_{j = i}\mathfrak{b}_{j}(\delta _{j})\int^{\xi _{\mathrm{k}}}_{\xi _{\mathrm{k}-1}}\mathfrak{R}(\mathfrak{t}-s)\mathfrak{g}(s, \vartheta (s))d\omega (s)\\ \quad+ \int^{\mathfrak{t}}_{\xi _{\mathrm{k}}}\mathfrak{R}(\mathfrak{t}-s)\mathfrak{g}(s, \vartheta (s))d\omega (s)\bigg]\bigg\|^{2}\mathcal{I}_{[\xi _{\mathrm{k}}, \xi _{\mathrm{k}+1})(\mathfrak{t})}, \\ \leq 4\mathbb{E}\bigg(\left( \max\limits_{\mathrm{k}}\lbrace \prod\limits^{\mathrm{k}}_{i = 1}\Vert \mathfrak{b}_{i}(\delta _{i})\Vert \rbrace\right)^{2}\bigg)\Vert \mathfrak{R}(\mathfrak{t}-\mathfrak{t}_{0})\Vert^{2}\mathbb{E}\Vert \varphi (0)+\mathfrak{h}(\vartheta)\Vert^{2}+4\mathbb{E}\left( \max\limits_{i, \mathrm{k}}\lbrace \prod\limits^{\mathrm{k}}_{j = i}\Vert \mathfrak{b}_{j}(\delta _{j})\Vert , 1\rbrace\right)^{2}\\ \quad\times \mathbb{E}\left(\left\| \mathfrak{R}(\mathfrak{t}-s)\mathfrak{f}(s, \vartheta (s))ds \right\|^{2} \right)+4\mathbb{E}\bigg(\left( \max\limits_{i, \mathrm{k}}\lbrace \prod\limits^{\mathrm{k}}_{j = i}\Vert \mathfrak{b}_{j}(\delta _{j})\Vert , 1\rbrace\right)^{2}\bigg)\\ \quad\times \mathbb{E}\left(\left\| \mathfrak{R}(\mathfrak{t}-s)\mathfrak{g}(s, \vartheta (s))d\omega (s) \right\|^{2} \right)\\ \leq 4\mathscr{B}^{2}\mathscr{H}^{2}\mathbb{E}\Vert \varphi (0)\Vert^{2}+4\mathscr{B}^{2}\mathscr{H}^{2}\Gamma _{\mathfrak{h}}(\mathfrak{r})+4\max \lbrace 1, \mathscr{B}^{2}\rbrace \mathscr{H}^{2}(\mathtt{T}-\mathfrak{t}_{0})\int^{\mathfrak{t}}_{\mathfrak{t}_{0}}\nu {\mathfrak{f}}(s)\Gamma _{\mathfrak{f}}(\mathfrak{r})ds\\ \quad+ 4\max \lbrace 1, \mathscr{B}^{2}\rbrace \mathscr{H}^{2}(\mathtt{T}-\mathfrak{t}_{0})\int^{\mathfrak{t}}_{\mathfrak{t}_{0}}\nu _{\mathfrak{g}}(s)\Gamma _{\mathfrak{g}}(\mathfrak{r})ds

    Dividing the above inequality by \mathfrak{r} , and letting \mathfrak{r}\rightarrow +\infty , we have

    4\mathscr{B}^{2}\mathscr{H}^{2}\mathfrak{m}+4\max \lbrace 1, \mathscr{B}^{2}\rbrace \mathscr{H}^{2}(\mathtt{T}-\mathfrak{t}_{0})\left( \lim\limits _{\mathfrak{r}\rightarrow +\infty}\frac{\Gamma _{\mathfrak{f}}(\mathfrak{r})}{\mathfrak{r}}\int^{\mathfrak{t}}_{\mathfrak{t}_{0}}\nu _{\mathfrak{f}}(s)ds+ \lim\limits _{\mathfrak{r}\rightarrow +\infty}\frac{\Gamma _{\mathfrak{g}}(\mathfrak{r})}{\mathfrak{r}}\int^{\mathfrak{t}}_{\mathfrak{t}_{0}}\nu _{\mathfrak{g}}(s)ds\right) > 1,

    which contradicts our assumption (A4). Thus, there exist some \vartheta \in \mathbb{B}_{\mathfrak{r}} such that \mathcal{N}(\mathbb{B}_{\mathfrak{r}})\subset \mathbb{B}_{\mathfrak{r}} .

    Step 2: In order to prove the continuity of the operator \Theta in \mathbb{B}_{\mathfrak{r}} , let \vartheta, \vartheta _{n}\in \mathbb{B}_{\mathfrak{r}} and \vartheta _{n}\rightarrow \vartheta as n\rightarrow +\infty . By condition (ii) of (A1), (A2), we get

    \begin{eqnarray*} \mathfrak{f}(\mathfrak{t}, \vartheta _{n})\rightarrow \mathfrak{f}(\mathfrak{t}, \vartheta), \; n\rightarrow +\infty, \ \left\| \mathfrak{f}(\mathfrak{t}, \vartheta _{n})-\mathfrak{f}(\mathfrak{t}, \vartheta)\right\|^{2}\leq 2\nu _{\mathfrak{f}}(\mathfrak{t})\Gamma _{\mathfrak{f}}(\mathfrak{t}), \\ \mathfrak{g}(\mathfrak{t}, \vartheta _{n})\rightarrow \mathfrak{g}(\mathfrak{t}, \vartheta), \; n\rightarrow +\infty, \ \left\| \mathfrak{g}(\mathfrak{t}, \vartheta _{n})-\mathfrak{g}(\mathfrak{t}, \vartheta)\right\|^{2}\leq 2\nu _{\mathfrak{g}}(\mathfrak{t})\Gamma _{\mathfrak{g}}(\mathfrak{t}), \\ \mathfrak{h}(\vartheta _{n})\rightarrow \mathfrak{h}(\vartheta), \; n\rightarrow +\infty, \ \left\| \mathfrak{h}(\vartheta _{n})-\mathfrak{h}(\vartheta)\right\|^{2}\leq 2\Gamma _{\mathfrak{h}}. \end{eqnarray*}

    Using Dominated Convergence theorem and (A3), we may deduce that

    \begin{align*} &\mathbb{E}\left\| (\Theta \vartheta _{n})(\mathfrak{t})-(\Theta \vartheta)(\mathfrak{t})\right\|^{2}\\ &\leq 4\mathbb{E}\left\| \sum\limits^{+\infty}_{\mathrm{k} = 0}\prod \limits^{\mathrm{k}}_{i = 1}\mathfrak{b}_{i}(\delta _{i})\mathfrak{R}(\mathfrak{t}-\mathfrak{t}_{0})(\vartheta _{n}(0)-\vartheta (0))\right\|^{2}+4\mathbb{E}\left\| \sum\limits^{+\infty}_{\mathrm{k} = 0}\prod \limits^{\mathrm{k}}_{i = 1}\mathfrak{b}_{i}(\delta _{i})\mathfrak{R}(\mathfrak{t}-\mathfrak{t}_{0})(\mathfrak{h}(\vartheta _{n})-\mathfrak{h}(\vartheta))\right\|^{2}\\ &\quad+ 4\mathbb{E}\bigg\| \sum\limits^{+\infty}_{\mathrm{k} = 0}\bigg( \sum\limits^{\mathrm{k}}_{i = 1}\prod \limits^{\mathrm{k}}_{j = i}\mathfrak{b}_{j}(\delta _{j})\int^{\xi _{\mathrm{k}}}_{\xi _{\mathrm{k}-1}}\mathfrak{R}(\mathfrak{t}-s)[\mathfrak{f}(s, \vartheta _{n} (s))-\mathfrak{f}(s, \vartheta (s))] ds\\ &\quad+ \int^{\mathfrak{t}}_{\xi _{\mathrm{k}}}\mathfrak{R}(\mathfrak{t}-s)[\mathfrak{f}(s, (\vartheta _{n}(s))-\mathfrak{f}(s, \vartheta (s))] ds\bigg)\mathcal{I}_{[\xi _{\mathrm{k}}, \xi _{\mathrm{k}+1})}\bigg\|^{2}\\ &\quad+ 4\mathbb{E}\bigg\| \sum\limits^{+\infty}_{\mathrm{k} = 0}\bigg( \sum\limits^{\mathrm{k}}_{i = 1}\prod \limits^{\mathrm{k}}_{j = i}\mathfrak{b}_{j}(\delta _{j})\int^{\xi _{\mathrm{k}}}_{\xi _{\mathrm{k}-1}}\mathfrak{R}(\mathfrak{t}-s)[\mathfrak{g}(s, \vartheta _{n}(s))-\mathfrak{g}(s, \vartheta (s))] d\omega (s)\\ &\quad+ \int^{\mathfrak{t}}_{\xi _{\mathrm{k}}}\mathfrak{R}(\mathfrak{t}-s)[\mathfrak{g}(s, \vartheta _{n}(s))-\mathfrak{g}(s, \vartheta (s))] d\omega (s)\bigg)\mathcal{I}_{[\xi _{\mathrm{k}}, \xi _{\mathrm{k}+1})}\bigg\|^{2}\\ &\leq 4\mathscr{B}^{2}\mathscr{H}^{2}\mathbb{E}\left\| \vartheta _{n}(0)-\vartheta (0)\right\|^{2}+4\mathscr{B}^{2}\mathscr{H}^{2}\mathbb{E}\left\| \mathfrak{h}(\vartheta _{n})-\mathfrak{h}(\vartheta)\right\|^{2}\\ &\quad+ 4\max \lbrace 1, \mathscr{B}^{2}\rbrace \mathscr{H}^{2}(\mathfrak{t}-\mathfrak{t}_{0})\int^{\mathfrak{t}}_{\mathfrak{t}_{0}}\mathbb{E}\left\| \mathfrak{f}(s, \vartheta _{n}(s))-\mathfrak{f}(s, \vartheta (s))\right\|^{2}ds\\ &\quad+ 4\max \lbrace 1, \mathscr{B}^{2}\rbrace \mathscr{H}^{2}(\mathfrak{t}-\mathfrak{t}_{0})\int^{\mathfrak{t}}_{\mathfrak{t}_{0}}\mathbb{E}\left\| \mathfrak{g}(s, \vartheta _{n}(s))-\mathfrak{g}(s, \vartheta (s))\right\|^{2}_{\mathcal{L}^{0}_{2}}ds\\ &\rightarrow 0 \; \; as \; \; n\rightarrow +\infty. \end{align*}

    Therefore, \Theta is continuous on \mathbb{B}_{\mathfrak{r}} .

    Step 3: To prove \Theta is equicontinuous on [\mathfrak{t}_{0}, \mathtt{T}] , for \mathfrak{t}_{0} < \mathfrak{t}_{1} < \mathfrak{t}_{2} < \mathtt{T} and \vartheta \in \mathbb{B}_{\mathfrak{r}} , we have

    (\Theta \vartheta)(\mathfrak{t}_{2})-(\Theta \vartheta)(\mathfrak{t}_{1})

    = \sum\limits^{+\infty}_{\mathrm{k} = 0}\bigg[ \prod \limits^{\mathrm{k}}_{i = 1}\mathfrak{b}_{i}(\delta _{i})\mathfrak{R}(\mathfrak{t}_{2}-\mathfrak{t}_{0})[\varphi (0)+\mathfrak{h}(\vartheta)]+\sum\limits^{\mathrm{k}}_{i = 1}\prod\limits^{\mathrm{k}}_{j = i}\mathfrak{b}_{j}(\delta _{j})\int^{\xi _{\mathrm{k}}}_{\xi _{\mathrm{k}-1}}\mathfrak{R}(\mathfrak{t}_{2}-s)\mathfrak{f}(s, \vartheta (s))ds\\ \quad+ \int^{\mathfrak{t}_{2}}_{\xi _{\mathrm{k}}}\mathfrak{R}(\mathfrak{t}_{2}-s)\mathfrak{f}(s, \vartheta (s))ds+\sum\limits^{\mathrm{k}}_{i = 1}\prod\limits^{\mathrm{k}}_{j = i}\mathfrak{b}_{j}(\delta _{j})\int^{\xi _{\mathrm{k}}}_{\xi _{\mathrm{k}-1}}\mathfrak{R}(\mathfrak{t}_{2}-s)\mathfrak{g}(s, \vartheta (s))d\omega (s)\\ \quad+ \int^{\mathfrak{t}_{2}}_{\xi _{\mathrm{k}}}\mathfrak{R}(\mathfrak{t}_{2}-s)\mathfrak{g}(s, \vartheta (s))d\omega (s)\bigg]\mathcal{I}_{[\xi _{\mathrm{k}}, \xi _{\mathrm{k}+1})}(\mathfrak{t}_{2})\\ \quad- \sum\limits^{+\infty}_{\mathrm{k} = 0}\bigg[ \prod \limits^{\mathrm{k}}_{i = 1}\mathfrak{b}_{i}(\delta _{i})\mathfrak{R}(\mathfrak{t}_{1}-\mathfrak{t}_{0})[\varphi (0)+\mathfrak{h}(\vartheta)]+\sum\limits^{\mathrm{k}}_{i = 1}\prod\limits^{\mathrm{k}}_{j = i}\mathfrak{b}_{j}(\delta _{j})\int^{\xi _{\mathrm{k}}}_{\xi _{\mathrm{k}-1}}\mathfrak{R}(\mathfrak{t}_{1}-s)\mathfrak{f}(s, \vartheta (s))ds\\ \quad+ \int^{\mathfrak{t}_{1}}_{\xi _{\mathrm{k}}}\mathfrak{R}(\mathfrak{t}_{1}-s)\mathfrak{f}(s, \vartheta (s))ds+\sum\limits^{\mathrm{k}}_{i = 1}\prod\limits^{\mathrm{k}}_{j = i}\mathfrak{b}_{j}(\delta _{j})\int^{\xi _{\mathrm{k}}}_{\xi _{\mathrm{k}-1}}\mathfrak{R}(\mathfrak{t}_{1}-s)\mathfrak{g}(s, \vartheta (s))d\omega (s)\\ \quad+ \int^{\mathfrak{t}_{1}}_{\xi _{\mathrm{k}}}\mathfrak{R}(\mathfrak{t}_{1}-s)\mathfrak{g}(s, \vartheta (s))d\omega (s)\bigg]\mathcal{I}_{[\xi _{\mathrm{k}}, \xi _{\mathrm{k}+1})}(\mathfrak{t}_{1})\\ = \sum\limits^{+\infty}_{\mathrm{k} = 0}\bigg[ \prod \limits^{\mathrm{k}}_{i = 1}\mathfrak{b}_{i}(\delta _{i})\mathfrak{R}(\mathfrak{t}_{2}-\mathfrak{t}_{0})[\varphi (0)+\mathfrak{h}(\vartheta)]+\sum\limits^{\mathrm{k}}_{i = 1}\prod\limits^{\mathrm{k}}_{j = i}\mathfrak{b}_{j}(\delta _{j})\int^{\xi _{\mathrm{k}}}_{\xi _{\mathrm{k}-1}}\mathfrak{R}(\mathfrak{t}_{2}-s)\mathfrak{f}(s, \vartheta (s))ds\\ \quad+ \int^{\mathfrak{t}_{2}}_{\xi _{\mathrm{k}}}\mathfrak{R}(\mathfrak{t}_{2}-s)\mathfrak{f}(s, \vartheta (s))ds+\sum\limits^{\mathrm{k}}_{i = 1}\prod\limits^{\mathrm{k}}_{j = i}\mathfrak{b}_{j}(\delta _{j})\int^{\xi _{\mathrm{k}}}_{\xi _{\mathrm{k}-1}}\mathfrak{R}(\mathfrak{t}_{2}-s)\mathfrak{g}(s, \vartheta (s))d\omega (s)\\ \quad+ \int^{\mathfrak{t}_{2}}_{\xi _{\mathrm{k}}}\mathfrak{R}(\mathfrak{t}_{2}-s)\mathfrak{g}(s, \vartheta (s))d\omega (s)\bigg]\left( \mathcal{I}_{[\xi _{\mathrm{k}}, \xi _{\mathrm{k}+1})}(\mathfrak{t}_{2})-\mathcal{I}_{[\xi _{\mathrm{k}}, \xi _{\mathrm{k}+1})}(\mathfrak{t}_{1})\right)\\ \quad+ \sum\limits^{+\infty}_{\mathrm{k} = 0}\bigg[ \prod \limits^{\mathrm{k}}_{i = 1}\mathfrak{b}_{i}(\delta _{i})(\mathfrak{R}(\mathfrak{t}_{2}-\mathfrak{t}_{0})-\mathfrak{R}(\mathfrak{t}_{2}-\mathfrak{t}_{1}))[\varphi (0)+\mathfrak{h}(\vartheta)]\\ \quad+ \sum\limits^{\mathrm{k}}_{i = 1}\prod\limits^{\mathrm{k}}_{j = i}\mathfrak{b}_{j}(\delta _{j})\int^{\xi _{\mathrm{k}}}_{\xi _{\mathrm{k}-1}}(\mathfrak{R}(\mathfrak{t}_{2}-s)-\mathfrak{R}(\mathfrak{t}_{1}-s))\mathfrak{f}(s, \vartheta (s))ds+\\ \int^{\mathfrak{t}_{2}}_{\xi _{\mathrm{k}}}(\mathfrak{R}(\mathfrak{t}_{2}-s)-\mathfrak{R}(\mathfrak{t}_{1}-s))\mathfrak{f}(s, \vartheta (s))ds\\ \quad+ \sum\limits^{\mathrm{k}}_{i = 1}\prod\limits^{\mathrm{k}}_{j = i}\mathfrak{b}_{j}(\delta _{j})\int^{\xi _{\mathrm{k}}}_{\xi _{\mathrm{k}-1}}(\mathfrak{R}(\mathfrak{t}_{2}-s)-\mathfrak{R}(\mathfrak{t}_{1}-s))\mathfrak{g}(s, \vartheta (s))d\omega (s)+\int^{\mathfrak{t}_{2}}_{\xi _{\mathrm{k}}}(\mathfrak{R}(\mathfrak{t}_{2}-s)-\mathfrak{R}(\mathfrak{t}_{1}-s))\\ \quad\times \mathfrak{g}(s, \vartheta (s))d\omega (s)\bigg]\mathcal{I}_{[\xi _{\mathrm{k}}, \xi _{\mathrm{k}+1})(\mathfrak{t_{1}})}\\ = 2\mathbb{E}\left\| \mathscr{J}_{1}\right\|^{2}+2\mathbb{E}\left\| \mathscr{J}_{2}\right\|^{2}.

    Where,

    \begin{eqnarray*} \mathbb{E}\left\| \mathscr{J}_{1}\right\|^{2}& = &\mathbb{E}\bigg\| \sum\limits^{+\infty}_{\mathrm{k} = 0}\bigg[ \prod \limits^{\mathrm{k}}_{i = 1}\mathfrak{b}_{i}(\delta _{i})\mathfrak{R}(\mathfrak{t}_{2}-\mathfrak{t}_{0})[\varphi (0)+\mathfrak{h}(\vartheta)]+\sum\limits^{\mathrm{k}}_{i = 1}\prod\limits^{\mathrm{k}}_{j = i}\mathfrak{b}_{j}(\delta _{j})\int^{\xi _{\mathrm{k}}}_{\xi _{\mathrm{k}-1}}\mathfrak{R}(\mathfrak{t}_{2}-s)\mathfrak{f}(s, \vartheta (s))ds\\ &\quad+ &\int^{\mathfrak{t}_{2}}_{\xi _{\mathrm{k}}}\mathfrak{R}(\mathfrak{t}_{2}-s)\mathfrak{f}(s, \vartheta (s))ds+\sum\limits^{\mathrm{k}}_{i = 1}\prod\limits^{\mathrm{k}}_{j = i}\mathfrak{b}_{j}(\delta _{j})\int^{\xi _{\mathrm{k}}}_{\xi _{\mathrm{k}-1}}\mathfrak{R}(\mathfrak{t}_{2}-s)\mathfrak{g}(s, \vartheta (s))d\omega (s)\\ &\quad+ &\int^{\mathfrak{t}_{2}}_{\xi _{\mathrm{k}}}\mathfrak{R}(\mathfrak{t}_{2}-s)\mathfrak{g}(s, \vartheta (s))d\omega (s)\bigg]\left( \mathcal{I}_{[\xi _{\mathrm{k}}, \xi _{\mathrm{k}+1})}(\mathfrak{t}_{2})-\mathcal{I}_{[\xi _{\mathrm{k}}, \xi _{\mathrm{k}+1})}(\mathfrak{t}_{1})\right)\bigg\|^{2}\\ \mathbb{E}\left\| \mathscr{J}_{2}\right\|^{2}& = &\mathbb{E}\bigg\| \sum\limits^{+\infty}_{\mathrm{k} = 0}\bigg[ \prod \limits^{\mathrm{k}}_{i = 1}\mathfrak{b}_{i}(\delta _{i})(\mathfrak{R}(\mathfrak{t}_{2}-\mathfrak{t}_{0})-\mathfrak{R}(\mathfrak{t}_{2}-\mathfrak{t}_{1}))[\varphi (0)+\mathfrak{h}(\vartheta)]\\ &\quad+ &\sum\limits^{\mathrm{k}}_{i = 1}\prod\limits^{\mathrm{k}}_{j = i}\mathfrak{b}_{j}(\delta _{j})\int^{\xi _{\mathrm{k}}}_{\xi _{\mathrm{k}-1}}(\mathfrak{R}(\mathfrak{t}_{2}-s)- \mathfrak{R}(\mathfrak{t}_{1}-s))\mathfrak{f}(s, \vartheta (s))ds\\ &\quad+ &\int^{\mathfrak{t}_{2}}_{\xi _{\mathrm{k}}}(\mathfrak{R}(\mathfrak{t}_{2}-s)-\mathfrak{R}(\mathfrak{t}_{1}-s))\mathfrak{f}(s, \vartheta (s))ds\\ &\quad+ &\sum\limits^{\mathrm{k}}_{i = 1}\prod\limits^{\mathrm{k}}_{j = i}\mathfrak{b}_{j}(\delta _{j})\int^{\xi _{\mathrm{k}}}_{\xi _{\mathrm{k}-1}}(\mathfrak{R}(\mathfrak{t}_{2}-s)-\mathfrak{R}(\mathfrak{t}_{1}-s))\mathfrak{g}(s, \vartheta (s))d\omega (s)\\ &\quad+&\int^{\mathfrak{t}_{2}}_{\xi _{\mathrm{k}}}(\mathfrak{R}(\mathfrak{t}_{2}-s)-\mathfrak{R}(\mathfrak{t}_{1}-s))\mathfrak{g}(s, \vartheta (s))d\omega (s)\bigg]\mathcal{I}_{[\xi _{\mathrm{k}}, \xi _{\mathrm{k}+1})(\mathfrak{t_{1}})}\bigg\|^{2}. \end{eqnarray*}

    By treating each term separately,

    \begin{eqnarray*} \mathbb{E}\Vert \mathscr{J}_{1}\Vert^{2}&\leq &4\mathbb{E}\left( \max _{\mathrm{k}}\lbrace \prod\limits^{\mathrm{k}}_{i = 1}\Vert \mathfrak{b}_{i}(\delta _{i})\Vert^{2}\rbrace\right)\left\| \mathfrak{R}(\mathfrak{t}_{2}-\mathfrak{t}_{0})\right\|^{2}\mathbb{E}\Vert \varphi (0)\Vert^{2}\left( \mathcal{I}_{[\xi _{\mathrm{k}}, \xi _{\mathrm{k}+1})}(\mathfrak{t}_{2})-\mathcal{I}_{[\xi _{\mathrm{k}}, \xi _{\mathrm{k}+1})}(\mathfrak{t}_{1})\right)^{2}\\ &\quad+ &4\mathbb{E}\left( \max _{\mathrm{k}}\lbrace \prod\limits^{\mathrm{k}}_{i = 1}\Vert \mathfrak{b}_{i}(\delta _{i})\Vert^{2}\rbrace\right)\left\| \mathfrak{R}(\mathfrak{t}_{2}-\mathfrak{t}_{0})\right\|^{2}\mathbb{E}\Vert \mathfrak{h}(\vartheta)\Vert^{2}\left( \mathcal{I}_{[\xi _{\mathrm{k}}, \xi _{\mathrm{k}+1})}(\mathfrak{t}_{2})-\mathcal{I}_{[\xi _{\mathrm{k}}, \xi _{\mathrm{k}+1})}(\mathfrak{t}_{1})\right)^{2}\\ &\quad+ &4\mathbb{E}\left( \max\limits_{i, \mathrm{k}}\lbrace \prod \limits^{\mathrm{k}}_{j = i}\Vert \mathfrak{b}_{i}(\delta _{i})\Vert , 1\rbrace\right)^{2}\mathbb{E}\left( \sum\limits^{+\infty}_{\mathrm{k} = 0}\int^{\mathfrak{t}_{2}}_{\mathfrak{t}_{0}}\left\| \mathfrak{R}(\mathfrak{t}_{2}-s)\right\|^{2} \left\| \mathfrak{f}(s, \vartheta (s)) \right\|^{2}ds\right)\\ &\quad\times &\left( \mathcal{I}_{[\xi _{\mathrm{k}}, \xi _{\mathrm{k}+1})}(\mathfrak{t}_{2})-\mathcal{I}_{[\xi _{\mathrm{k}}, \xi _{\mathrm{k}+1})}(\mathfrak{t}_{1})\right)^{2}+4\mathbb{E}\left( \max\limits_{i, \mathrm{k}}\lbrace \prod \limits^{\mathrm{k}}_{j = i}\Vert \mathfrak{b}_{i}(\delta _{i})\Vert , 1\rbrace\right)^{2}\\ &\quad\times &\mathbb{E}\left( \sum\limits^{+\infty}_{\mathrm{k} = 0}\int^{\mathfrak{t}_{2}}_{\mathfrak{t}_{0}}\left\| \mathfrak{R}(\mathfrak{t}_{2}-s)\right\|^{2} \left\| \mathfrak{g}(s, \vartheta (s)) \right\|^{2}d\omega (s)\right)\left( \mathcal{I}_{[\xi _{\mathrm{k}}, \xi _{\mathrm{k}+1})}(\mathfrak{t}_{2})-\mathcal{I}_{[\xi _{\mathrm{k}}, \xi _{\mathrm{k}+1})}(\mathfrak{t}_{1})\right)^{2}\\ &\rightarrow &0\; \; as\; \; \mathfrak{t}_{2}\rightarrow \mathfrak{t}_{1}. \end{eqnarray*}

    Similarly,

    \begin{eqnarray*} \mathbb{E}\Vert \mathscr{J}_{2}\Vert^{2}&\leq &6\mathscr{B}^{2}\left\| \mathfrak{R}(\mathfrak{t}_{2}-\mathfrak{t}_{0})-\mathfrak{R}(\mathfrak{t}_{1}-\mathfrak{t}_{0})\right\|^{2}\mathbb{E}\Vert \varphi (0)\Vert^{2}+6\mathscr{B}^{2}\left\| \mathfrak{R}(\mathfrak{t}_{2}-\mathfrak{t}_{0})-\mathfrak{R}(\mathfrak{t}_{1}-\mathfrak{t}_{0})\right\|^{2}\mathbb{E}\Vert \mathfrak{h}(\vartheta)\Vert^{2}\\ &\quad+ &6\max\lbrace 1, \mathscr{B}^{2}\rbrace (\mathfrak{t}_{1}-\mathfrak{t}_{0})\int^{\mathfrak{t}_{1}}_{\mathfrak{t}_{0}}\left\| \mathfrak{R}(\mathfrak{t}_{2}-s)-\mathfrak{R}(\mathfrak{t}_{1}-s) \right\|^{2}\mathbb{E}\left\| \mathfrak{f}(s, \vartheta (s))\right\|^{2}ds\\ &\quad+ &6(\mathfrak{t}_{2}-\mathfrak{t}_{1})\int^{\mathfrak{t}_{2}}_{\mathfrak{t}_{1}}\Vert \mathfrak{R}(\mathfrak{t}_{2}-s)\Vert^{2}\int^{\mathfrak{t}_{2}}_{\mathfrak{t}_{1}}\Vert \mathfrak{R}(\mathfrak{t}_{2}-s)\Vert^{2}\mathbb{E}\left\| \mathfrak{f}(s, \vartheta (s))\right\|^{2}ds\\ &\quad+ &6\max\lbrace 1, \mathscr{B}^{2}\rbrace (\mathfrak{t}_{1}-\mathfrak{t}_{0})\int^{\mathfrak{t}_{1}}_{\mathfrak{t}_{0}}\left\| \mathfrak{R}(\mathfrak{t}_{2}-s)-\mathfrak{R}(\mathfrak{t}_{1}-s) \right\|^{2}\mathbb{E}\left\| \mathfrak{g}(s, \vartheta (s))\right\|^{2}ds\\ &\quad+& 6(\mathfrak{t}_{2}-\mathfrak{t}_{1})\int^{\mathfrak{t}_{2}}_{\mathfrak{t}_{1}}\Vert \mathfrak{R}(\mathfrak{t}_{2}-s)\Vert^{2}\mathbb{E}\left\| \mathfrak{g}(s, \vartheta (s))\right\|^{2}ds\\ &\rightarrow &0 \; \; as\; \; \mathfrak{t}_{2}\rightarrow \mathfrak{t}_{1}. \end{eqnarray*}

    Thus, we have

    \mathbb{E}\left\| (\Theta \vartheta)(\mathfrak{t}_{2})-(\Theta \vartheta)(\mathfrak{t}_{1})\right\|^{2}\rightarrow 0\; \; as\; \; \mathfrak{t}_{2}\rightarrow \mathfrak{t}_{1},

    which implies \Theta is equicontinuous on [\mathfrak{t}_{0}, \mathtt{T}] .

    Step 4: Now to establish M \ddot{o} nch condition, let \gamma \subset \Upsilon _{\mathtt{T}} be a nonempty set and \vartheta _{1}, \vartheta _{2}\in \gamma , by probability 1,

    d(\Theta \vartheta _{1}(\mathfrak{t}), \Theta \vartheta _{2}(\mathfrak{t})) = d(\overline{\Theta}\vartheta _{1}(\mathfrak{t}), \overline{\Theta}\vartheta _{2}(\mathfrak{t})),

    where

    (\overline{\Theta}\vartheta)(\mathfrak{t}) = \\ \mathscr{B}\mathfrak{h}(\vartheta)+\max \lbrace 1, \mathscr{B}\rbrace \sum\limits^{+\infty}_{\mathrm{k} = 0}\bigg[ \int^{\xi _{\mathrm{k}}}_{\xi _{\mathrm{k}-1}}\mathfrak{R}(\mathfrak{t}-s)\mathfrak{f}(s, \vartheta (s))ds+\int^{\mathfrak{t}}_{\xi _{\mathrm{k}}}\mathfrak{R}(\mathfrak{t}-s)\mathfrak{f}(s, \vartheta (s))ds\bigg]\mathcal{I}_{[\xi _{\mathrm{k}}, \xi _{\mathrm{k}+1})}(\mathfrak{t})\\ \quad+ \max \lbrace 1, \mathscr{B}\rbrace \sum\limits^{+\infty}_{\mathrm{k} = 0}\bigg[ \int^{\xi _{\mathrm{k}}}_{\xi _{\mathrm{k}-1}}\mathfrak{R}(\mathfrak{t}-s)\mathfrak{g}(s, \vartheta (s))ds+\int^{\mathfrak{t}}_{\xi _{\mathrm{k}}}\mathfrak{R}(\mathfrak{t}-s)\mathfrak{g}(s, \vartheta (s))ds\bigg]\mathcal{I}_{[\xi _{\mathrm{k}}, \xi _{\mathrm{k}+1})}(\mathfrak{t})\\ = \overline{\Theta }_{1}+\overline{\Theta}_{2}.

    By the similar procedure used in Lemma 2.3,

    \alpha ((\Theta \vartheta)(\mathfrak{t})) = \alpha ((\overline{\Theta})(\mathfrak{t})).

    Let \Delta \subset \mathbb{B}_{\mathfrak{r}} be countable and \Delta \subset \overline{co}(\lbrace 0\rbrace \cup \Theta (\Delta)) . by proving \alpha (\Delta) = 0 the M \ddot{o} nch condition is then verified. Set \Delta = \lbrace \vartheta ^{n}\rbrace ^{\infty}_{n = 1} , then it is well defined \Delta \subset \overline{co}(\lbrace 0\rbrace \cup \Theta (\Delta)) is equicontinuous on [\mathfrak{t}_{0}, \mathtt{T}] by step 3.

    By Lemmas 2.2 and 2.3,

    \begin{eqnarray*} \alpha (\lbrace \overline{\Theta}_{1}\vartheta ^{n}(\mathfrak{t})\rbrace^{\infty}_{n = 1})&\leq &\max \lbrace 1, \mathscr{B}\rbrace \mathscr{H}(\mathtt{T}-\mathfrak{t}_{0})\int^{\mathfrak{t}}_{\mathfrak{t}_{0}}\mathscr{C}_{\mathfrak{f}}(\mathfrak{t})\sup\limits _{\theta \in (-\delta , 0]}\alpha (\lbrace \vartheta ^{n}(\theta -\mu (\theta))\rbrace^{\infty}_{n = 1})ds\\ &\leq &\max \lbrace 1, \mathscr{B}\rbrace \mathscr{H}(\mathtt{T}-\mathfrak{t}_{0})\left\| \mathscr{C}_{\mathfrak{f}}\right\|_{\mathcal{L}^{1}([\mathfrak{t}_{0}, \mathtt{T}], \mathfrak{R}^{+})}\sup\limits _{\mathfrak{t}\in [\mathfrak{t}_{0}, \mathtt{T}]}\alpha (\lbrace \vartheta ^{n}(\mathfrak{t}) \rbrace ^{\infty}_{n = 1}), \\ \alpha (\lbrace \overline{\Theta}_{2}\vartheta ^{n}(\mathfrak{t})\rbrace^{\infty}_{n = 1})&\leq &\max \lbrace 1, \mathscr{B}\rbrace \mathscr{H}(\mathtt{T}-\mathfrak{t}_{0})^{\frac{1}{2}}\left\| \mathscr{C}_{\mathfrak{g}}\right\|_{\mathcal{L}^{2}([\mathfrak{t}_{0}, \mathtt{T}], \mathfrak{R}^{+})}\sup\limits _{\mathfrak{t}\in [\mathfrak{t}_{0}, \mathtt{T}]}\alpha (\lbrace \vartheta ^{n}(\mathfrak{t}) \rbrace ^{\infty}_{n = 1}). \end{eqnarray*}

    By using Lemma 2.3,

    \begin{eqnarray*} \alpha (\lbrace \Theta_{1}\vartheta ^{n}(\mathfrak{t})\rbrace^{\infty}_{n = 1})& = &\alpha (\lbrace \overline{\Theta}_{1}\vartheta ^{n}(\mathfrak{t})\rbrace^{\infty}_{n = 1})\\ &\leq &\alpha (\lbrace \overline{\Theta}_{1}\vartheta ^{n}(\mathfrak{t})\rbrace^{\infty}_{n = 1})+\alpha (\lbrace \overline{\Theta}_{2}\vartheta ^{n}(\mathfrak{t})\rbrace^{\infty}_{n = 1})\\ &\leq &\bigg[\max \lbrace 1, \mathscr{B}\rbrace \mathscr{H}(\mathtt{T}-\mathfrak{t}_{0})\left\| \mathscr{C}_{\mathfrak{f}}\right\|_{\mathcal{L}^{1}([\mathfrak{t}_{0}, \mathtt{T}], \mathfrak{R}^{+})}+\max \lbrace 1, \mathscr{B}\rbrace \mathscr{H}(\mathtt{T}-\mathfrak{t}_{0})^{\frac{1}{2}}\\ &\quad\times &\left\| \mathscr{C}_{\mathfrak{g}}\right\|_{\mathcal{L}^{2}([\mathfrak{t}_{0}, \mathtt{T}], \mathfrak{R}^{+})}\bigg]\alpha (\lbrace \vartheta ^{n}(\mathfrak{t}) \rbrace ^{\infty}_{n = 1}). \end{eqnarray*}

    It follows that

    \alpha (\Delta)\leq \alpha (\overline{co}(\lbrace 0\rbrace \cup \Theta (\Delta))) = \alpha (\Theta (\Delta))\leq \alpha (\Delta),

    implying \alpha (\Delta) = 0 and then \Delta is relatively compact set. Thus in \Delta , \Theta has a fixed point which is the mild solution of [1.1]. This completes the proof.

    \text{(A7)} There exists a constants \mathscr{C}_{1}, \mathscr{C}_{2} such that

    \left\| \mathfrak{f}(\mathfrak{t}, \vartheta)-\mathfrak{f}(\mathfrak{t}, \varpi)\right\|\leq \mathscr{C}_{1}\left\| \vartheta -\varpi\right\|, \; \; \left\| \mathfrak{g}(\mathfrak{t}, \vartheta)-\mathfrak{g}(\mathfrak{t}, \varpi)\right\|_{\mathcal{L}^{0}_{2}}\leq \mathscr{C}_{2}\left\| \vartheta -\varpi\right\|_{\mathcal{L}^{0}_{2}}.

    Theorem 4.1. Let \vartheta (\mathfrak{t}) and \overline{\vartheta}(\mathfrak{t}) be mild solutions for [1.1] with \varphi (0) and \overline{\varphi}(0) as initial values. Assuming (A3), (A7) holds, the mild solution of [1.1] is stable in the mean square.

    Proof. \mathbb{E}\left\| \vartheta -\overline{\vartheta}\right\|^{2}_{\mathfrak{t}}

    \begin{eqnarray*} &\leq &4\mathbb{E}\left\| \sum\limits^{+\infty}_{k = 0}\prod \limits^{\mathrm{k}}_{i = 1}\mathfrak{b}_{i}(\delta _{i}) \right\|^{2}\left\| \mathfrak{R}(\mathfrak{t}-\mathfrak{t}_{0})(\varphi (0)-\overline{\varphi (0)})\right\|^{2}+4\mathbb{E}\left\| \sum\limits^{+\infty}_{k = 0}\prod \limits^{\mathrm{k}}_{i = 1}\mathfrak{b}_{i}(\delta _{i}) \right\|^{2}\left\| \mathfrak{R}(\mathfrak{t}-\mathfrak{t}_{0})(\mathfrak{h}(\vartheta)-\overline{\mathfrak{h}(\vartheta)})\right\|^{2}\\ &\quad+ &4\mathbb{E}\bigg\| \sum\limits^{+\infty}_{\mathrm{k} = 0}\bigg[ \sum\limits^{\mathrm{k}}_{i = 1}\prod\limits^{\mathrm{k}}_{j = i}\mathfrak{b}_{j}(\delta _{j})\int^{\xi _{\mathrm{k}}}_{\xi _{\mathrm{k}-1}}\mathfrak{R}(\mathfrak{t}-s)\bigg(\mathfrak{f}(s, \vartheta (s))-\mathfrak{f}(s, \overline{\vartheta (s)})\bigg)ds\\ &\quad+ &\int^{\mathfrak{t}}_{\xi _{\mathrm{k}}}\mathfrak{R}(\mathfrak{t}-s)\left(\mathfrak{f}(s, \vartheta (s))-\mathfrak{f}(s, \overline{\vartheta (s)})\right)ds\bigg]\mathcal{I}_{[\xi _{\mathrm{k}}, \xi _{\mathrm{k}+1})}(\mathfrak{t}) \bigg\|^{2}\\ &\quad+ &4\mathbb{E}\bigg\| \sum\limits^{+\infty}_{\mathrm{k} = 0}\bigg[ \sum\limits^{\mathrm{k}}_{i = 1}\prod\limits^{\mathrm{k}}_{j = i}\mathfrak{b}_{j}(\delta _{j})\int^{\xi _{\mathrm{k}}}_{\xi _{\mathrm{k}-1}}\mathfrak{R}(\mathfrak{t}-s)\left(\mathfrak{g}(s, \vartheta (s))-\mathfrak{g}(s, \overline{\vartheta (s)})\right)ds\\ &\quad+ &\int^{\mathfrak{t}}_{\xi _{\mathrm{k}}}\mathfrak{R}(\mathfrak{t}-s)\left(\mathfrak{g}(s, \vartheta (s))-\mathfrak{g}(s, \overline{\vartheta (s)})\right)ds\bigg]\mathcal{I}_{[\xi _{\mathrm{k}}, \xi _{\mathrm{k}+1})}(\mathfrak{t}) \bigg\|^{2}\\ &\leq &4\mathscr{B}^{2}\mathscr{H}^{2}\mathbb{E}\left\| \varphi (0)-\overline{\varphi}(0)\right\|^{2}+4\mathscr{B}^{2}\mathscr{H}^{2}\mathbb{E}\left\| \mathfrak{h}(\vartheta)-\overline{\mathfrak{h}(\vartheta)}\right\|^{2}+4\max \lbrace 1, \mathscr{B}^{2}\rbrace (\mathtt{T}-\mathfrak{t}_{0})\\ &\quad\times &\bigg[ \int^{\mathfrak{t}}_{\mathfrak{t}_{0}}\mathbb{E}\left\| \mathfrak{f}(s, \vartheta (s))-\mathfrak{f}(s, \overline{\vartheta (s)})\right\|^{2}ds+\int^{\mathfrak{t}}_{\mathfrak{t}_{0}}\mathbb{E}\left\| \mathfrak{g}(s, \vartheta (s))-\mathfrak{g}(s, \overline{\vartheta (s)})\right\|^{2}ds\bigg], \end{eqnarray*}

    which implies

    \begin{eqnarray*} \sup\limits _{\mathfrak{t}\in [\mathfrak{t}_{0}, \mathtt{T}]}\mathbb{E}\left\| \vartheta -\overline{\vartheta}\right\|^{2}_{\mathfrak{t}}&\leq &4\mathscr{B}^{2}\mathscr{H}^{2}\mathbb{E}\left\| \varphi (0)-\overline{\varphi}(0)\right\|^{2}+4\mathscr{B}^{2}\mathscr{H}^{2}\mathbb{E}\left\| \mathfrak{h}(\vartheta)-\overline{\mathfrak{h}(\vartheta)}\right\|^{2}+4\max \lbrace 1, \mathscr{B}^{2}\rbrace \mathscr{H}^{2}\\ &\quad\times &(\mathtt{T}-\mathfrak{t}_{0})(\mathscr{C}_{1}+\mathscr{C}_{2})\int^{\mathfrak{t}}_{\mathfrak{t}_{0}}\sup\limits _{s\in [\mathfrak{t}_{0}, \mathfrak{t}]}\mathbb{E}\left\| \vartheta -\overline{\vartheta} \right\|^{2}_{s}ds. \end{eqnarray*}

    By Gronwall's inequality

    \sup\limits _{\mathfrak{t}\in [\mathfrak{t}_{0}, \mathtt{T}]}\mathbb{E}\left\| \vartheta -\overline{\vartheta}\right\|^{2}_{\mathfrak{t}}\leq 4\mathscr{B}^{2}\mathscr{H}^{2}\mathbb{E}\left\| \left[\varphi (0)-\overline{\varphi}(0)\right]+\left[ \mathfrak{h}(\vartheta)-\overline{\mathfrak{h}(\vartheta)}\right]\right\|^{2}\\ \exp \left\lbrace 4\mathscr{H}^{2}\max \lbrace 1, \mathscr{B}^{2} \rbrace (\mathtt{T}-\mathfrak{t}_{0})(\mathscr{C}_{1}+\mathscr{C}_{2})\right\rbrace .

    For \epsilon > 0 , there exist a positive number

    \tau = \frac{\epsilon}{4\mathscr{B}^{2}\mathscr{H}^{2}\exp \lbrace 4\mathscr{H}^{2}\max\lbrace 1, \mathscr{B}^{2}\rbrace (\mathtt{T}-\mathfrak{t}_{0})(\mathscr{C}_{1}+\mathscr{C}_{2})\rbrace} > 0.

    \ni \mathbb{E}\left\| \varphi (0)-\overline{\varphi}(0)\right\|^{2} < \tau , subsequently

    \sup\limits_{\mathfrak{t}\in [\mathfrak{t}_{0}, \mathtt{T}]}\mathbb{E}\left\| \vartheta -\overline{\vartheta}\right\|^{2}_{\mathfrak{t}}\leq \epsilon.

    This completes the proof.

    Definition 4.1. Suppose \varpi (\mathfrak{t}) is a \mathbb{Y}- valued stochastic process and if there exists a real number \mathscr{C} > 0 such that, for arbitrary \epsilon > 0 , satisfying

    \begin{eqnarray} \mathbb{E}\bigg\| \varpi (\mathfrak{t})-\sum\limits^{+\infty}_{\mathrm{k} = 0}\bigg[ \prod \limits^{\mathrm{k}}_{i = 1}\mathfrak{b}_{i}(\delta _{i})\mathfrak{R}(\mathfrak{t}-\mathfrak{t}_{0})[\varphi (0)+\mathfrak{h}(\vartheta)]+\sum\limits^{\mathrm{k}}_{i = 1}\prod\limits^{\mathrm{k}}_{j = i}\mathfrak{b}_{j}(\delta _{j})\int^{\xi _{\mathrm{k}}}_{\xi _{\mathrm{k}-1}}\mathfrak{R}(\mathfrak{t}-s)\mathfrak{f}(s, \varpi (s))ds\\ +\int^{\mathfrak{t}}_{\xi _{\mathrm{k}}}\mathfrak{R}(\mathfrak{t}-s)\mathfrak{f}(s, \varpi (s))ds+\sum\limits^{\mathrm{k}}_{i = 1}\prod\limits^{\mathrm{k}}_{j = i}\mathfrak{b}_{j}(\delta _{j})\int^{\xi _{\mathrm{k}}}_{\xi _{\mathrm{k}-1}}\mathfrak{R}(\mathfrak{t}-s)\mathfrak{g}(s, \varpi (s))d\omega (s)\\ +\int^{\mathfrak{t}}_{\xi _{\mathrm{k}}}\mathfrak{R}(\mathfrak{t}-s)\mathfrak{g}(s, \varpi (s))d\omega (s)\bigg]\mathcal{I}_{[\xi _{\mathrm{k}}, \xi _{\mathrm{k}+1})}(\mathfrak{t}) \bigg\|^{2}\leq \epsilon , \; \; \; \; \; \; \; \; \; \forall \; \; \mathfrak{t}\in [\mathfrak{t}_{0}, \mathtt{T}]. \end{eqnarray} (4.1)

    For each solution \varpi (\mathfrak{t}) with the initial value \varpi _{\mathfrak{t}_{0}} = \vartheta _{\mathfrak{t}_{0}} = \varphi , if \exists a solution \vartheta (\mathfrak{t}) of [1.1] with \mathbb{E}\left\| \varpi (\mathfrak{t})-\vartheta (\mathfrak{t})\right\|^{2}\leq \mathscr{C}\epsilon , for \mathfrak{t}\in [\mathfrak{t}_{0}, \mathtt{T}] . Then [1.1] has Hyers-Ulam stability.

    Theorem 4.2. Assume conditions (A3) and (A5) gets satisfied, then [1.1] has the Hyers-Ulam stability.

    Proof. Let \vartheta (\mathfrak{t}) be a mild solution of [1.1] and \varpi (\mathfrak{t}) a \mathbb{Y}- valued stochastic process assuring [4.1]. Obviously, \mathbb{E}\left\| \varpi (\mathfrak{t})-\vartheta (\mathfrak{t})\right\|^{2} = 0 for \mathfrak{t}\in [-\delta, 0] . Moreover, as \mathfrak{t}\in [\mathfrak{t}_{0}, \mathtt{T}] , we posses

    \mathbb{E}\left\| \varpi -\vartheta\right\|^{2}_{\mathfrak{t}} \\ \leq 2\mathbb{E}\bigg\| \varpi (\mathfrak{t})-\sum\limits^{+\infty}_{\mathrm{k} = 0}\bigg[ \prod \limits^{\mathrm{k}}_{i = 1}\mathfrak{b}_{i}(\delta _{i})\mathfrak{R}(\mathfrak{t}-\mathfrak{t}_{0})[\varphi (0)+\mathfrak{h}(\vartheta)]+\sum\limits^{\mathrm{k}}_{i = 1}\prod\limits^{\mathrm{k}}_{j = i}\mathfrak{b}_{j}(\delta _{j})\int^{\xi _{\mathrm{k}}}_{\xi _{\mathrm{k}-1}}\mathfrak{R}(\mathfrak{t}-s)\mathfrak{f}(s, \varpi (s))ds\nonumber\\ \quad+ \int^{\mathfrak{t}}_{\xi _{\mathrm{k}}}\mathfrak{R}(\mathfrak{t}-s)\mathfrak{f}(s, \varpi (s))ds+\sum\limits^{\mathrm{k}}_{i = 1}\prod\limits^{\mathrm{k}}_{j = i}\mathfrak{b}_{j}(\delta _{j})\int^{\xi _{\mathrm{k}}}_{\xi _{\mathrm{k}-1}}\mathfrak{R}(\mathfrak{t}-s)\mathfrak{g}(s, \varpi (s))d\omega (s)\nonumber\\ \quad+ \int^{\mathfrak{t}}_{\xi _{\mathrm{k}}}\mathfrak{R}(\mathfrak{t}-s)\mathfrak{g}(s, \varpi (s))d\omega (s)\bigg]\mathcal{I}_{[\xi _{\mathrm{k}}, \xi _{\mathrm{k}+1})}(\mathfrak{t})\bigg\|^{2}+2\mathbb{E}\bigg\| \sum\limits^{+\infty}_{\mathrm{k} = 0}\bigg[ \sum\limits^{\mathrm{k}}_{i = 1}\prod \limits^{\mathrm{k}}_{j = i}\mathfrak{b}_{j}(\delta _{j})\int^{\xi _{\mathrm{k}}}_{\xi _{\mathrm{k}-1}}\mathfrak{R}(\mathfrak{t}-s)\\ \quad\times \left( \mathfrak{f}(s, \varpi (s))-\mathfrak{f}(s, \vartheta (s))\right)ds+\int^{\mathfrak{t}}_{\xi _{\mathrm{k}}}\mathfrak{R}(\mathfrak{t}-s)\left( \mathfrak{f}(s, \varpi (s))-\mathfrak{f}(s, \vartheta (s))\right)ds\\ \quad+ \sum\limits^{\mathrm{k}}_{i = 1}\prod \limits^{\mathrm{k}}_{j = i}\mathfrak{b}_{j}(\delta _{j})\int^{\xi _{\mathrm{k}}}_{\xi _{\mathrm{k}-1}}\mathfrak{R}(\mathfrak{t}-s)\left( \mathfrak{g}(s, \varpi (s))-\mathfrak{g}(s, \vartheta (s))\right)ds+\int^{\mathfrak{t}}_{\xi _{\mathrm{k}}}\mathfrak{R}(\mathfrak{t}-s)\\ \quad\times \left( \mathfrak{g}(s, \varpi (s))-\mathfrak{g}(s, \vartheta (s))\right)ds \bigg]\mathcal{I}_{[\xi _{\mathrm{k}}, \xi _{\mathrm{k}+1})}(\mathfrak{t})\bigg\|^{2}\\ \leq 2\epsilon +2\mathbb{E}\Vert \mathscr{J}\Vert^{2},

    Now, we consider

    \begin{eqnarray*} \mathbb{E}\Vert \mathscr{J}\Vert^{2}& = &2\mathbb{E}\bigg\| \sum\limits^{+\infty}_{\mathrm{k} = 0}\bigg[ \sum\limits^{\mathrm{k}}_{i = 1}\prod \limits^{\mathrm{k}}_{j = i}\mathfrak{b}_{j}(\delta _{j})\int^{\xi _{\mathrm{k}}}_{\xi _{\mathrm{k}-1}}\mathfrak{R}(\mathfrak{t}-s)\left( \mathfrak{f}(s, \varpi (s))-\mathfrak{f}(s, \vartheta (s))\right)ds\\ &\quad+ &\int^{\mathfrak{t}}_{\xi _{\mathrm{k}}}\mathfrak{R}(\mathfrak{t}-s)\left( \mathfrak{f}(s, \varpi (s))-\mathfrak{f}(s, \vartheta (s))\right)ds +\sum\limits^{\mathrm{k}}_{i = 1}\prod \limits^{\mathrm{k}}_{j = i}\mathfrak{b}_{j}(\delta _{j})\int^{\xi _{\mathrm{k}}}_{\xi _{\mathrm{k}-1}}\mathfrak{R}(\mathfrak{t}-s)\\ &\quad\times &\left( \mathfrak{g}(s, \varpi (s))-\mathfrak{g}(s, \vartheta (s))\right)ds+\int^{\mathfrak{t}}_{\xi _{\mathrm{k}}}\mathfrak{R}(\mathfrak{t}-s)\bigg( \mathfrak{g}(s, \varpi (s))- \mathfrak{g}(s, \vartheta (s))\bigg)ds \bigg]\mathcal{I}_{[\xi _{\mathrm{k}}, \xi _{\mathrm{k}+1})}(\mathfrak{t})\bigg\|^{2}\\ &\leq &2\max \lbrace 1, \mathscr{B}^{2}\rbrace \mathscr{H}^{2}(\mathtt{T}-\mathfrak{t}_{0})\int^{\mathfrak{t}}_{\mathfrak{t}_{0}}\mathbb{E}\left\| \mathfrak{f}(s, \varpi (s))-\mathfrak{f}(s, \vartheta (s))\right\|^{2}ds\\ &\quad+ &2\max \lbrace 1, \mathscr{B}^{2}\rbrace \mathscr{H}^{2}\int^{\mathfrak{t}}_{\mathfrak{t}_{0}}\mathbb{E}\left\| \mathfrak{g}(s, \varpi (s))-\mathfrak{g}(s, \vartheta (s))\right\|^{2}ds. \end{eqnarray*}

    Taking supremum on both sides and using (A5),

    \begin{eqnarray*} \sup\limits_{\mathfrak{t}\in [\mathfrak{t}_{0}, \mathtt{T}]}\mathbb{E}\left\| \varpi -\vartheta\right\|^{2}_{\mathfrak{t}}&\leq &2\epsilon +4\max \lbrace 1, \mathscr{B}^{2}\rbrace \mathscr{H}^{2}(\mathtt{T}-\mathfrak{t}_{0})\mathscr{C}_{1}\int^{\mathfrak{t}}_{\mathfrak{t}_{0}}\sup\limits_{\mathfrak{t}\in [\mathfrak{t}_{0}, \mathtt{T}]}\mathbb{E}\left\| \varpi -\vartheta\right\|^{2}_{s}ds\\ &\quad+ &4\max \lbrace 1, \mathscr{B}^{2}\rbrace \mathscr{H}^{2}\mathscr{C}_{2}\int^{\mathfrak{t}}_{\mathfrak{t}_{0}}\sup\limits_{\mathfrak{t}\in [\mathfrak{t}_{0}, \mathtt{T}]}\mathbb{E}\left\| \varpi -\vartheta\right\|^{2}_{s}ds. \end{eqnarray*}

    By following Gronwall's inequality, there occurs a constant

    \mathscr{C}: = 2\exp \lbrace \max \lbrace 1, \mathscr{B}^{2}\rbrace \mathscr{H}^{2}[(\mathtt{T}-\mathfrak{t}_{0})\mathscr{C}_{1}+\mathscr{C}_{2}]\rbrace > 0.

    This implies that

    \sup\limits_{\mathfrak{t}\in [\mathfrak{t}_{0}, \mathtt{T}]}\mathbb{E}\left\| \varpi -\vartheta\right\|^{2}_{\mathfrak{t}}\leq \mathscr{C}\epsilon,

    This signifies that [1.1] is Hyers-Ulam stable. As a direct consequence, the proof is complete.

    Now, we will analyze the exponential stability in the mean square moment for the mild solution to system 1.1. We need to impose some additional assumption and lemma:

    \text{(A8)} The resolvent operator \mathfrak{R}(\mathfrak{t})_{\mathfrak{t}\geq 0} satisfies the further condition: There exist a constant \mathscr{H} > 0 and a real number \varsigma > 0 such that \left\|\mathfrak{R}(\mathfrak{t})\right\|\leq \mathscr{H}e^{\varsigma \mathfrak{t}} , \mathfrak{t}\geq 0 .

    In order to prove the theorem we may take into consideration the following lemma

    Lemma 4.1. [20] For \varsigma > 0 , \exists some positive constants \upsilon, \upsilon ' > 0 \ni if \upsilon ' < \varsigma , the following inequality

    \begin{eqnarray*} \varpi (\mathfrak{t}) = \begin{cases} \upsilon e^{-\varsigma (\mathfrak{t}-\mathfrak{t}_{0})}, \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \mathfrak{t}\in [-\delta , 0]\\ \upsilon e^{-\varsigma (\mathfrak{t}-\mathfrak{t}_{0})}+\upsilon ' \int^{\mathfrak{t}}_{\mathfrak{t}_{0}}e^{-\varsigma (\mathfrak{t}-s)} \sup\limits _{\theta \in (-\delta , 0]}\varpi (s+\theta)ds, \; \; \; \; \mathfrak{t}\geq \mathfrak{t}_{0} \end{cases} \end{eqnarray*}

    holds. We have \varpi (\mathfrak{t})\leq \mathscr{F} e^{-\tau (\mathfrak{t}-\mathfrak{t}_{0})} , where \tau > 0 satisfying

    \frac{\upsilon '}{\varsigma -\tau}e^{\tau (\delta +\mathfrak{t}_{0})} = 1

    and

    \mathscr{F} = \max \lbrace \frac{\upsilon}{\upsilon '}(\varsigma -\tau)e^{-\tau \delta}, \varsigma \rbrace.

    Theorem 4.3. Assume (A3), (A8) gets satisfied, then the mild solution of [1.1] are mean-square exponentially stable.

    Proof. Together with the assumed hypotheses and Holder's inequality,

    \begin{eqnarray*} \mathbb{E}\Vert \vartheta (\mathfrak{t}) \Vert^{2}&\leq &4\mathbb{E}\left( \max _{\mathrm{k}}\lbrace \prod \limits^{\mathrm{k}}_{i = 1}\Vert \mathfrak{b}_{i}(\delta _{i})\Vert^{2}\rbrace\right)^{2}\left\| \mathfrak{R}(\mathfrak{t}-\mathfrak{t}_{0})\right\|^{2}\mathbb{E}\Vert \varphi (0)\Vert^{2}\\ &\quad+& 4\mathbb{E}\left( \max _{\mathrm{k}}\lbrace \prod \limits^{\mathrm{k}}_{i = 1}\Vert \mathfrak{b}_{i}(\delta _{i})\Vert^{2}\rbrace\right)^{2} \left\| \mathfrak{R}(\mathfrak{t}-\mathfrak{t}_{0})\right\|^{2}\mathbb{E}\Vert [\mathfrak{h}(\vartheta)]\Vert^{2}\\ &\quad+ &4\mathbb{E}\left( \max _{i, \mathrm{k}}\lbrace \prod \limits^{\mathrm{k}}_{j = i}\mathfrak{b}_{j}(\delta _{j}) \rbrace , 1\right)^{2} \mathbb{E}\left( \int^{\mathfrak{t}}_{\mathfrak{t}_{0}}\left\| \mathfrak{R}(\mathfrak{t}-s)\right\| \left\| \mathfrak{f}(s, \vartheta (s))\right\| ds \right)^{2}\\ &\quad+ &4\mathbb{E}\left( \max _{i, \mathrm{k}}\lbrace \prod \limits^{\mathrm{k}}_{j = i}\mathfrak{b}_{j}(\delta _{j}) \rbrace , 1\right)^{2}\mathbb{E}\left( \int^{\mathfrak{t}}_{\mathfrak{t}_{0}}\left\| \mathfrak{R}(\mathfrak{t}-s)\right\| \left\| \mathfrak{g}(s, \vartheta (s))\right\| d\omega (s) \right)^{2}\\ &\leq &4\mathscr{B}^{2}\mathscr{H}^{2}e^{-\varsigma (\mathfrak{t}-\mathfrak{t}_{0})}\mathbb{E}\left\| \varphi (0)\right\|^{2}+4\mathscr{B}^{2}\mathscr{H}^{2}e^{-\varsigma (\mathfrak{t}-\mathfrak{t}_{0})}\mathbb{E}\left\| \mathfrak{h}(\vartheta)\right\|^{2}\\ &\quad+ &4\max \lbrace 1, \mathscr{B}^{2}\rbrace \mathscr{H}^{2} \int^{\mathfrak{t}_{0}}_{\mathfrak{t}}e^{-\varsigma (\mathfrak{t}-\mathfrak{t}_{0})}\mathbb{E}\left\| \mathfrak{f}(s, \vartheta (s))\right\|^{2} ds \int^{\mathfrak{t}}_{\mathfrak{t}_{0}} e^{-\varsigma (\mathfrak{t}-\mathfrak{t}_{0})}ds \\ &\quad+ &4\max \lbrace 1, \mathscr{B}^{2}\rbrace \mathscr{H}^{2} \int^{\mathfrak{t}}_{\mathfrak{t}_{0}} e^{-\varsigma (\mathfrak{t}-\mathfrak{t}_{0})}ds \int^{\mathfrak{t}_{0}}_{\mathfrak{t}}e^{-\varsigma (\mathfrak{t}-\mathfrak{t}_{0})}\mathbb{E}\left\| \mathfrak{g}(s, \vartheta (s))\right\|^{2} ds\\ &\leq &4\mathscr{B}^{2}\mathscr{H}^{2}e^{-\varsigma (\mathfrak{t}-\mathfrak{t}_{0})}\mathbb{E}\left\| \varphi (0)\right\|^{2}+4\mathscr{B}^{2}\mathscr{H}^{2}e^{-\varsigma (\mathfrak{t}-\mathfrak{t}_{0})}\mathbb{E}\left\| \mathfrak{h}(\vartheta)\right\|^{2}\\ &\quad+ &4\max \lbrace 1, \mathscr{B}^{2}\rbrace \frac{\mathscr{H}^{2}(\mathscr{C}_{1}+\mathscr{C}_{2})}{\varsigma}\int^{\mathfrak{t}}_{\mathfrak{t}_{0}}\sup\limits _{\theta \in [-\delta , 0]}\mathbb{E}\left\| \vartheta (s+\theta)\right\|^{2}ds\\ &\leq &\mathscr{F}e^{-\varsigma (\mathfrak{t}-\mathfrak{t}_{0})}, \; \; \forall \; \; \mathfrak{t} \in [-\delta , 0], \end{eqnarray*}

    where \mathscr{F} = \max \lbrace 4\mathscr{B}^{2}\mathscr{H}^{2}\mathbb{E}\Vert [\varphi (0)+\mathfrak{h}(\vartheta)]\Vert ^{2}, \sup\limits _{\theta \in [-\delta, 0]}\mathbb{E}\Vert [\varphi+\mathfrak{h}] \Vert^{2}\rbrace .

    Thus, by lemma 4.1, \forall \mathfrak{t}\in [\mathfrak{t}_{0}-\delta, +\infty] ,

    \mathbb{E}\Vert \vartheta (\mathfrak{t})\Vert^{2} \leq \mathscr{F}e^{-\tau \mathfrak{t}}.

    This completes the proof.

    We may take into account the domain \Omega \subset \mathscr{R}^{n} with the boundary \partial \Omega :

    \begin{eqnarray} [\frac{d\mathit{z}(\mathfrak{t}, \vartheta)}{\partial \mathfrak{t}}]& = & \frac{\partial ^{2}}{\partial \vartheta ^{2}}\mathit{z}(\mathfrak{t}, \vartheta)+\int^{\mathfrak{t}}_{0}\alpha (\mathfrak{t}-s)\frac{\partial ^{2}}{\partial \vartheta ^{2}}\mathit{z}(s, \vartheta)ds+\int^{\mathfrak{t}}_{-\mathfrak{r}}\left[\kappa _{1}(\theta)\mathit{z}(\mathfrak{t}+\theta)d\theta \right]\\ &\quad+ &\int^{\mathfrak{t}}_{-\mathfrak{r}}\left[ \kappa _{2}(\theta)\mathit{z}(\mathfrak{t}+\theta )d\theta \right]d\omega (\mathfrak{t}), \; \; \; \; \; \; \; \; \mathfrak{t}\geq \delta , \; \; \mathfrak{t}\neq \xi _{\mathrm{k}}, \\ \mathit{z}(\xi _{\mathrm{k}}, \vartheta)& = &\mathit{h}(\mathrm{k})\delta _{\mathrm{k}}\mathit{z}(\xi ^{-}_{\mathrm{k}}, \vartheta), \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \vartheta \in \Omega \\ \mathit{z}(\mathfrak{t}_{0}, \vartheta)& = &\varphi (\theta , \vartheta)+\int^{1}_{0}\int^{\mathfrak{t}}_{0}\Lambda (\mathfrak{t}, \vartheta)\log (1+\vert \mathit{z}(\mathfrak{t}, \mathfrak{r})\vert ^{1/2})d\mathfrak{t} d\mathfrak{r}, \\ & = &\lbrace \varphi (\theta)\leq \theta < 0 \rbrace \; \; \; \; \; \vartheta \in \Omega , \theta \in [-\delta , 0]\\ \mathit{z}(\mathfrak{t}, \vartheta) & = &0, \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \vartheta \in \partial \Omega. \end{eqnarray} (5.1)

    Let \mathscr{X} = \mathcal{L}^{2}(\Omega) , \alpha :\mathscr{R}_{+}\rightarrow \mathscr{R}_{+} . \kappa _{1}, \kappa _{2} be positive functions from [-\delta, 0] to \mathscr{R} . Assume \delta _{\mathrm{k}} is a random variable described on \mathscr{D}_{\mathrm{k}} = (0, \mathfrak{d}_{\mathrm{k}}) with 0 < \mathfrak{d}_{\mathrm{k}} < +\infty for \mathrm{k} = 1, 2, \cdots . Without loss of generality, we suppose \lbrace \delta _{\mathrm{k}}\rbrace follows Erlang distribution. \delta _{i}, \delta _{j} being mutually independent with i\neq j for i, j = 1, 2, \cdots . \xi _{\mathrm{k}} = \xi _{\mathrm{k}-1}+\delta _{\mathrm{k}} where \lbrace \xi _{\mathrm{k}}\rbrace is a strictly increasing process with independently increasing increments and \mathfrak{t}_{0}\in [0, \mathtt{T}] be an arbitrary real number.

    Let \mathfrak{A} be an operator on \mathscr{X} by \mathfrak{A}\mathit{z} = \frac{\partial ^{2}\mathit{z}}{\partial \vartheta} provided,

    \mathscr{D}(\mathfrak{A}) = \lbrace \mathit{z}\in \mathscr{X}: \mathit{z}\; and \; \mathit{z}_{\vartheta}\; \text{are absolutely continuous}, \; \; \mathit{z}_{\vartheta \vartheta}\in \mathscr{X}, \; \mathit{z} = 0\; on \; \partial\Omega\rbrace.

    Also, let the map \mathfrak{B}:\mathscr{D}(\mathfrak{A})\subset \mathscr{X}\rightarrow \mathscr{X} be the operator interpreted as

    \mathfrak{B}(\mathfrak{t})(\mathit{z}) = \alpha (\mathfrak{t})\mathfrak{A}\mathit{z}\; \; \text{for}\; \; \mathfrak{t}\geq 0 \; \; \text{and}\; \; \mathit{z}\in \mathscr{D}\mathfrak{A}.

    The operator \mathfrak{A} can be exhibited as

    \mathfrak{A}\mathit{z} = \sum\limits^{\infty}_{n = 1}\mathfrak{n}^{2}\langle \mathit{z}, \mathit{z}_{\mathfrak{n}}\rangle\mathit{z}_{\mathfrak{n}}, \; \; \; \mathit{z}\in \mathscr{D}\mathfrak{A},

    where \mathfrak{A} is provided with the eigenvectors \mathit{z}_{\mathfrak{n}}(\varpi) = \left(\frac{2}{\pi}\right)^{\frac{1}{2}} . It is evident that \mathit{z}_{\mathfrak{n}}(\varpi) forms an orthonormal system in \mathbb{X} . Moreover, for the analytic semigroup \left(\mathfrak{R}(\mathfrak{t})\right)_{\mathfrak{t}\geq 0} in \mathbb{X} , \mathfrak{A} is the infinitesimal generator satisfying:

    \Vert \mathfrak{R}(\mathfrak{t})\Vert\leq \exp \lbrace -\pi ^{2}(\mathfrak{t}-\mathfrak{t}_{0})\rbrace, \; \; \; \mathfrak{t}\geq \mathfrak{t}_{0}.

    Additionally, there are the following conditions:

    (i) \int^{0}_{-\delta}\kappa _{1}(\theta)^{2}d\theta < \infty , \int^{0}_{-\delta}\kappa _{2}(\theta)^{2}d\theta < \infty ,

    (ii) \mathbb{E}\left(\max_{i, \mathrm{k}}\lbrace \prod \limits^{\mathrm{k}}_{j = i}\left\| \mathit{h}(j)(\delta _{j})\right\|\rbrace^{2}\right) < \infty .

    Using the aforementioned conditions, [5.1] can be represented by the abstract random impulsive stochastic differential equation of the form [1.1],

    \begin{eqnarray*} \mathfrak{f}(\mathfrak{t}, \mathit{z}(\mathfrak{t}))& = &\int^{\mathfrak{t}}_{-\mathfrak{r}}\kappa _{1}(\theta)\mathit{z}(\mathfrak{t}+ \theta )d\theta , \\ \mathfrak{g}(\mathfrak{t}, \mathit{z}(\mathfrak{t}))& = &\int^{\mathfrak{t}}_{-\mathfrak{r}}\kappa _{2}(\theta)\mathit{z}(\mathfrak{t}+\theta )d\theta , \\ \mathfrak{h}(\vartheta)& = &\int^{1}_{0}\int^{\mathfrak{t}}_{0}\Lambda (\mathfrak{t}, \vartheta)\log (1+\vert \mathit{z}(\mathfrak{t}, \mathfrak{r})\vert ^{1/2})d\mathfrak{t} d\mathfrak{r}, \\ \mathfrak{b}_{\mathrm{k}}(\delta _{\mathrm{k}})& = &\mathit{h}(\mathrm{k})\delta _{\mathrm{k}}. \end{eqnarray*}

    Condition (i) implies (A6) holds with

    \mathscr{C}_{i} = \int^{0}_{\mathfrak{r}}\kappa ^{2}_{i}(\theta)d\theta, \; \; \; \; for \; \; i = 1, 2,

    alongwith condition (ii) implying (A4). This depicts that [5.1] has a mild solution. Moreover, achieving continuous dependence of solution on initial conditions and Hyers Ulam Stability as in Section 4. Finally, if \lambda'\leq \tau , (i.e., )

    4\max \lbrace 1, \mathscr{B}^{2}\rbrace (\mathscr{C}_{1}+\mathscr{C}_{2})/(\pi^{2})\leq \pi ^{2},

    then [5.1] is mean square exponentially stable under the assumptions (A3) and (A7).

    In this paper, we have obtained the existence and various types of stability results for the RISIDEs with nonlocal conditions by means of functional analysis and the stochastic analysis method. In addition, it is of great interest for future research to study RISIDEs including more complicated stochastic factors, such as the stochastics processes driven by fractional Brownian motions, Rosenblatt process and Poisson jumps, which describe some stochastic phenomena more precisely, see [13,22] for more details.

    The authors thank the referees for useful comments and suggestion which led to an improvement in the quality of this article.

    The authors declare that there are no conflicts of interest.



    [1] A. Anguraj, M. Mallika Arjunan, E. M. Hernández, Existence results for an impulsive partial neutral functional differential equations with state-dependent delay, Appl. Anal., 86 (2007), 861–872. https://doi.org/10.1080/00036810701354995 doi: 10.1080/00036810701354995
    [2] V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of impulsive differential equations, Singapore: World Scientific, 1989. https://doi.org/10.1142/0906
    [3] X. Yang, X. Li, Q. Xi, P. Duan, Review of stability and stabilization for impulsive delayed systems, Math. Biosci. Eng., 15 (2018), 1495–1515. https://doi.org/10.3934/mbe.2018069 doi: 10.3934/mbe.2018069
    [4] M. Benchohra, J. Henderson, S. Ntouyas, Impulsive differential equations and inclusions, New York: Hindawi Publishing Corporation, 2006. https://doi.org/10.1155/9789775945501
    [5] A. Anguraj, S. Wu, A. Vinodkumar, Existence and exponential stability of semilinear functional differential equations with random impulses under non-uniqueness, Nonlinear Anal. Theor., 74 (2011), 331–342. https://doi.org/10.1016/j.na.2010.07.007 doi: 10.1016/j.na.2010.07.007
    [6] S. Wu, X. Guo, Y. Zhou, p-Moment stability of functional differential equations with random impulses, Comput. Math. Appl., 52 (2006), 1683–1694. https://doi.org/10.1016/j.camwa.2006.04.026 doi: 10.1016/j.camwa.2006.04.026
    [7] M. A. Almalahi, S. K. Panchal, Some properties of implicit impulsive coupled system via \varphi- Hilfer fractional operator, Bound. Value Probl., 2021 (2021), 67. https://doi.org/10.1186/s13661-021-01543-4 doi: 10.1186/s13661-021-01543-4
    [8] M. A. Almalahi, S. K. Panchal, F. Jarad, Results on implicit fractional pantograph equations with Mittag-Leffler kernel and nonlocal condition, J. Math., 2022 (2022), 9693005. https://doi.org/10.1155/2022/9693005 doi: 10.1155/2022/9693005
    [9] X. Mao, Stochastic differential equations and applications, Chichester: M. Horwood, 1997.
    [10] B. Oksendal, Stochastic differential equations, Berlin, Heidelberg: Springer, 2003. https://doi.org/10.1007/978-3-642-14394-6
    [11] D. Chalishajar, K. Ramkumar, A. Anguraj, K. Ravikumar, M. A. Diop, Controllability of neutral impulsive stochastic functional integro-differential equations driven by a fractional Brownian motion with infinite delay via resolvent operator, J. Nonlinear Sci. Appl., 15 (2022), 172–185. http://doi.org/10.22436/jnsa.015.03.01 doi: 10.22436/jnsa.015.03.01
    [12] K. Ramkumar, K. Ravikumar, E. Elsayed, Well-posedness and stability of time-dependent impulsive neutral stochastic partial imtegro-differential equations with fractional Brownian motion and Poisson jumps, J. Math. Ext., 16 (2022), 1–25.
    [13] K. Ramkumar, K. Ravikumar, S. Varshini, Fractional neutral stochastic differential equations with Caputo-fractional derivative: fractional Brownian motion, Poisson jumps and optimal control, Stoch. Anal. Appl., 39 (2021), 157–176. https://doi.org/10.1080/07362994.2020.1789476 doi: 10.1080/07362994.2020.1789476
    [14] S. A. Jose, W. Yukunthorn, J. E. Naploes Valdes, H. Leiva, Some existence, uniqueness and stability results of nonlocal random impulsive integro-differential equations, Applied Mathematics E-Notes, 20 (2020), 481–492.
    [15] H. Chen, The asymptotic behaviour for second-order neutral stochastic partial differential equations with infinite delay, Discrete Dyn. Nat. Soc., 2011 (2011), 584510. https://doi.org/10.1155/2011/584510 doi: 10.1155/2011/584510
    [16] S. J. Wu, X. Z. Meng, Boundedness of nonlinear differential systems with impulsive effects on random moments, Acta Math. Appl. Sin. Eng. Ser., 20 (2004), 147–154. https://doi.org/10.1007/s10255-004-0157-z doi: 10.1007/s10255-004-0157-z
    [17] T. Wang, Random impulsive model for stock prices and its application for insurers, (Chinese), Master thesis of East China Normal University, Shanghai, 2008.
    [18] S. Wu, B. Zhou, Existence and uniqueness of stochastic differential equations with random impulses and Markovian switching under non-lipschitz conditions, Acta. Math. Sin. Eng. Ser., 27 (2011), 519–536. https://doi.org/10.1007/s10114-011-9753-z doi: 10.1007/s10114-011-9753-z
    [19] Y. Zhou, S. Wu, Existence and uniqueness of solutions to stochastic differential equations with random impulses under Lipschitz conditions, Chinese Journal of Applied Probability Statistics, 26 (2010), 347–356.
    [20] Q. Yang, D. Wu, X. Shu, Existence and stability results of mild soltuions for random impulsive stochastic partial differential equations with noncompact semigroups, Stochastics, in press. https://doi.org/10.1080/17442508.2022.2056415
    [21] S. Li, L. Shu, X. B. Shu, F. Xu, Existence and Hyers-Ulam stability of random impulsive stochastic functional differential equations with finite delays, Stochastics, 91 (2019), 857–872. https://doi.org/10.1080/17442508.2018.1551400 doi: 10.1080/17442508.2018.1551400
    [22] A. Anguraj, K. Ravikumar, J. J. Neito, On stability of stochastic differential equations with random impulses driven by Poisson jumps, Stochastics, 93 (2021), 682–696. https://doi.org/10.1080/17442508.2020.1783264 doi: 10.1080/17442508.2020.1783264
    [23] D. J. Guo, Multiple positive solutions for first order nonlinear integro-differential equations in Banach spaces, Nonlinear Anal. Theor., 53 (2003), 183–195. https://doi.org/10.1016/S0362-546X(02)00165-7 doi: 10.1016/S0362-546X(02)00165-7
    [24] D. J. Guo, X. Z. Liu, External solutions of nonlinear impulsive integro-differential equations in Banach spaces, J. Math. Anal. Appl., 177 (1993), 538–552. https://doi.org/10.1006/jmaa.1993.1276 doi: 10.1006/jmaa.1993.1276
    [25] H. Chen, Impulsive-integral inequality and exponential stability for stochastic partial differential equations with delays, Stat. Probabil. Lett., 80 (2010), 50–56. https://doi.org/10.1016/j.spl.2009.09.011 doi: 10.1016/j.spl.2009.09.011
    [26] D. Gao, J. Li, Existence and mean-square exponential stability of mild solutions for impulsive stochastic partial differential equations with noncompact semigroup, J. Math. Anal. Appl., 484 (2020), 123717. https://doi.org/10.1016/j.jmaa.2019.123717 doi: 10.1016/j.jmaa.2019.123717
    [27] A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York, NY: Springer, 1983. https://doi.org/10.1007/978-1-4612-5561-1
    [28] R. C. Grimmer, Resolvent operators for integral equations in a Banach space, Trans. Amer. Math. Soc., 273 (1982), 333–349. https://doi.org/10.1090/S0002-9947-1982-0664046-4 doi: 10.1090/S0002-9947-1982-0664046-4
  • This article has been cited by:

    1. Varshini Sandrasekaran, Ravikumar Kasinathan, Ramkumar Kasinathan, Dimplekumar Chalishajar, Dhanalakshmi Kasinathan, Fractional stochastic Schrödinger evolution system with complex potential and poisson jumps: Qualitative behavior and T-controllability, 2024, 10, 26668181, 100713, 10.1016/j.padiff.2024.100713
    2. Amel Heris, Abdelkrim Salim, Mouffak Benchohra, Some new existence results for fractional partial random nonlocal differential equations with delay, 2023, 22, 2300-133X, 135, 10.2478/aupcsm-2023-0011
    3. Z. Sharifi, B. P. Moghaddam, M. Ilie, Efficient numerical simulation of fractional-order Van der Pol impulsive system, 2024, 35, 0129-1831, 10.1142/S0129183124500360
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1784) PDF downloads(161) Cited by(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog