
This article is devoted to investigate a class of non-local initial value problem of implicit-impulsive fractional differential equations (IFDEs) with the participation of the Caputo-Fabrizio fractional derivative (CFFD). By means of Krasnoselskii's fixed-point theorem and Banach's contraction principle, the results of existence and uniqueness are obtained. Furthermore, we establish some results of Hyers-Ulam (H-U) and generalized Hyers-Ulam (g-H-U) stability. Finally, an example is provided to demonstrate our results.
Citation: Thanin Sitthiwirattham, Rozi Gul, Kamal Shah, Ibrahim Mahariq, Jarunee Soontharanon, Khursheed J. Ansari. Study of implicit-impulsive differential equations involving Caputo-Fabrizio fractional derivative[J]. AIMS Mathematics, 2022, 7(3): 4017-4037. doi: 10.3934/math.2022222
[1] | Bo Wang, Rekha Srivastava, Jin-Lin Liu . Certain properties of multivalent analytic functions defined by $ q $-difference operator involving the Janowski function. AIMS Mathematics, 2021, 6(8): 8497-8508. doi: 10.3934/math.2021493 |
[2] | Huo Tang, Shahid Khan, Saqib Hussain, Nasir Khan . Hankel and Toeplitz determinant for a subclass of multivalent $ q $-starlike functions of order $ \alpha $. AIMS Mathematics, 2021, 6(6): 5421-5439. doi: 10.3934/math.2021320 |
[3] | Pinhong Long, Huo Tang, Wenshuai Wang . Functional inequalities for several classes of q-starlike and q-convex type analytic and multivalent functions using a generalized Bernardi integral operator. AIMS Mathematics, 2021, 6(2): 1191-1208. doi: 10.3934/math.2021073 |
[4] | Ahmad A. Abubaker, Khaled Matarneh, Mohammad Faisal Khan, Suha B. Al-Shaikh, Mustafa Kamal . Study of quantum calculus for a new subclass of $ q $-starlike bi-univalent functions connected with vertical strip domain. AIMS Mathematics, 2024, 9(5): 11789-11804. doi: 10.3934/math.2024577 |
[5] | Jianhua Gong, Muhammad Ghaffar Khan, Hala Alaqad, Bilal Khan . Sharp inequalities for $ q $-starlike functions associated with differential subordination and $ q $-calculus. AIMS Mathematics, 2024, 9(10): 28421-28446. doi: 10.3934/math.20241379 |
[6] | Syed Ghoos Ali Shah, Shahbaz Khan, Saqib Hussain, Maslina Darus . $ q $-Noor integral operator associated with starlike functions and $ q $-conic domains. AIMS Mathematics, 2022, 7(6): 10842-10859. doi: 10.3934/math.2022606 |
[7] | Muhammad Sabil Ur Rehman, Qazi Zahoor Ahmad, H. M. Srivastava, Nazar Khan, Maslina Darus, Bilal Khan . Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions. AIMS Mathematics, 2021, 6(2): 1110-1125. doi: 10.3934/math.2021067 |
[8] | Hanen Louati, Afrah Al-Rezami, Erhan Deniz, Abdulbasit Darem, Robert Szasz . Application of $ q $-starlike and $ q $-convex functions under $ (u, v) $-symmetrical constraints. AIMS Mathematics, 2024, 9(12): 33353-33364. doi: 10.3934/math.20241591 |
[9] | Aisha M. Alqahtani, Rashid Murtaza, Saba Akmal, Adnan, Ilyas Khan . Generalized $ q $-convex functions characterized by $ q $-calculus. AIMS Mathematics, 2023, 8(4): 9385-9399. doi: 10.3934/math.2023472 |
[10] | Shahid Khan, Saqib Hussain, Maslina Darus . Inclusion relations of $ q $-Bessel functions associated with generalized conic domain. AIMS Mathematics, 2021, 6(4): 3624-3640. doi: 10.3934/math.2021216 |
This article is devoted to investigate a class of non-local initial value problem of implicit-impulsive fractional differential equations (IFDEs) with the participation of the Caputo-Fabrizio fractional derivative (CFFD). By means of Krasnoselskii's fixed-point theorem and Banach's contraction principle, the results of existence and uniqueness are obtained. Furthermore, we establish some results of Hyers-Ulam (H-U) and generalized Hyers-Ulam (g-H-U) stability. Finally, an example is provided to demonstrate our results.
Assume that A represents the family of analytic functions in the open unit disc
U={z:z∈C and |z|<1}. |
For f1, f2∈A, we say that f1 subordinate to f2 in U, indicated by
f1(z)≺f2(z), z∈U, |
if there exists a Schwarz function w, defined by
w∈B={w:w∈A, |w(z)|<1 and w(0)=0, z∈U}, |
that satisfies the condition
f1(z)=f2(w(z)), z∈U. |
Indeed, it is known that
f1(z)≺f2(z)⟹f1(0)=f2(0) and f1(U)⊂f2(U). |
Moreover, if the function f2 is univalent in U then
f1(z)≺f2(z)⇔f1(0)=f2(0) and f1(U)⊂f2(U). |
Let the class P be defined by
P={h∈A:h(0)=1 and Re(h(z)>0}. |
The class of all functions in the normalized analytic function class A that are univalent in U is also denoted by the symbol S. The maximization of the non-linear functional |a3−μa22| or other classes and subclasses of univalent functions has been the subject of a number of established results and these results are known as Fekete-Szegö problems, see [1]. If f∈S and of the form (1.1), then
|a3−μa22|≤{3−4μ, if μ≤0,1+2exp(2μμ−1), if 0≤μ<1,4μ−3, if μ≥1,} |
and the result |a3−μa22| are sharp (see [1]). The Fekete-Szegö problems have a rich history in literature and for complex number μ.
In the area of geometric function theory (GFT), the q-calculus and fractional q-calculus have been extensively employed by scholars who have developed and investigated a number of novel subclasses of analytic, univalent and bi-univalent functions. Jackson [2,3] first proposed the concept of the q-calculus operator and gave the definition of the q -difference operator Dq in 1909. In instance, Ismail et al. were the first to define a class of q-starlike functions in open unit disc U using Dq in [4]. The most significant usages of q -calculus in the perspective of GFT was basically furnished and the basic (or q-) hypergeometric functions were first used in GFT in a book chapter by Srivastava (see, for details, [5]). See the following articles [6,7,8,9,10] for more information about q-calculus operator theory in GFT.
Now we review some fundamental definitions and ideas of the q -calculus, we utilize them to create some new subclasses in this paper.
For a non-negative integer l, the q-number [l]q, (0<q<1), is defined by
[l]q=1−ql1−q and [0]=0, |
and the q-number shift factorial is given by
[l]q!=[1]q[2]q[3]q⋯[l]q,[0]q!=1. |
For q→1−, then [l]! reduces to l!.
The q-generalized Pochhammer symbol is defined by
[l]k=Γq(l+k)Γq(l), k∈N, l∈C. |
The q-gamma function Γq is defined by
Γq(l)=(1−q)l∞∏j=01−qj+11−qj+l. |
The q-generalized Pochhammer symbol is defined by
[l]k=Γq(l+k)Γq(l), k∈N, l∈C. |
Remark 1. For q→1−, then [l]q,k reduces to (l)k=Γ(l+k)Γ(l).
Definition 1. Jackson [3] defined the q-integral of function f(z) as follows:
∫f(z)dq(z)=∞∑n=0z(1−q)f(qn(z))qn. |
Jackson [2] introduced the q-difference operator for analytic functions as follows:
Definition 2. [2] For f∈A, the q-difference operator is defined as:
Dqf(z)=f(qz)−f(z)z(q−1), z∈U. |
Note that, for n∈N, z∈U and
Dq(zn)=[n]qzn−1, Dq(∞∑n=1anzn)=∞∑n=1[n]qanzn−1. |
Let Ap stand for the class of analytic functions with the form
f(z)=zp+∞∑n=1an+pzn+p, p∈N,z∈U | (1.1) |
in the open unit disk U. More specifically, A1=A and
f(z)=z+∞∑n=1an+1zn+1, z∈U. | (1.2) |
Consider the q-difference operator for f∈Ap as follows:
Definition 3. [11] For f∈Ap, the q-difference operator is defined as:
Dqf(z)=f(qz)−f(z)z(q−1), z∈U. |
Note that, for n∈N, z∈U and
Dq(zn+p)=[n+p]qzn+p−1, Dq(∞∑n=1an+pzn+p)=∞∑n=1[n+p]qan+pzn+p−1. |
Let S∗(p) represents the class of p-valent starlike functions and every f∈S∗(p), if
Re(zf′(z)pf(z))>0, z∈U, |
and K(p) represents the class of p-valent convex functions and every f∈K(p), if
1p(1+Re(zf′′(z)f′(z)))>0, z∈U. |
These conditions are equivalent in terms of subordination as follows:
S∗(p)={f∈Ap:zf′(z)pf(z)≺1+z1−z} |
and
K(p)={f∈Ap:1p(1+zf′′(z)f′(z))≺1+z1−z}. |
The aforementioned two classes can be generalized as follows:
S∗(p,φ)={f∈Ap:zf′(z)pf(z)≺φ(z)} |
and
K(p,φ)={f∈Ap:1p(1+zf′′(z)f′(z))≺φ(z)}, |
where φ(z) is a real part function that is positive and is normalized by the rule
φ(0)=1 and φ′(0)>0, |
and φ maps U onto a space that is symmetric with regard to the real axis and starlike with respect to 1. If p=1, then
S∗(p,φ)=S∗(φ) |
and
K(p,φ)=K(φ). |
These two classes S∗(φ) and K(φ) defined by Ma [12].
A function f∈Ap, is called p-valently starlike of order α (0≤α<1) with complex order b∈C∖{0}, if it satisfies the inequality
Re{1+1b(zf′(z)pf(z)−1)>α, z∈U}. |
The class S∗p(α,b) denotes the collection of all f∈Ap functions that satisfy the aforementioned condition.
A function f∈Ap, is called p-valently convex function of order α (0≤α<1) with complex order b∈C∖{0}, if it satisfies the inequality
Re{1−1b+1bp(1+zf′′(z)f′(z))>α, z∈U}. |
The class Kp(α,b) denotes the collection of all functions f∈Ap that satisfy the aforementioned condition.
Note that
f∈Kp(α,b)⇔1pzf′∈S∗p(α,b). |
Kargar et al. [13] investigated the classes Sp(α,β) for f∈Ap and defined as follows:
f∈Sp(α,β)⇔α<Re(1pzf′(z)f(z))<β, (0≤α<1<β, z∈U). |
For 0≤α<1<β and b∈C∖{0}, then the function f∈Ap belongs to the class Kb,p(α,β) if it satisfies the inequality
α<Re(1−1b+1bp(1+zf′′(z)f′(z)))<β, (0≤α<1<β, z∈U). |
If p=1, then Kb,p(α,β)=Kb(α,β), studied by Kargar et al. in [13] and if β→∞ in above definition, Kb,p(α,β)=Kb,p(α,b).
Recently, Bult [14] used the definition of subordination and defined new subclasses of p-valent starlike and convex functions associated with vertical strip domain as follows:
S∗p,b(α,β)={f∈Ap:1+1b(1pzf′(z)f(z)−1)≺f(α,β;z)} |
and
Kp,b(α,β)={f∈Ap:1−1b+1bp(1+zf′′(z)f′(z))≺f(α,β;z)}, |
where
f(α,β;z)=1+β−απilog(1−e2πi1−αβ−αz1−z) |
and
0≤α<1<β,b∈C∖{0}, z∈U. |
Bult [14] determined the coefficient bounds for functions belonging to these new classes.
On the basis of the geometrical interpretation of their image domains, numerous subclasses of analytic functions have established using the concept of subordination. Right half plane [15], circular disc [16], oval and petal type domains [17], conic domain [18,19], leaf-like domain [20], generalized conic domains [21], and the most important one is shell-like curve [22,23,24,25] are some fascinating geometrical classes we obtain with this domain. The function
h(z)=1+τ2z21−τz−τ2z2 | (1.3) |
is essential for the shell-like shape, where
τ=1−√52. |
The image of unit circle under the function h gives the conchoid of Maclaurin's, due to the function
h(eiφ)=√52(3−2cosφ)+isinφ(4cosφ−1)2(3−2cosφ)(1+cosφ), 0≤φ<2π. |
The function given in (1.3) has the following series representation:
h(z)=1+∞∑n=1(un−1+un+1)τnzn, |
where
un=(1−τ)n−τn√5, |
and un produces a Fibonacci series of coefficient constants that are more closely related to the Fibonacci numbers.
Taking motivation from the idea of circular disc and shell-like curves, Malik et al. [26] defined new domain for analytic functions which is named as cardioid domain. A new class of analytic functions is defined associated with cardioid domain, for more detail, see [26].
Definition 4. [26] Assume that CP(L,N) represents the class of functions p that are defined as
p(z)≺¯p(L,N,z), |
where ¯p(L,N,z) is defined by
¯p(L,N,z)=2Lτ2z2+(L−1)τz+22Nτ2z2+(N−1)τz+2 | (1.4) |
with −1<N<L≤1, τ=1−√52 and z∈U.
To understand the class CP(L,N), an explanation of the function ¯p(L,N,z) in geometric terms might be helpful in this instance. If we denote
R¯p(L,N;eiθ)=u |
and
I¯p(L,N;eiθ)=v, |
then the image ¯p(L,N,eiθ) of the unit circle is a cardioid like curve defined by
{u=4+(L−1)(N−1)τ2+4LNτ4+2λcosθ+4(L+N)τ2cos2θ4+(N−1)2τ2+4N2τ4+4(N−1)(τ+Nτ3)cosθ+8Nτ2cos2θ,v=(L−N)(τ−τ3)sinθ+2τ2sin2θ4+(N−1)2τ2+4N2τ4+4(N−1)(τ+Nτ3)cosθ+8Nτ2cos2θ,} | (1.5) |
where
λ=(L+N−2)τ+(2LN−L−N)τ3, −1<N<L≤1, τ=1−√52, |
and
0≤θ≤2π. |
Moreover, we observe that
¯p(L,N,0)=1, |
and
¯p(L,N,1)=LN+9(L+N)+1+4(N−L)√5N2+18N+1. |
According to (1.5), the cusp of the cardioid-like curve is provided by
γ(L,N)=¯p(L,N;e±iarccos(14))=2LN−3(L+N)+2+(L−N)√52(N2−3N+1). |
The image of each inner circle is a nested cardioid-like curve if the open unit disc U is considered a collection of concentric circles with origin at the center. As a result, the open unit disc U is mapped onto a cardioid region by the function ¯p(L,N,z). This means that ¯p(L,N;U) is a cardioid domain. The above discussed cardioid like curve with different values of parameters can be seen in Figures 1 and 2.
The relationship N<L links the parameters L and N. The cardioid-like curve is flipped by its voilation, as seen in the figures below.
See Figure 3, if collection of concentric circles having origin as center. Thus, the function ¯p(L,N,z) maps the open unit disk U onto a cardioid region. See [26] for more details about cardioid region.
The operator theory of quantum calculus is the primary result of this research. Using standard uses in quantum calculus operator theory and the q -difference operator, we develop numerous novel q-analogous of the differential and integral operators. We construct a large number of new classes of q-starlike and q-convex functions using these operators and study some interesting characteristics of the corresponding analytic functions. In this paper, we gain inspiration from recent research by [14,26,27] and define two new classes of p-valent starlike, convex functions connected with the cardioid domain using the q-difference operator.
Influenced by recent studies [14,26,27], we defined two new classes of p-valent starlike, convex functions related with cardioid domain.
Definition 5. The function f of the form (1.1) related with cardioid domain, represented by S∗p(L,N,q,b), is defined to be the functions f such that
1+1b(1[p]qzDqf(z)f(z)−1)≺¯p(L,N;z), |
where, b∈C∖{0} and ¯p(L,N;z) is given by (1.4).
Definition 6. The function f of the form (1.1) related with cardioid domain, represented by Kp(L,N,q,b), is defined to be the functions f such that
1−1b+1b[p]q(1+zD2qf(z)Dqf(z))≺¯p(L,N;z), |
where b∈C∖{0} and ¯p(L,N;z) is given by (1.4) and Kp(L,N,q,b) is the class of convex functions of order b related with cardioid domain.
Special cases:
(i) For q→1−,b=1 and p=1, in Definition 5, we have known class S∗(L,N) of starlike functions associated with cardioid domain proved by Zainab et al. in [27].
(ii) For q→1−,L=1,N=−1, b=1 and p=1 in Definition 5, then class S∗p(L,N,q,b)=SL and this class is defined on starlike functions associated with Fibonacci numbers, introduced and studied by Sokół in [28].
(iii) For q→1−, L=1, N=−1, b=1 and p=1 in Definition 6 then class Kp(L,N,q,b)=K, and this family is referred to as a class of convex functions connected with Fibonacci numbers.
There are four parts to this article. In Section 1, we briefly reviewed some basic concepts from geometric function theory, quantum calculus, and cardioid domain, studied the q-difference operator, and finally discussed this operator to define two new subclasses of multivalent q-starlike and q-convex functions. The established lemmas are presented in Section 2. Our main results and some known corollaries will be presented in Section 3, then some concluding remarks in Section 4.
By utilizing the following lemmas, we will determine our main results.
Lemma 1. [26] Let the function ¯p(L,N;z), defined by (1.4). Then,
(i) For the disc |z|<τ2, the function ¯p(L,N;z) is univalent.
(ii) If h(z)≺¯p(L,N;z), then Reh(z)>α, where
α=2(L+N−2)τ+2(2LN−L−N)τ3+16(L+N)τ2η4(N−1)(τ+Nτ3)+32Nτ2η, |
where
η=4+τ2−N2τ2−4N2τ4−(1−Nτ2)χ(N)4τ(1+N2τ2), |
χ(N)=√5(2Nτ2−(N−1)τ+2)(2Nτ2+(N−1)τ+2), |
−1<N<L≤1 |
and
τ=1−√52. |
(iii) If
¯p(L,N;z)=1+∞∑n=1¯Qnzn, |
then
¯Qn={(L−N)τ2,for n=1,(L−N)(5−N)τ222,for n=2,1−N2τpn−1−Nτ2pn−2,for n=3,4,5,⋯, | (2.1) |
where
−1<N<L≤1. |
(iv) Let h(z)≺¯p(L,N;z) and of the form h(z)=1+∞∑n=1hnzn. Then
|h2−vh21|≤(L−N)|τ|4max{2,|τ(v(L−N)+N−5)|}, v∈C. |
Lemma 2. [29] Let h∈P, such that h(z)=1+∞∑n=1cnzn. Then
|c2−v2c21|≤max{2,2|v−1|}={2,if 0≤v≤2,2|v−1|, elsewhere,} | (2.2) |
and
|cn|≤2 for n≥1. | (2.3) |
Lemma 3. [30] Let h∈P, such that
h(z)=1+∞∑n=1cnzn. |
Then for any complex number v
|c2−vc21|≤2max{1,|2v−1|} |
and the result is sharp for
h(z)=1+z21−z2andh(z)=1+z1−z. |
Lemma 4. [31] Let the function g given by
g(z)=∞∑k=1bkzk |
be convex in U. Also let the function f given by
f(z)=∞∑k=1akzk |
be analytic in U. If
f(z)≺g(z), |
then
|ak|<|b1|, k=1,2,3,⋯. |
For the recently described classes of multivalent q-starlike (S∗p(L,N,q,b)) and multivalent q-convex (Kp(L,N,q,b)) functions, we get sharp estimates for the coefficients of Taylor series, Fekete-Szegő problems and coefficient inequalities.
In the following theorems, we investigate the functions f(z) which can be used to find the sharpness of the results of this article.
Theorem 5. A function f∈Ap given by (1.1) is in the class S∗p(L,N,q,b) if and only if there exists an analytic function S,
S(z)≺¯p(L,N,z)=2Lτ2z2+(L−1)τz+22Nτ2z2+(N−1)τz+2, |
where, ¯p(L,N,0)=1, such that
f(z)=zpexp{b[p]qz∫0S(t)−1tdt}, z∈U. | (3.1) |
Proof. Let f∈S∗p(L,N,q,b) and
1+1b(1[p]qzDqf(z)f(z)−1)=h(z)≺¯p(L,N,z). |
Then by integrating this equation we obtain (3.1). Conversely, if given by (3.1) with an analytic function S(z) such that S(z)≺¯p(L,N,z), then by logarithmic differentiation of (3.1) we obtain
1+1b(1[p]qzDqf(z)f(z)−1)=S(z). |
Therefore we have
1+1b(1[p]qzDqf(z)f(z)−1)≺¯p(L,N,z) |
and f∈S∗p(L,N,q,b).
The initial coefficient bounds |ap+1| and |ap+2| for the functions f∈S∗p(L,N,b) are investigated in Theorem 6 using the Lemma 2.
Theorem 6. Let f∈S∗p(L,N,q,b) be given by (1.1), −1≤N<L≤1. Then
|ap+1|≤[p]q|b|(L−N)τ2,|ap+2|≤[p]q|b|(L−N)|τ|28(5−N+[p]qb(L−N)). |
These bounds are sharp.
Proof. Let f∈S∗p(L,N,q,b), and of the form (1.1). Then
1+1b(1[p]qzDqf(z)f(z)−1)≺¯p(L,N;z), | (3.2) |
where
¯p(L,N,z)=2Lτ2z2+(L−1)τz+22Nτ2z2+(N−1)τz+2. |
By applying the concept of subordination, there exists a function w with
w(0)=0 and |w(z)|<1, |
such that
1+1b(1[p]qzDqf(z)f(z)−1)=¯p(L,N;w(z)). | (3.3) |
Let
w(z)=h(z)−1h(z)+1=c1z+c2z2+c3z3+⋯2+c1z+c2z2+⋯=12c1z+12(c2−12c21)z2+12(c3−c1c2+14c31)z3+⋯. | (3.4) |
Since
¯p(L,N;z)=1+∞∑n=1¯Qnzn, |
then
¯p(L,N;w(z))=1+¯Q1{12c1z+12(c2−12c21)z2⋯}+¯Q2{12c1z+12(c2−12c21)z2⋯}2+⋯=1+¯Q1c12z+(12(c2−12c21)¯Q1+¯Q2c214)z2+⋯. | (3.5) |
Also consider the function
¯p(L,N;z)=2Lτ2z2+(L−1)τz+22Nτ2z2+(N−1)τz+2. |
Let τz=α0, then
¯p(L,N,z)=2Lα20+(L−1)α0+22Nα20+(N−1)α0+2=Lα20+(L−1)2α0+1Nα20+(N−1)2α0+1=(Lα20+(L−1)2α0+1)[1+12(1−N)α0+(N2−6N+14)α20+⋯]=1+12(L−N)α0+14(L−N)(5−N)α20+⋯. |
This implies that
¯p(L,N;z)=1+12(L−N)τz+14(L−N)(5−N)τ2z2+⋯. | (3.6) |
It is simple to observe from (3.5) that
¯p(L,N;w(z))=1+14(L−N)τc1z+(14(L−N)τ(c2−12c21)+(L−N)(5−N)τ2c2116)z2+⋯. | (3.7) |
Since f∈S∗p(L,N,b), then
1+1b(1[p]qzDqf(z)f(z)−1)=1+1b[p]qap+1z+1b[p]q(2ap+2−a2p+1)z2+⋯. | (3.8) |
It is simple to show that by utilizing (3.3) and comparing the coefficients from (3.7) and (3.8), we get
ap+1=b[p]q(L−N)τc14. | (3.9) |
Applying modulus on both side, we have
|ap+1|≤[p]q|b|(L−N)τ2. |
Now again comparing the coefficients from (3.7) and (3.8), we have
2b[p]qap+2=14(L−N)τ(c2−12c21)+(L−N)(5−N)τ2c2116+1[p]qba2p+1, |
|ap+2|=b[p]q(L−N)τ8|c2−v2c21|, | (3.10) |
where
v=1−τ2(5−N+[p]qb(L−N)). |
It shows that v>2 which is satisfied by the relation L>N. Hence, by applying Lemma 2, we obtain the required result.
Result is sharp for the function
f∗(z)=zpexp(b[p]qz∫0¯p(L,N,t)−1tdt)=zp+b[p]q(L−N)τ2zp+1+b[p]q(L−N)(5−N)τ28zp+2+⋯, | (3.11) |
where ¯p(L,N,) defined in (1.4).
Letting q→1−, b=1 and p=1 in Theorem 6, we get the known corollary proved in [32] for starlike functions connected with cardioid domain.
Corollary 1. [32] Let f∈S∗(L,N) be given by (1.2), −1≤N<L≤1. Then
|a2|≤(L−N)|τ|2,|a3|≤(L−N)|τ|28{L−2N+5}. |
Fekete-Szegö problem |ap+2−μa2p+1| for the functions f∈S∗p(L,N,b) are investigated in Theorem 7.
Theorem 7. Let f∈S∗p(L,N,q,b) and of the form (1.1). Then
|ap+2−μa2p+1|≤[p]q|b|(L−N)|τ|8max{2,|τ(−(L−N)[p]qb+N−5+2[p]qb(L−N)μ)|}. |
This result is sharp.
Proof. Since f∈S∗p(L,N,q,b), we have
1+1b(1[p]qzDqf(z)f(z)−1)=¯p(L,N;w(z)), z∈U, |
where w is Schwarz function such that w(0) and |w(z)|<1 in U. Therefore
1+1b(1[p]qzDqf(z)f(z)−1)=h(z),1+1[p]qbzDqf(z)f(z)=1b+(1+h1z+h2z2+⋯),zDqf(z)=[p]qbf(z)(1b+h1z+h2z2+⋯), |
and after some simple calculation, we have
[p]qzp+[p+1]qap+1zp+1+[p+2]qap+2zp+2+⋯=[p]qb{zp+ap+1zp+1+ap+2zp+2+⋯}(1b+h1z+h2z2+⋯)=[p]q{zp+ap+1zp+1+ap+2zp+2+⋯}(1+bh1z+bh2z2+⋯). |
Comparing the coefficients of both sides, we get
ap+1=[p]qbh1, 2ap+2=[p]qb(h1ap+1+h2). |
This implies that
|ap+2−μa2p+1|=[p]q|b|2|h2+(1−2μ)[p]qbh21|=[p]q|b|2|h2−vh21|, |
where
v=(2μ−1)[p]qb. |
By using (iv) of Lemma 1 for
v=(2μ−1)[p]qb, |
we have the required result. The equality
|ap+2−μa2p+1|=[p]q|b|(L−N)|τ|28|(L−N)[p]qb−N+5−2[p]qb(L−N)μ| |
holds for f∗ given in (3.11). Consider f0: U→C defined as:
f0(z)=zpexp([p]qbz∫0¯p(L,N;t2)−1tdt)=zp+[p]qbτ2(L−N)zp+2+⋯, | (3.12) |
where, ¯p(L,N;z) is defined in (1.4). Hence
1+1b(1[p]qzDqf(z)f(z)−1)=¯p(L,N;z2). |
This demonstrates f0∈S∗p(L,N,q,b). Hence the equality
|ap+2−μa2p+1|=[p]q|b|(L−N)|τ|2 |
holds for the function f0 given in (3.12).
Letting q→1−, b=1 and p=1 in Theorem 7, we get the known corollary proved in [32] for starlike functions associated with cardioid domain.
Corollary 2. [32] Let f∈S∗(L,N) and of the form (1.2). Then
|a3−μa22|≤(L−N)|τ|8max{2,|τ(−(L−2N+5)+2(L−N)μ)|}. |
This result is sharp.
Coefficient inequality for the class S∗p(L,N,b):
Theorem 8. For function f∈Ap, given by (1.1), if f∈S∗p(L,N,q,b), then
|ap+n|≤n+1∏k=2([k−2]q+[p]qqp|b((L−N)τ2)|)[n]q!, ( p,n∈N). |
Proof. Suppose f∈S∗p(L,N,q,b) and the function S(z) define by
S(z)=1+1b(1[p]qzDqf(z)f(z)−1). | (3.13) |
Then by Definition 5, we have
S(z)≺¯p(L,N;z), |
where, b∈C∖{0} and ¯p(L,N;z) is given by (1.4). Hence, applying the Lemma 4, we get
|S(m)(0)m!|=|cm|≤|¯Q1|, m∈N, | (3.14) |
where
S(z)=1+c1z+c2z2+⋯, |
and by (2.1), we have
|¯Q1|=|(L−N)τ2|. | (3.15) |
Also from (3.13), we find
zDqf(z)=[p]q{b[q(z)−1]+1}f(z). | (3.16) |
Since ap=1, in view of (3.16), we obtain
[n+p]q−[p]qap+n=[p]qb{cn+cn−1ap+1+⋯+c1ap+n−1}=b[p]qn∑i=1ciap+n−i. | (3.17) |
Applying (3.14) into (3.17), we get
qp[n]q|ap+n|≤[p]q|b||¯Q1|n∑i=1|ap+n−i|, p,n∈N. |
For n=1,2,3, we have
|ap+1|≤[p]qqp|b¯Q1|,|ap+2|≤[p]q|b¯Q1|qp[2]q(1+|ap+1|)≤[p]q|b¯Q1|qp[2]q(1+[p]qqp|b¯Q1|) |
and
|ap+3|≤[p]q|b¯Q1|qp[3]q(1+|ap+1|+|ap+2|)≤[p]q|b¯Q1|qp[3]q(1+[p]qqp|b¯Q1|+[p]q|b¯Q1|qp[2]q(1+[p]qqp|b¯Q1|))=[p]qqp|b¯Q1|((1+[p]qqp|b¯Q1|)([2]q+[p]qqp|b¯Q1|)[3]q[2]q), |
respectively. Applying the equality (3.15) and using the mathematical induction principle, we obtain
|ap+n|≤n+1∏k=2([k−2]q+[p]qqp|b¯Q1|)[n]q!=n+1∏k=2([k−2]q+[p]qqp|b((L−N)τ2)|)[n]q!. |
This evidently completes the proof of Theorem 8.
The initial coefficient bounds |ap+1| and |ap+2| for the functions f∈Kp(L,N,q,b) are investigated in Theorem 9 using the Lemma 2.
Theorem 9. Let f∈Kp(L,N,q,b) be given by (1.1), −1≤N<L≤1. Then
|ap+1|≤[p]2q|b|(L−N)τ2[p+1]q,|ap+2|≤b2[p]q(L−N)τ8[p+2]q(5−N+[p]qb2(L−N)). |
These bounds are sharp.
Proof. Let f∈Kp(L,N,q,b), and be of the form (1.1). Then
1−1b+1b[p]q(1+zD2qf(z)Dqf(z))≺¯p(L,N;z), | (3.18) |
where
¯p(L,N,z)=2Lτ2z2+(L−1)τz+22Nτ2z2+(N−1)τz+2. |
By applying the concepts of subordination, there exists a function w with
w(0)=0 and |w(z)|<1, |
such that
1−1b+1b[p]q(1+zD2qf(z)Dqf(z))=¯p(L,N;w(z)). | (3.19) |
Let
w(z)=h(z)−1h(z)+1=c1z+c2z2+c3z3+⋯2+c1z+c2z2+⋯=12c1z+12(c2−12c21)z2+12(c3−c1c2+14c31)z3+⋯. | (3.20) |
Since
¯p(L,N;z)=1+∞∑n=1¯Qnzn, |
then
¯p(L,N;w(z))=1+¯Q1{12c1z+12(c2−12c21)z2⋯}+¯Q2{12c1z+12(c2−12c21)z2⋯}2+⋯=1+¯Q1c12z+(12(c2−12c21)¯Q1+¯Q2c214)z2+⋯. | (3.21) |
Also consider the function
¯p(L,N;z)=2Lτ2z2+(L−1)τz+22Nτ2z2+(N−1)τz+2. |
Let τz=α0. Then
¯p(L,N,z)=2Lα20+(L−1)α0+22Nα20+(N−1)α0+2=Lα20+(L−1)2α0+1Nα20+(N−1)2α0+1=(Lα20+(L−1)2α0+1)[1+12(1−N)α0+(N2−6N+14)α20+⋯]=1+12(L−N)α0+14(L−N)(5−N)α20+⋯. |
This implies that
¯p(L,N;z)=1+12(L−N)τz+14(L−N)(5−N)τ2z2+⋯. | (3.22) |
It is simple to observe from (3.21) that
¯p(L,N;w(z))=1+14(L−N)τc1z+(14(L−N)τ(c2−12c21)+(L−N)(5−N)τ2c2116)z2+⋯. | (3.23) |
Since f∈Kp(L,N,q,b), then
1−1b+1b[p]q(1+zD2qf(z)Dqf(z))=1+[p+1]qb[p]qap+1z+1b[p]q(2[p+2]qap+2−[p+1]2q[p]qa2p+1)z2+⋯. | (3.24) |
It is simple to show that by utilizing (3.19) and comparing the coefficients from (3.23) and (3.24), we get
ap+1=b[p]2q(L−N)τc14[p+1]q. |
Applying modulus on both side, we have
|ap+1|≤[p]2q|b|(L−N)τ2[p+1]q. |
Now again comparing the coefficients from (3.7) and (3.8), we have
2[p+2]qb[p]qap+2=14(L−N)τ(c2−12c21)+(L−N)(5−N)τ2c2116+(p+1)2bp2a2p+1, |
|ap+2|=b[p]q(L−N)τ8[p+2]q|c2−v2c21|, |
where
v=1−τ2(5−N+[p]qb2(L−N)), |
it shows that v>2 which is satisfied by the relation L>N. Hence, by applying Lemma 2, we obtain the required result.
Result is sharp for the function
f∗(z)=zpexp(b[p]2qz∫0¯p(L,N,t)−1tdt)=zp+b[p]2q(L−N)τ2zp+1+b[p]2q(L−N)(5−N)τ28zp+2+⋯, | (3.25) |
where ¯p(L,N,) defined in (1.4).
Fekete-Szegö problem |ap+2−μa2p+1| for the functions f∈Kp(L,N,q,b) are investigated in Theorem 10.
Theorem 10. Let f∈Kp(L,N,q,b) and be of the form (1.1). Then
|ap+2−μa2p+1|≤[p]q|b|(L−N)|τ|4([p+1]q−[p]q+1)[p+2]q×max{2,|τ(−(L−N)[p]2qb+N−5+[p]3qb[p+2]q([p+1]q−[p]q+1)(L−N)[p+1]2qμ)|}. |
This result is sharp.
Proof. Since f∈Kp(L,N,b), we have
1−1b+1b[p]q(1+zD2qf(z)Dqf(z))=¯p(L,N;w(z)), z∈U, |
where w is Schwarz function such that w(0) and |w(z)|<1 in U. Therefore
1−1b+1b[p]q(1+zD2qf(z)Dqf(z))=h(z),1+zD2qf(z)Dqf(z)=(1b−1)b[p]q+b[p]q(1+h1z+h2z2+⋯),1+zD2qf(z)Dqf(z)=([p]q+b[p]qh1z+b[p]qh2z2+⋯),1+zD2qf(z)Dqf(z)=[p]q[1+bh1z+bh2z2+⋯], |
and after some simple calculation, we have
[p]q(1+[p−1]q)zp−1+([p+1]q([p]q+1)ap+1zp+[p+2]q([p+1]q+1)ap+2zp+1+⋯=[p]q{[p]qzp−1+[p+1]qap+1zp+[p+2]qap+2zp+1+⋯}(1+bh1z+bh2z2+⋯)=[p]2qzp−1+([p]q([p+1]qap+1+[p]2qbh1)zp+{[p]q[p+2]qap+2+[p]q[p+1]qbh1ap+1+[p]2qbh2}zp+1. |
Comparing the coefficients of both sides, we get
ap+1=[p]2qbh1[p+1]q, ap+2=[p]qb[p+2]q([p+1]q−[p]q+1)([p+1]qh1ap+1+h2). |
This implies that
ap+2−μa2p+1=[p]q|b|([p+1]q−[p]q+1)[p+2]q×(h2+(1−[p+2]q[p]q([p+1]q−[p]q+1)[p+1]2qμ)[p]2qbh21)=[p]q|b|([p+1]q−[p]q+1)[p+2]q(h2−vh21), |
where
v=([p+2]q[p]q([p+1]q−[p]q+1)[p+1]2qμ−1)[p]2qb. |
By using (iv) of Lemma 1 for
v=([p+2]q[p]q([p+1]q−[p]q+1)[p+1]2qμ−1)[p]2qb, |
we have the required result. The equality
|ap+2−μa2p+1|=[p]q|b|(L−N)|τ|24([p+1]q−[p]q+1)[p+2]q×|(L−N)[p]2qb−N+5−[p]3qb([p+1]q−[p]q+1)[p+2]q(L−N)[p+1]2qμ| |
holds for f∗ given in (3.25). Consider the function f0: U→C be defined as:
f0(z)=zpexp([p]2qbz∫0¯p(L,N;t2)−1tdt)=zp+τ[p]2qb2(L−N)zp+2+⋯, |
where, ¯p(L,N;z) is defined in (1.4). Hence and
1−1b+1b[p]q(1+zD2qf(z)Dqf(z))=¯p(L,N;z2). |
Theorem 11. Let f∈Ap, be given by (1.1). If f∈Kp(L,N,b), then
|ap+n|≤[p]qn+1∏k=2([k−2]q+[2]q[p]qqp|b((L−N)τ2)|)[n]q!([p+n]q), p,n∈N. |
Proof. We can obtain Theorem 11, by using the same technique of Theorem 8.
In this article, we have used the ideas of cardioid domain, multivalent analytic functions, and q-calculus operator theory to define the new subfamilies of multivalent q-starlike and q-convex functions. In Section 1, we discussed some basic concepts from geometric functions, analytic functions, multivalent functions, q-calculus operator theory, and the idea of the cardioid domain. We also define two new classes of p-valent starlike, convex functions connected with the cardioid domain using the q -difference operator. The already known lemmas are presented in Section 2. In Section 3, for the class S∗p(L,N,q,b), we investigated sharp coefficient bounds, Fekete-Szegö functional, and coefficient inequalities. Same type of results also studied for the class S∗p(L,N,q,b). The research also demonstrated how the parameters, including some new discoveries, expand and enhance the results.
For future studies, researchers can use a number of ordinary differential and q-analogous of difference and integral operators and can define a number of new subclasses of multivalent functions. By applying the ideas of this article, many new results can be found. The idea presented in this article can be implemented on papers [33,34,35], and researchers can discuss the new properties of multivalent functions associated with the cardioid domain.
The authors declare that they did not employ any artificial intelligence in the execution of this work.
The authors extend their appreciation to the Arab Open University for funding this work through research fund No. (AOURG-2023-007).
All the authors claim to have no conflicts of interest.
[1] | J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci., 16 (2011), 1140–1153. |
[2] | R. Metzler, K. Joseph, Boundary value problems for fractional diffusion equations, Phys. A, 278 (2000), 107–125. |
[3] |
K. B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Softw., 41 (2010), 9–12. https://doi.org/10.1016/j.advengsoft.2008.12.012 doi: 10.1016/j.advengsoft.2008.12.012
![]() |
[4] |
F. A. Rihan, Numerical modeling of fractional-order biological systems, Abstr. Appl. Anal., 2013 (2013), 1–11. https://doi.org/10.1155/2013/816803 doi: 10.1155/2013/816803
![]() |
[5] | J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in fractional Calculus, Dordrecht, Springer, 2007. |
[6] | V. E. Tarasov, Fractional dynamics: Application of fractional Calculus to dynamics of particles, Fields and Media, Springer, Heidelberg, Higher Education Press, Beijing, 2010. |
[7] | M. D. Ortigueira, Fractional Calculus for scientists and engineers: Lecture notes in electrical engineering, 84, Springer, Dordrecht, 2011. |
[8] | J. Hristov, Derivatives with non-singular kernels from the Caputo-Fabrizio definition and beyond: Appraising analysis with emphasis on diffusion models, Front. Fract. Calc., 1 (2017), 270–342. |
[9] | M. I. Abbas, On the Hamdard and Riemann-Liouville fractional neutral functional integro-differential equations with finite delay, J. Pseudo-Differ. Oper., 10 (2019), 1–10. |
[10] |
M. I. Abbas, Ulam stability of fractional impulsive differential equations with Riemann-Liouville integral boundary conditions, J. Contemp. Math. Anal., 50 (2015), 209–219. https://doi.org/10.3103/S1068362315050015 doi: 10.3103/S1068362315050015
![]() |
[11] |
A. Atangana, B. S. T. Alkahtani, New model of groundwater flowing within a confine aquifer: application of Caputo-Fabrizio derivative, Arabian J. Geo., 9 (2016), 1–6. https://doi.org/10.1007/s12517-015-2060-8 doi: 10.1007/s12517-015-2060-8
![]() |
[12] | A. A. Kilbas, M. Saigo, RK. Saxena, Generalized Mittag-Leffler function and generalized fractional calculus operators, Integr. Transf. Spec. F., (2004), 31–49. https://doi.org/10.1080/10652460310001600717 |
[13] | M. Caputo, M. Fabrizio, A new definition of fractional derivative of without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85. |
[14] |
T. Abdeljawad, D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels, Adv. Differ. Equ., 2017 (2017), 1–9. https://doi.org/10.1186/s13662-017-1126-1 doi: 10.1186/s13662-017-1126-1
![]() |
[15] | R. A. Khan, K. Shah, Existence and uniqueness of solutions to fractional order multi-point boundary value problems, Commun. Appl. Anal., 19 (2015), 515–526. |
[16] |
D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222
![]() |
[17] |
S. M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl., 222 (1998), 126–137. https://doi.org/10.1006/jmaa.1998.5916 doi: 10.1006/jmaa.1998.5916
![]() |
[18] |
S. M. Jung, Hyers-Ulam stability of linear differential equations of first order Ⅱ, Appl. Math. Lett., 19 (2006), 854–858. https://doi.org/10.1016/j.aml.2005.11.004 doi: 10.1016/j.aml.2005.11.004
![]() |
[19] | D. D. Bajnov, P. S. Simeonov, Systems with impulse effect stability, theory and applications. Ellis Horwood Series in mathematics and its applications, Halsted Press, New York, 1989. |
[20] | M. Benchohra, J. Henderson, S. Ntouyas, Impulsive diferential equations and inclusions: Contemporary mathematics and its applications, Hindawi Publishing Corporation, New York, 2006. https://doi.org/10.1155/9789775945501 |
[21] | V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of impulsive differential equations, World Scientific, Singapore, 1989. https://doi.org/10.1142/0906 |
[22] |
A. Atangana, D. Baleanu, Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer, J. Eng. Mech., 143 (2017), D4016005. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001091 doi: 10.1061/(ASCE)EM.1943-7889.0001091
![]() |
[23] |
T. A. Burton, T. Furumochi, Krasnoselskii's fixed point theorem and stability, Nonlinear Anal.-Theor., 49 (2002), 445–54. https://doi.org/10.1016/S0362-546X(01)00111-0 doi: 10.1016/S0362-546X(01)00111-0
![]() |
[24] |
J. E. Prussing, L. J. Wellnitz, W. G. Heckathorn, Optimal impulsive time-fixed direct-ascent interception, J. Guid. Control Dynam., 12 (1989), 487–494. https://doi.org/10.2514/3.20436 doi: 10.2514/3.20436
![]() |
[25] |
X. Liu, K. Rohlf, Impulsive control of a Lotka-Volterra system, J. Math. Cont. Inf., 15 (1998), 269–284. https://doi.org/10.1093/imamci/15.3.269 doi: 10.1093/imamci/15.3.269
![]() |
[26] |
T. Yang, L. Chua, Impulsive stabilization for control and synchronization of chaotic systems: Theory and application to secure communication, IEEE T. Circuits-I, 44 (1997), 976–988. https://doi.org/10.1109/81.633887 doi: 10.1109/81.633887
![]() |
[27] | J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 87–92. |
[28] |
K. Liu, J. Wang, Y. Zhou, D. O'Regan, Hyers-Ulam stability and existence of solutions for fractional differential equations with Mittag-Leffler kernel, Chaos, Soliton. Fract., 132 (2020), 109534. https://doi.org/10.1016/j.chaos.2019.109534 doi: 10.1016/j.chaos.2019.109534
![]() |
[29] |
J. Sheng, W. Jiang, D. Pang, S. Wang, Controllability of nonlinear fractional dynamical systems with a Mittag-Leffler kernel, Mathematics, 8 (2020), 2139. https://doi.org/10.3390/math8122139 doi: 10.3390/math8122139
![]() |
[30] |
D. Aimene, D. Baleanu, D. Seba, Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay, Chaos, Soliton. Fract., 128 (2019), 51–57. https://doi.org/10.1016/j.chaos.2019.07.027 doi: 10.1016/j.chaos.2019.07.027
![]() |
[31] |
D. Kumar, J. Singh, D. Baleanu, On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law, Math. Method. Appl. Sci., 43 (2020), 443–457. https://doi.org/10.1002/mma.5903 doi: 10.1002/mma.5903
![]() |
[32] |
A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Physica A: Stat. Mech. Appl., 505 (2018), 688–706. https://doi.org/10.1016/j.physa.2018.03.056 doi: 10.1016/j.physa.2018.03.056
![]() |
[33] |
A. Atangana, J. F. Gomez-Aguilar, Existence and data dependence theorems for solutions of an ABC-fractional order impulsive system, Chaos Soliton. Fract., 131 (2020), 109477. https://doi.org/10.1016/j.chaos.2019.109477 doi: 10.1016/j.chaos.2019.109477
![]() |
[34] |
Eiman, K. Shah, M. Sarwar, D. Baleanu, Study on Krasnoselskii's fixed point theorem for Caputo-Fabrizio fractional differential equations, Adv. Differ. Equ., 2020 (2020), 1–9. https://doi.org/10.1186/s13662-020-02624-x doi: 10.1186/s13662-020-02624-x
![]() |
[35] |
K. M. Owolabi, A. Shikonogo, Fractal fractional operator method on HER2+ and breast cancer dynamics, Appl. Comput. Math., 7 (2021), 1–19. https://doi.org/10.1007/s40819-021-01030-5 doi: 10.1007/s40819-021-01030-5
![]() |
[36] | K. M. Owolabi, Analysis and numerical simulation of cross-reaction systems with the Caputo-Fabrizio and Riezs operators, Numer. Meth. Part. D. E., 2021 (2021), 1–23. |
[37] |
E. J. Moore, S. Sirisubtawee, S. Koonprasert, A Caputo-Fabrizio fractional differential equation model for HIV/AIDS with treatment compartment, Adv. Differ. Equ., 2019 (2019), 200. https://doi.org/10.1186/s13662-019-2138-9 doi: 10.1186/s13662-019-2138-9
![]() |
[38] |
D. Baleanu, S. S. Sajjadi, A. Jajarmi, Z. Defterli, On a nonlinear dynomical system with both chaotic and nonchaotic behaviors: A new fractional analysis and control, Adv. Differ. Equ., 2021 (2021), 234. https://doi.org/10.1186/s13662-021-03393-x doi: 10.1186/s13662-021-03393-x
![]() |
[39] |
D. Baleanu, S. S. Sajjadi, J. H. Asad, A. Jajarmi, E. Estiri, Hyperchaotic behaviors, optimal control and synchronization of a nonautonomous cardiac conduction System, Adv. Differ. Equ., 2021 (2021), 175. https://doi.org/10.1186/s13662-021-03320-0 doi: 10.1186/s13662-021-03320-0
![]() |
[40] |
D. Baleanu, S. Zibaei, M. Namjoo, A. Jajarmi, A nonstandard finite difference scheme for the modeling and nonidentical synchronization of a noval fractional chaotic system, Adv. Differ. Equ., 2021 (2021), 308. https://doi.org/10.1186/s13662-021-03454-1 doi: 10.1186/s13662-021-03454-1
![]() |
[41] |
M. M. Meerschaert, A. B. David, H. P. Scheffler, B. Baeumer, Stochastic solution of space-time fractional diffusion equations, Phys. Rev. E, 65 (2002), 041103. https://doi.org/10.1103/PhysRevE.65.041103 doi: 10.1103/PhysRevE.65.041103
![]() |
[42] | R. Schumer, A. B. David, M. M. Meerschaert, B. Baeumer, Fractal mobile/immobile solute transport, Water Resour. Res., 39 (2003), 1296. |
[43] |
X. Zheng, H. Wang, H. Fu, Well-posedness of fractional differential equations with variable-order Caputo-Fabrizio derivative, Chaos Soliton. Fract., 138 (2020), 109966. https://doi.org/10.1016/j.chaos.2020.109966 doi: 10.1016/j.chaos.2020.109966
![]() |