Research article

Ulam-Hyers stability for conformable fractional integro-differential impulsive equations with the antiperiodic boundary conditions

  • Received: 26 October 2021 Revised: 21 December 2021 Accepted: 30 December 2021 Published: 17 January 2022
  • MSC : 34A08, 34B37, 34D20

  • This paper focuses on the stability for a class of conformable fractional impulsive integro-differential equations with the antiperiodic boundary conditions. Firstly, the existence and uniqueness of solutions of the integro-differential equations are studied by using the fixed point theorem under the condition of nonlinear term increasing at most linearly. And then, the Ulam-Hyers stability and Ulam-Hyers-Rassias stability for the boundary value problems are discussed by using the nonlinear functional analysis method and constraining related parameters. Finally, an example is given out to illustrate the applicability and feasibility of our main conclusions. It is worth mentioning that the stability studied in this paper highlights the role of boundary conditions. This method of studying stability is effective and can be applied to the study of stability for many types of differential equations.

    Citation: Fan Wan, Xiping Liu, Mei Jia. Ulam-Hyers stability for conformable fractional integro-differential impulsive equations with the antiperiodic boundary conditions[J]. AIMS Mathematics, 2022, 7(4): 6066-6083. doi: 10.3934/math.2022338

    Related Papers:

  • This paper focuses on the stability for a class of conformable fractional impulsive integro-differential equations with the antiperiodic boundary conditions. Firstly, the existence and uniqueness of solutions of the integro-differential equations are studied by using the fixed point theorem under the condition of nonlinear term increasing at most linearly. And then, the Ulam-Hyers stability and Ulam-Hyers-Rassias stability for the boundary value problems are discussed by using the nonlinear functional analysis method and constraining related parameters. Finally, an example is given out to illustrate the applicability and feasibility of our main conclusions. It is worth mentioning that the stability studied in this paper highlights the role of boundary conditions. This method of studying stability is effective and can be applied to the study of stability for many types of differential equations.



    加载中


    [1] A. Kilbas, H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. http://dx.doi.org/10.1016/S0304-0208(06)80001-0
    [2] K. Diethelm, The analysis of fractional differential equations, Berlin: Springer-Verlag, 2010. http://dx.doi.org/10.1007/978-3-642-14574-2
    [3] X. Zhang, L. Liu, Y. Wu, Y. Cui, A sufficient and necessary condition of existence of blow-up radial solutions for a k-Hessian equation with a nonlinear operator, Nonlinear Anal.-Model., 25 (2020), 126–143. http://dx.doi.org/10.15388/namc.2020.25.15736 doi: 10.15388/namc.2020.25.15736
    [4] J. Henderson, R. Luca, Positive solutions for a system of semipositone coupled fractional boundary value problems, Bound. Value Probl., 2016 (2016), 61. http://dx.doi.org/10.1186/s13661-016-0569-8 doi: 10.1186/s13661-016-0569-8
    [5] A. Ali, A. Seadawy, D. Lu, New solitary wave solutions of some nonlinear models and their applications, Adv. Differ. Equ., 2018 (2018), 232. http://dx.doi.org/10.1186/s13662-018-1687-7 doi: 10.1186/s13662-018-1687-7
    [6] A. Seadawy, D. Kumar, K. Hosseini, F. Samadani, The system of equations for the ion sound and Langmuir waves and its new exact solutions, Results Phys., 9 (2018), 1631–1634. http://dx.doi.org/10.1016/j.rinp.2018.04.064 doi: 10.1016/j.rinp.2018.04.064
    [7] I. Ahmed, A. Seadawy, D. Lu, M-shaped rational solutions and their interaction with kink waves in the Fokas-Lenells equation, Phys. Scr., 94 (2019), 055205. http://dx.doi.org/10.1088/1402-4896/ab0455 doi: 10.1088/1402-4896/ab0455
    [8] Y. Zhang, X. Liu, M. Jia, On the boundary value problems of piecewise differential equations with left-right fractional derivatives and delay, Nonlinear Anal.-Model., 26 (2021), 1087–1105. http://doi.org/10.15388/namc.2021.26.24622 doi: 10.15388/namc.2021.26.24622
    [9] X. Liu, M. Jia, Solvability and numerical simulations for bvps of fractional coupled systems involving left and right fractional derivatives, Appl. Math. Comput., 353 (2019), 230–242. http://doi.org/10.1016/j.amc.2019.02.011 doi: 10.1016/j.amc.2019.02.011
    [10] R. Khalil, M. Al-Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. http://dx.doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [11] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. http://dx.doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
    [12] M. Lazo, D. Torres, Variational calculus with conformable fractional derivatives, IEEE/CAA J. Automatic., 4 (2017), 340–352. http://dx.doi.org/10.1109/JAS.2016.7510160 doi: 10.1109/JAS.2016.7510160
    [13] B. Zhou, L. Zhang, Existence of positive solutions of boundary value problems for high-order nonlinear conformable differential equations with $p$-Laplacian operator, Adv. Differ. Equ., 2019 (2019), 351. http://dx.doi.org/10.1186/s13662-019-2258-2 doi: 10.1186/s13662-019-2258-2
    [14] E. Ünal, A. Gökdoğan, Solution of conformable fractional ordinary differential equations via differential transform method, Optik, 128 (2017), 264–273. http://dx.doi.org/10.1016/j.ijleo.2016.10.031 doi: 10.1016/j.ijleo.2016.10.031
    [15] H. Batarfi, J. Losada, J. Nieto, W. Shammakh, Three-point boundary value problems for conformable fractional differential equations, J. Funct. Spaces, 2015 (2015), 706383. http://dx.doi.org/10.1155/2015/706383 doi: 10.1155/2015/706383
    [16] L. Li, Y. Qi, C. Tang, K. Xiao, Solution to the conformable fractional system with constant variation method, Proceeding of International Conference on Intelligent and Interactive Systems and Applications, 2020,706–711. http://dx.doi.org/10.1007/978-3-030-34387-3_86
    [17] Z. Bai, Y. Cheng, S. Sun, On solutions of a class of three-point fractional boundary value problems, Bound. Value Probl., 2020 (2020), 11. http://dx.doi.org/10.1186/s13661-019-01319-x doi: 10.1186/s13661-019-01319-x
    [18] Y. Gholami, K. Ghanbari, New class of conformable derivatives and applications to differential impulsive systems, SeMA, 75 (2018), 305–333. http://dx.doi.org/10.1007/s40324-017-0135-z doi: 10.1007/s40324-017-0135-z
    [19] W. Zhong, L. Wang, Positive solutions of conformable fractional differential equations with integral boundary conditions, Bound. Value Probl., 2018 (2018), 137. http://dx.doi.org/10.1186/s13661-018-1056-1 doi: 10.1186/s13661-018-1056-1
    [20] W. Zhong, L. Wang, Basic theory of initial value problems of conformable fractional differential equations, Adv. Differ. Equ., 2018 (2018), 321. http://dx.doi.org/10.1186/s13662-018-1778-5 doi: 10.1186/s13662-018-1778-5
    [21] B. Ahmad, M. Alghanmi, A. Alsaedi, R. Agarwal, On an impulsive hybrid system of conformable fractional differential equations with boundary conditions, Int. J. Syst. Sci., 51 (2020), 958–970. http://dx.doi.org/10.1080/00207721.2020.1746437 doi: 10.1080/00207721.2020.1746437
    [22] J. Wang, C. Bai, Antiperiodic boundary value problems for impulsive fractional functional differential equations via conformable derivative, J. Funct. Spaces, 2018 (2018), 7643123. http://dx.doi.org/10.1155/2018/7643123 doi: 10.1155/2018/7643123
    [23] P. Li, C. Xu, Boundary value problems of fractional order differential equation with integral boundary conditions and not instantaneous impulses, J. Funct. Spaces, 2015 (2015), 954925. http://dx.doi.org/10.1155/2015/954925 doi: 10.1155/2015/954925
    [24] M. Zuo, X. Hao, L. Liu, Y. Cui, Existence results for impulsive fractional integro-differential equation of mixed type with constant coefficient and antiperiodic boundary conditions, Bound. Value Probl., 2017 (2017), 161. http://dx.doi.org/10.1186/s13661-017-0892-8 doi: 10.1186/s13661-017-0892-8
    [25] X. Hao, L. Liu, Mild solution of second-order impulsive integro-differential evolution equations of Volterra type in Banach spaces, Qual. Theory Dyn. Syst., 19 (2020), 5. http://dx.doi.org/10.1007/s12346-020-00345-w doi: 10.1007/s12346-020-00345-w
    [26] X. Hao, L. Liu, Mild solution of semilinear impulsive integro-differential evolution equation in Banach spaces, Math. Meth. Appl. Sci., 40 (2017), 4832–4841. http://dx.doi.org/10.1002/mma.4350 doi: 10.1002/mma.4350
    [27] R. Agarwal, S. Hristova, D. O'Regan, Mittag-Leffler stability for impulsive Caputo fractional differential equations, Differ. Equ. Dyn. Syst., 29 (2021), 689–705. http://dx.doi.org/10.1007/s12591-017-0384-4 doi: 10.1007/s12591-017-0384-4
    [28] S. Ulam, Problems in modern mathematics, New York: Inderscience publisher, 1960.
    [29] D. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222–224. http://dx.doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222
    [30] J. Sousa, E. Capelas de Oliveira, F. Rodrigues, Ulam-Hyers stabilities of fractional functional differential equations, AIMS Mathematics, 5 (2020), 1346–1358. http://dx.doi.org/10.3934/math.2020092 doi: 10.3934/math.2020092
    [31] M. Li, J. Wang, D. O'Regan, Existence and Ulam's stability for conformable fractional differential equations with constant coefficients, Bull. Malays. Math. Sci. Soc., 42 (2019), 1791–1812. http://dx.doi.org/10.1007/s40840-017-0576-7 doi: 10.1007/s40840-017-0576-7
    [32] A. Zada, J. Alzabut, H. Waheed, I. Popa, Ulam-Hyers stability of impulsive integrodifferential equations with Riemann-Liouville boundary conditions, Adv. Differ. Equ., 2020 (2020), 64. http://dx.doi.org/10.1186/s13662-020-2534-1 doi: 10.1186/s13662-020-2534-1
    [33] J. Sousa, E. Capelas de Oliveira, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett., 81 (2018), 50–56. http://dx.doi.org/10.1016/j.aml.2018.01.016 doi: 10.1016/j.aml.2018.01.016
    [34] R. Agarwal, S, Hristova, D. O'Regan, Ulam type stability for non-instantaneous impulsive Caputo fractional differential equations with finite state dependent delay, Georgian Math. J., 28 (2021), 499–517. http://dx.doi.org/10.1515/gmj-2020-2061 doi: 10.1515/gmj-2020-2061
    [35] V. Mohammadnezhad, M. Eslami, H. Rezazadeh, Stability analysis of linear conformable fractional differential equations system with time delays, Bol. Soc. Paran. Mat., 38 (2020), 159–171. http://dx.doi.org/10.5269/bspm.v38i6.37010 doi: 10.5269/bspm.v38i6.37010
    [36] A. Khan, H. Khan, J. Gómez-Aguilar, T. Abdeljawad, Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel, Chaos Soliton. Fract., 127 (2019), 422–427. http://dx.doi.org/10.1016/j.chaos.2019.07.026 doi: 10.1016/j.chaos.2019.07.026
    [37] H. Khan, J. Gómez-Aguilar, T. Abdeljawad, A. Khan, Existence results and stability criteria for ABC-fuzzy-Volterra integro-differential equation, Fractals, 28 (2020), 2040048. http://dx.doi.org/10.1142/S0218348X20400484 doi: 10.1142/S0218348X20400484
    [38] S. Wang, W. Jiang, J. Sheng, R. Li, Ulam's stability for some linear conformable fractional differential equations, Adv. Differ. Equ., 2020 (2020), 251. http://dx.doi.org/10.1186/s13662-020-02672-3 doi: 10.1186/s13662-020-02672-3
    [39] O. Martínez-Fuentes, F. Meléndez-Vázquez, G. Fernández-Anaya, J. Gómez-Aguilar, Analysis of fractional-order nonlinear dynamic systems with general analytic kernels:Lyapunov stability and inequalities, Mathematics, 9 (2021), 2084. http://dx.doi.org/10.3390/math9172084 doi: 10.3390/math9172084
    [40] D. Smart, A fixed-point theorems, Math. Proc. Cambridge, 57 (1961), 430. http://dx.doi.org/10.1017/S0305004100035404
    [41] A. Granas, J. Dugundj, Elementary fixed point theorems, New York: Springer-Verlag, 2003. http://dx.doi.org/10.1007/978-0-387-21593-8_2
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1842) PDF downloads(93) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog