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1. Introduction

In recent decades, fractional differential equations have received great attention from the researchers
in many applied fields such as physics, biology, chemistry and other fields of sciences and
engineering [1–7, 32]. Due to many applications, this area has been studied with different fractional
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derivatives such as Riemman-Liouvile, Caputo, Hilfer and Hadamard type fractional derivatives
[8–12, 30, 31]. Further, the fractional time derivatives are importance reactive-transport, since solutes
may interact immobile porous medium in highly non-linear ways, some of the investigator using
fractional time derivatives for the solution of space-time fractional diffusion equations [41, 42].
But now a days the researchers are studying a new type of fractional derivative which is called
Caputo-Fabrizio fractional derivative. This fractional derivative is also known as a non-singular
kernel or exponential kernel type derivative. In 2015, Caputo and Fabrizio together introduced this
derivative [13]. Latter on, Caputo-Fabrizio derivatives was used by many researchers for modeling
various problems in engineering sciences (look for example some articles [35, 36]. Further, this
type of derivative have many applications. Such as it is use an exponential decay kernel to a novel
HIV/AIDS epidemic model that includes an anti-retrovirus treatment compartment [37], and also some
researcher apply this new type of the fractional derivative for the dynamical system with both chaotic
and non-chaotic behaviors [38], hyper-chaotic behaviors, optimal control and synchronization [39],
nonstandard finite difference scheme and non-identical synchronization of a novel fractional chaotic
system [40]. Furthermore, the researchers studied the aforementioned area looking for results of
existence, uniqueness and stability. Some of the articles we refer to see the reader to earlier
works [14–18].

On the other hand, impulsive differential equations (IDEs) have played an important role in the
modeling of phenomena, chiefly in the description of dynamics to sudden changes as well as other
phenomena such as crops, diseases, etc. The said differential systems have been used to designate
the model since the previous century. For the fundamentals theory on IDEs the reader can consult
the monographs of Burton and Simeonov [19], Lakshmikantham et al. [20], Benchohra et al. [21].
Recently, impulsive FDEs are increasingly used to constitute an impulsive control theory. This theory is
used to model some physical phenomena. The said area has become a very important direction in IDEs
theory. Further numerous applications of IDEs to problems arising in satellite orbital transfer [24],
ecosystem management [25], electrical engineering [26], etc. Here refer for further applications
on IDEs [28, 29, 33]. When reviewing the existence literature, we see that very rarely it has been
investigated IFDEs with the participation of the CFFD. For instance recently author [22] investigated
the following problem of IDE with CFFD as

CF

0 D
ω
r u(r) = f(r, u(r)), r ∈ J , r , rk,

∆u(rk) = Ik(u(rk)), k = 1, 2, 3, ..., n,
u(0) = u0,

(1.1)

where CF0 D
ω
r represent CFFD of order ω, J = [0,T ], u0 ∈ R, the given function f : J × R → R, Ik :

R → R are continuous. Where ∆u(rk) represent change of right and left hand limit of the discontinuity
points rk, it is define as ∆u(rk) = u(r+

k ) − u(r−k ).
Inspired by the research work as mentioned above, we intend to work on implicit-IFDEs involving
CFFD of the form: 

CF

0 D
ω
r u(r) = g(r, u(r), CF0 D

ω
r u(r)), r ∈ J , r , rk,

∆u(rk) = Ik(u(rk)), k = 1, 2, 3, ..., n,
u(0) = f(u),

(1.2)

where CF0 D
ω
r represents the CFFD of order 0 < ω < 1, g : J × R × R −→ R, Ik : R −→ R and
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f : R −→ R are continuous function. Where ∆u(rk) represent change of right and left hand limit of
the discontinuity points rk, it is define as ∆u(rk) = u(r+

k ) − u(r−k ). By using Krasnoselskii’s and Banach
fixed point theorems, we establish the existence theory for the considered problem. Also we develop
some results for Hyers-Ulam (H-U) and generalized (G-H-U) stability. Pertinent example is given to
verify our results. Further keeping in mind that right hand side of problem (1.2) vanish at r = 0 as
suggested in [43].

In this article, we use a new type of fractional derivative with non-singular kernel involving non-
local initial condition and implicit functions is proposed. The introduced fractional derivative includes
as a special case Caputo-Fabrizio fractional derivative, and also study the implicit-FDEs with using
impulsive condition for the solution of existence, uniqueness and stability results. Next take two
counter examples to verify the necessary results.

In section 2, some basics preliminaries on fractional calculus are presented. In section 3, We develop
a results and discussion of implicit-IFDEs using an arbitrary non-singular kernel, such as Caputo-
Fabrizio fractional derivative. In section 4, we will investigate the stability results of Hyers-Ulam and
generalize Hyers-Ulam stability for the proposed problem of implicit-IFDEs. In section 5, take some
counter examples and its graphs to verify the necessary results. In the last section 6, take concluding
remarks of our article.

2. Basic results

In this part of our article, we need to provide some basic results and definitions of fractional calculus.
We derived our main results through using these basic results.

Definition 1. [27] For 0 < ω < 1, u ∈ H1(0, a). The CFFD for a function u of order ω is defined as

CF

0 D
ω
r u(r) =

(2 − ω)M(ω)
2(1 − ω)

∫ r

0
exp

(
−

ω

1 − ω
(r − θ)

)
u
′(θ)dθ, (2.1)

whereM(ω) is a normalization constant depending on ω.

Definition 2. [27] For 0 < ω < 1, the fractional integral for a function u is given by

CF

0 I
ω
r u(r) =

2(1 − ω)
(2 − ω)M(ω)

u(r) +
2ω

(2 − ω)M(ω)

∫ r

0
u(θ)dθ. (2.2)

When ω = 1, then we get first order classical integral using Remark 1. This convergent has been
proved in [34].

Remark 1. [22] Note that according to the previous definition, the fractional integral of a function u
with order 0 < ω < 1 is an average between function u and its integral of one. Imposing

2(1 − ω)
(2 − ω)M(ω)

+
2ω

(2 − ω)M(ω)
= 1,

it can be concluded that

M(ω) =
2

2 − ω
, 0 ≤ ω ≤ 1.
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Lemma 1. [22] The unique solution of the given initial value problemCF0 D
ω
r u(r) = y(r), 0 < ω < 1,

u(0) = u0 ∈ R,
(2.3)

is given by

u(r) = u0 +
2(1 − ω)

(2 − ω)M(ω)

(
y(r) − y(0)

)
+

2ω
(2 − ω)M(ω)

∫ r

0
y(θ)dθ,

where

Gω =
2(1 − ω)

(2 − ω)M(ω)
= 1 − ω, Qω =

2ω
(2 − ω)M(ω)

= ω.

Let C(J ,R) be the space of all continuous functions defined on the interval J endowed with the
usual supremum norm, that as:

‖ u ‖C= sup
r∈J
| u(r) | .

Let the set of functions

X = PC(J ,R) = {u : J → R | u ∈ C((rk, rk+1],R)}, k = 0, 1, 2, 3, ...,m

and there exist u(r+
k ) and u(r−k ), k = 1, 2, 3, 4, ...,m. The given set is Banach space with the norm is

defined as:

‖u‖PC = max
r∈J
|u(r)|.

Theorem 1. [23] Let Y be non empty, convex and closed subset of X. Consider two operators T , S
such that
1) T (y1) + S(y2) ∈ Y, for all y1, y2 ∈ Y.

2) T is contraction operator.
3) S is continuous and compact.
then there exists at least one solution y ∈ X such that T (y) + S(y) = y.

3. Results and discussion

The present section of our paper is reserved to investigate the existence and uniqueness for the
solution of the implicit-IFDEs by Krasnoselskii’s and Banach fixed point theorems.

Lemma 2. Suppose 0 < ω < 1 and τ : J → R be continuous. A function u ∈ X is the solution of the
given impulsive problem:

CF

0 D
ω
r u(r) = τ(r), 0 < ω < 1, r ∈ J , r , rk,

∆u(rk) = Ik(u(rk)), k = 1, 2, 3, ..., n,
u(0) = f(u).

(3.1)

AIMS Mathematics Volume 7, Issue 3, 4017–4037.



4021

If and only if it satisfies

u(r) =



f(u) + Gω[τ(r) − τ(0)] + Qω

∫ r

0
τ(η)dη, for r ∈ [0, r1],

f(u) + Gω[τ(r) − τ(0)] + I1(u(r−1 )) + Qω

∫ r1

0
τ(η)dη

+ Qω

∫ r

0
τ(η)dη, for r ∈ [r1, r2],

f(u) + Gω[τ(r) − τ(0)] + I1(u(r−1 )) + I2(u(r−2 )) + Qω

∫ r1

0
τ(η)dη

+ Qω

∫ r2

0
τ(η)dη + Qω

∫ r

0
τ(η)dη, for r ∈ [r2, r3],

...,

f(u) + Gω[τ(r) − τ(0)] +

k∑
i=1

Ii(u(r−i ))

+ Qω

k∑
i=1

∫ ri

0
τ(η)dη + Qω

∫ r

0
τ(η)dη, for r ∈ [rk, rk+1], where k = 1, 2, ...,m.

(3.2)

Proof. Suppose u(r) satisfies (3.1). If r ∈ [0, r1], then
CF

0 D
ω
r u(r) = τ(r), r ∈ (0, r1] with u(0) = f(u).

Using Lemma 1, we get

u(r) = f(u) + Gω[τ(r) − τ(0)] + Qω

∫ r

0
τ(η)dη. (3.3)

Now applying impulsive condition u(r−1 ), one has

u(r−1 ) = f(u) + Gω[τ(r1) − τ(0)] + Qω

∫ r1

0
τ(η)dη. (3.4)

Again if r ∈ [r1, r2], then
CF
r1
Dω

r u(r) = τ(r), r ∈ (r1, r2] with u(r+
1 ) = u(r−1 ) + I1(u(r−1 )).

Again using Lemma 1, we can obtain

u(r) = u(r+
1 ) + Gω[τ(r) − τ(r1)] + Qω

∫ r

0
τ(η)dη

= u(r−1 ) + I1(u(r−1 )) + Gω[τ(r) − τ(r1)] + Qω

∫ r

0
τ(η)dη.

Further using (3.4), we get

u(r) = f(u) + Gω[τ(r1) − τ(0)] + Qω

∫ r1

0
τ(η)dη

+ I1(u(r−1 )) + Gω[τ(r) − τ(r1)] + Qω

∫ r

0
τ(η)dη.
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Upon further simplification, we have

u(r) = f(u) + Gω[τ(r) − τ(0)] + I1(u(r−1 ))

+ Qω

∫ r1

0
τ(η)dη + Qω

∫ r

0
τ(η)dη.

(3.5)

Again using impulsive condition u(r−2 ) in (3.5), we obtain

u(r−2 ) = f(u) + Gω[τ(r2) − τ(0)] + I1(u(r−1 ))

+ Qω

∫ r1

0
τ(η)dη + Qω

∫ r2

0
τ(η)dη.

(3.6)

If r ∈ [r2, r3], then

CF
r2
Dω

r u(r) = τ(r), r ∈ (r2, r3] with u(r+
2 ) = u(r−2 ) + I2(u(r−2 )).

Again using Lemma 1, we can obtain

u(r) = u(r+
2 ) + Gω[τ(r) − τ(r2)] + Qω

∫ r

0
τ(η)dη

= u(r−2 ) + I2(u(r−2 )) + Gω[τ(r) − τ(r2)] + Qω

∫ r

0
τ(η)dη.

By using (3.6), we get

u(r) = f(u) + Gω[τ(r2) − τ(0)] + I1(u(r−1 ))

+ Qω

∫ r1

0
τ(η)dη + Qω

∫ r2

0
τ(η)dη + I2(u(r−2 )) + Gω[τ(r) − τ(r2)] + Qω

∫ r

0
τ(η)dη.

Further simplify, we get

u(r) = f(u) + Gω[τ(r) − τ(0)] + I1(u(r−1 )) + I2(u(r−2 ))

+ Qω

∫ r1

0
τ(η)dη + Qω

∫ r2

0
τ(η)dη + Qω

∫ r

0
τ(η)dη.

Furthermore, continue this process we obtain for r ∈ [rk, rk+1] as

u(r) = f(u) + Gω[τ(r) − τ(0)] +

k∑
i=1

Ii(u(r−i ))

+ Qω

k∑
i=1

∫ ri

0
τ(η)dη + Qω

∫ r

0
τ(η)dη, where k = 1, 2, ...,m.

Similarly, if u(r) satisfies (3.2), then we can prove that u(r) is the solution of (3.1). This complete the
proof. �
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Corollary 1. In view of Lemma 2, the solution of the said problem (1.2) is given by

u(r) =



f(u) + Gω[g(r, u(r), CF0 D
ω
r u(r)) − g(0, u(0), CF0 D

ω
r u(0))]

+ Qω

∫ r

0
g(η, u(η), CF0 D

ω
η u(η))dη, for r ∈ [0, r1],

f(u) + Gω[g(r, u(r), CF0 D
ω
r u(r)) − g(0, u(0), CF0 D

ω
r u(0))] + I1(u(r−1 ))

+ Qω

∫ r1

0
g(η, u(η), CF0 D

ω
η u(η))dη + Qω

∫ r

0
g(η, u(η), CF0 D

ω
η u(η))dη, for r ∈ [r1, r2],

f(u) + Gω[g(r, u(r), CF0 D
ω
r u(r)) − g(0, u(0), CF0 D

ω
r u(0))]

+ I1(u(r−1 )) + I2(u(r−2 )) + Qω

∫ r1

0
g(η, u(η), CF0 D

ω
η u(η))dη

+ Qω

∫ r2

0
g(η, u(η), CF0 D

ω
η u(η))dη + Qω

∫ r

0
g(η, u(η), CF0 D

ω
η u(η))dη, for r ∈ [r2, r3],

...,

f(u) + Gω[g(r, u(r), CF0 D
ω
r u(r)) − g(0, u(0), CF0 D

ω
r u(0))] +

k∑
i=1

Ii(u(r−i ))

+ Qω

k∑
i=1

∫ ri

0
g(η, u(η), CF0 D

ω
η u(η))dη + Qω

∫ r

0
g(η, u(η), CF0 D

ω
η u(η))dη, for r ∈ [rk, rk+1].

For the sake of simplicity, we use g(r, u(r), CF0 D
ω
r u(r)) = δu(r) and g(r, ū(r), CF0 D

ω
r ū(r)) = δ̄u(r)

also at r = 0, we use δu(0) = δ0. Further, for qualitative results, we need to transform the proposed
problem (1.2) to fixed point problem, we need to define an operator T : X → X defined as:

T u(r) = f(u) + Gω[δu(r) − δ0] +

k∑
i=1

Ii(u(r−i ))

+ Qω

k∑
i=1

∫ ri

0
δu(η)dη + Qω

∫ r

0
δu(η)dη.

(3.7)

First of all we introduce some hypothesis which are needed:

(H1) The function g : J × R × R → R is continuous.
(H2) There exist positive constants Cg > 0 and 0 < C∗g < 1, such that

|g(r, u(r), δu(r)) − g(r, ū(r), δ̄u(r))| ≤ Cg|u(r) − ū(r)| + C∗g |δu(r) − δ̄u(r)|.

(H3) The function Ik : R → R are continuous and there exists positive constant 0 < Lk < 1 with∑n
k=1 Lk < 1, such that

n∑
k=1

|Ik(u(r)) − Ik(ū(r))| ≤
n∑

k=1

Lk|u(r) − ū(r)|,

for all u, ū ∈ R, k = 1, 2, 3, ..., n. Further we use
∑n

k=1 Lk = LI throughout the paper.
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(H4) The function f : R → R is continuous and there exists constant 0 < K f < 1, such that

|f(u) − f(ū)| ≤ K f |u − ū|.

Theorem 2. Under the hypothesis H1–H4, the impulsive problem (1.2) has a unique solution if[
K f + LI +

(
Gω + (n + 1)Qω

)
T

Cg
1 −C∗g

]
< 1.

Proof. Suppose for each r ∈ J and any u(r), ū(r) ∈ X, we have in view of (3.7)

|T u(r) − T ū(r)| ≤|f(u) − f(ū)| + Gω|δu(r) − δ̄u(r)|

+

n∑
k=1

|Ik(u(r)) − Ik(ū(r))|

+Qω

n∑
k=1

∫ rk

0
|δu(η) − δ̄u(η)|dη + Qω

∫ r

0
|δu(η) − δ̄u(r)(η)|dη,

(3.8)

where δu(r) = g(r, u(r), δu(r)), so

|δu(r) − δ̄u(r)(r)| =|g(r, u(r), δu(r)) − g(r, ū(r), δ̄u(r))|
≤Cg|u(r) − ū(r)| + C∗g |δu(r) − δ̄u(r)|.

Continuing the above process, so we obtain

|δu(r) − δ̄u(r)| ≤
Cg

1 −C∗g
|u(r) − ū(r)|. (3.9)

Using the hypothesis (H3), (H4) and (3.9) in Eq (3.8), we get

|T u(r) − T ū(r)| ≤K f |u − ū| + Gω

( Cg
1 −C∗g

)∣∣∣∣∣u − ū∣∣∣∣∣ +

n∑
k=1

Lk|u − ū|

+Qω

( Cg
1 −C∗g

) n∑
k=1

∫ rk

0
|u − ū|dη + Qω

( Cg
1 −C∗g

) ∫ r

0
|u − ū|dη.

Taking maximum on both side, we get

max
r∈J
|T u(r) − T ū(r)| ≤K f max

r∈J
|u(r) − ū(r)| + Gω

( Cg
1 −C∗g

)
max
r∈J

∣∣∣∣∣u(r) − ū(r)
∣∣∣∣∣

+

n∑
k=1

Lk max
r∈J
|u(r) − ū(r)| + Qω

( Cg
1 −C∗g

) n∑
k=1

max
r∈J

∫ rk

0
|u(r) − ū(r)|dη

+Qω

( Cg
1 −C∗g

)
max
r∈J

∫ r

0
|u(r) − ū(r)|dη.

‖T u − T ū‖PC ≤

[
K f + Gω

( Cg
1 −C∗g

)
+ LI + nT Qω

( Cg
1 −C∗g

)
+T Qω

( Cg
1 −C∗g

)]∥∥∥∥∥u − ū∥∥∥∥∥
PC
,

≤

[
K f + LI +

(
Gω + (n + 1)T Qω

) Cg
1 −C∗g

]∥∥∥∥∥u − ū∥∥∥∥∥
PC
.
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Hence the constant given as [
K f + LI +

(
Gω + (n + 1)T Qω

) Cg
1 −C∗g

]
< 1.

Therefore, the operator T is contraction, so the operator has a unique fixed point, therefore the said
problem (1.2) has a unique solution. �

Next second main result is based on the Krasnoselskii’s fixed-point theorem. For this results we need
some hypothesis which is given below.

(H5) There exist some positive constants Pg,Qg,Rg > 0 and 0 < Qg < 1, such that

|g(r, u(r), δu(r))| ≤ Pg + Qg|u(r)| + Rg|δu(r)|,

for each r ∈ J and u(r), δu(r) ∈ R.
(H6) There exists positive constant K∗f > 0, such that

|f(u)| ≤ K∗f |u(r)|,

for u(r) ∈ R.

Theorem 3. Under the hypothesis (H2)–(H6) are satisfied, then the implicit-impulsive problem (1.2)
has at least one solution if

0 <
(
K f + Gω

Cg
1 −C∗g

+ LI

)
< 1.

Proof. For the proof of this theorem, we need to define two operators from (3.7), we have

T1u(r) = f(u) + Gω[δu(r) − δ0] +

k∑
i=1

Ii(u(r−i ))

and

T2u(r) = Qω

k∑
i=1

∫ ri

0
δ(η)dη + Qω

∫ r

0
δ(η)dη.

Let us define a set for a real number q > 0 as H = {u(r) ∈ X : ‖u‖PC ≤ q}, we need to show the operator
T1, is contraction. For this suppose u(r), ū(r) ∈ X, we have

|T1u(r) − T1ū(r)| ≤|f(u) − f(ū)| + Gω|δu(r) − δ̄u(r)|

+

n∑
k=1

|Ik(u(r)) − Ik(ū(r))|.

Using hypothesis (H3), (H4) and (3.9), then taking maximum on both side, we get

max
r∈J
|T1u(r) − T1ū(r)| ≤K f max

r∈J
|u(r) − ū(r)| + Gω

Cg
1 −C∗g

max
r∈J
|u(r) − ū(r)|

+

n∑
k=1

Lk
Cg

1 −C∗g
max
r∈J
|u(r) − ū(r)|.
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‖T1u − T1ū‖PC ≤

(
K f + Gω

Cg
1 −C∗g

+ LI

)
‖u − ū‖PC.

Here the given constant is (
K f + Gω

Cg
1 −C∗g

+ LI

)
< 1.

Hence the operator T1 is contraction. Next we need to prove that the operator T2 is compact and
continuous, for this u(r) ∈ X, we have

|T2u(r)| ≤ Qω

n∑
k=1

∫ rk

0
|δ(η)|dη + Qω

∫ r

0
|δ(η)|dη, (3.10)

where

|δu(r)| =|g(r, u(r), δu(r))|
≤Pg + Qg|u(r)| + Rg|δu(r)|.

Upon further simplification, we have

|δu(r)| ≤
Pg

1 − Rg
+

( Qg
1 − Rg

)
|u(r)|. (3.11)

Using (3.11) in (3.10) and then taking maximum, we get

max
r∈J
|T2u(r)| ≤nQω

[ Pg
1 − Rg

+

( Qg
1 − Rg

)]
max
r∈J

(
rk|u(r)|

)
+Qω

[ Pg
1 − Rg

+

( Qg
1 − Rg

)]
max
r∈J

(
r|u(r)|

)
.

‖T2u‖PC ≤(n + 1)QωT
[ Pg
1 − Rg

+

( Qg
1 − Rg

)]
‖u‖PC,

‖T2u‖PC ≤A∗,

where
A∗ = (n + 1)QωT

[ Pg
1 − Rg

+

( Qg
1 − Rg

)]
q.

Hence the operator T2 is bounded. Further suppose r1 < r2 in J , we have

|T2u(r2) − T2u(r1)| =

∣∣∣∣∣Qω

n∑
k=1

∫ rk

0
δ(η)dη + Qω

∫ r2

0
δ(η)dη

−Qω

n∑
k=1

∫ rk

0
δ(η)dη − Qω

∫ r1

0
δ(η)dη

∣∣∣∣∣,
≤Qω

∫ r2

0
|δ(η)|dη + Qω

∫ 0

r1

|δ(η)|dη.

(3.12)

AIMS Mathematics Volume 7, Issue 3, 4017–4037.



4027

Using (3.11) in (3.12), we get

|T2u(r2) − T2u(r1)| ≤ Qω

[ Pg
1 − Rg

+

( Qg
1 − Rg

)∣∣∣∣∣u(r)
∣∣∣∣∣](r2 − r1

)
.

Taking maximum on right hand side, we have

|T2u(r2) − T2u(r1)| ≤Qω

[ Pg
1 − Rg

+

( Qg
1 − Rg

)
max
r∈J

∣∣∣∣∣u(r)
∣∣∣∣∣](r2 − r1

)
≤Qω

[ Pg
1 − Rg

+

( Qg
1 − Rg

)∥∥∥∥∥u∥∥∥∥∥
PC

](
r2 − r1

)
.

Further
|T2u(r2) − T2u(r1)| ≤ Qω

[ Pg
1 − Rg

+

( Qg
1 − Rg

)
q
](

r2 − r1

)
. (3.13)

Obviously, from (3.13), we look that if r1 → r2, then the right hand side of the Eq (3.13) goes to zero,
so |T2u(r2) − T2u(r1)| → 0 as if r1 → r2. Hence we observe that the right-hand side of (3.13) goes to
zero uniformly. Therefore, the operator T2 is equicontinuou. Therefore the operator T2 is compact by
Arzelá-Ascoli theorem. Hence in view of Krasnoselskii theorem, we conclude that (1.2) has at least
one solution. �

4. Stability results

In this part of our article, we will investigate the stability of H-U and g-U-H stability for the problem
of implicit-IFDEs.

Definition 3. 〈 H-U stable 〉
The said implicit-impulsive problem (1.2), is H-U stable if any ε > 0 for the given inequality

|CF0 D
ω
r u(r) − g(r, u(r),CF0 D

ω
r u(r))| ≤ ε, ∀ r ∈ J .

Then, there exists unique solution ū(r) with a constantZ such that

|u(r) − ū(r)| ≤ Zε, ∀ r ∈ J .

Definition 4. 〈Generalized H-U stable 〉Our implicit-impulsive problem is g-H-U stable if there exists
non-decreasing function φ : (0,T )→ (0,∞), such that

|u(r) − ū(r)| ≤ Zφ(ε), ∀ r ∈ J .

With φ(0) = 0, φ(T ) = 0.

Also we discuss important remark here which is used in this section as:

Remark 2. Suppose there exists a function Ψ(r), which is depend on u ∈ X with Ψ(0) = 0, Ψ(T ) = 0
such that
(1) |Ψ(r)| ≤ ε, ∀ r ∈ J ,

(2) CF0 D
ω
r u(r) = g(r, u(r),CF0 D

ω
r u(r)) + Ψ(r), ∀ r ∈ J .
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Lemma 3. The solution of given proposed problem


CF

0 D
ω
r u(r) = g(r, u(r),CF0 D

ω
r u(r)) + Ψ(r), 0 < ω < 1, r ∈ J = [0,T ], r , rk,

∆u(rk) = Ik(u(rk)), k = 1, 2, 3, ..., n,
u(0) = f(u),

is

u(r) =f(u) + Gω[δu(r) − δ0] + Gω[Ψ(r) − Ψ(0)]

+

n∑
k=1

Ik(u(r−k )) + Qω

n∑
k=1

∫ rk

0
δ(η)dη + Qω

n∑
k=1

∫ rk

0
Ψ(η)dη

+Qω

∫ r

0
δ(η)dη + Qω

∫ r

0
Ψ(η)dη, ∀ r ∈ J , where k = 1, 2, 3, ..., n.

(4.1)

where δu(r) = g(r, u(r),CF0 D
ω
r u(r)) and Ψ(0) = 0. Further, from the solution (4.1), we get

∣∣∣∣∣u(r) −
[
f(u) + Gω[δu(r) − δ0] +

k∑
i=1

Ii(u(r−i ))

+ Qω

k∑
i=1

∫ ri

0
δ(η)dη + Qω

∫ r

0
δ(η)dη

]∣∣∣∣∣ ≤ (
Gω + QωT (n + 1)

)
ε.

(4.2)

Proof. The solution of (4.1) can be easily obtained through using Lemma 2. Although from the
solution it is clear to become result (4.2), by using Remark 2. �

Theorem 4. Under the Lemma 3, solution of the said implicit-impulsive problem (1.2), is H-U and
g-H-U stable if

Z =

(
Gω + QωT (n + 1)

)
1 −

(
K f + LI +

(
Gω + (n + 1)T Qω

)
Cg

1−C∗g

) < 1.

Proof. Suppose u(r) ∈ X be any solution of the mentioned problem (1.2) and ū(r) ∈ X be unique
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solution of the said problem, then we need to consider

|u(r) − ū(r)| =

∣∣∣∣∣u(r) −
[
f(ū) + Gω[δ̄u(r) − δ0] +

n∑
k=1

Ik(ū(r−k ))

+Qω

n∑
k=1

∫ rk

0
δ̄(η)dη + Qω

∫ r

0
δ̄(η)dη

]∣∣∣∣∣,
=

∣∣∣∣∣u(r) −
[
f(u) + Gω[δu(r) − δ0] +

k∑
i=1

Ii(u(r−i )) + Qω

n∑
k=1

∫ rk

0
δ(η)dη

+Qω

∫ r

0
δ(η)dη

]
+

[
f(u) + Gω[δu(r) − δ0] +

n∑
k=1

Ik(u(r−k ))

+Qω

n∑
k=1

∫ rk

0
δ(η)dη + Qω

∫ r

0
δ(η)dη

]
−

[
f(ū) + Gω[δ̄u(r) − δ0] +

n∑
k=1

Ik(ū(r−k )) + Qω

n∑
k=1

∫ rk

0
δ̄(η)dη + Qω

∫ r

0
δ̄(η)dη

]∣∣∣∣∣
|u(r) − ū(r)| ≤

∣∣∣∣∣u(r) −
[
f(u) + Gω[δu(r) − δ0] +

n∑
k=1

Ik(u(r−k ))

+Qω

n∑
k=1

∫ rk

0
δ(η)dη + Qω

∫ r

0
δ(η)dη

]∣∣∣∣∣
+|f(u) − f(ū)| + Gω|δu(r) − δ̄u(r)| +

n∑
k=1

|Ik(u(r−k )) − Ik(ū(r−k ))|

+Qω

n∑
k=1

∫ rk

0
|δ(η) − δ̄(η)|dη + Qω

∫ r

0
|δ(η) − δ̄(η)|dη

]
.

Using (4.2), (3.9) and hypothesis H3,H4 and then taking maximum on both side, we get

|u(r) − ū(r)| ≤
(
Gω + QωT (n + 1)

)
ε

+

(
K f + Gω

Cg
1 −C∗g

+ LI + nQω

Cg
1 −C∗g

rk + Qω

Cg
1 −C∗g

r
)
|u(r) − ū(r)|.

max
r∈J
|u(r) − ū(r)| ≤

(
Gω + QωT (n + 1)

)
ε

+ max
r∈J

(
K f + Gω

Cg
1 −C∗g

+ LI + nQω

Cg
1 −C∗g

rk + Qω

Cg
1 −C∗g

r
)

max
r∈J
|u(r) − ū(r)|.

Upon further simplification

‖u − ū‖PC ≤

(
Gω + QωT (n + 1)

)
ε

+

(
K f + LI +

(
Gω + (n + 1)T Qω

) Cg
1 −C∗g

)
‖u − ū‖PC.
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Hence from the above inequality, we get

‖u − ū‖PC ≤

(
Gω + QωT (n + 1)

)
ε

1 −
(
K f + LI +

(
Gω + (n + 1)T Qω

)
Cg

1−C∗g

) ,
which gives

‖u − ū‖PC ≤ Zε. (4.3)

Therefore, solution is H-U stable. And there exists non-decreasing function φ ∈ X. Then from Eq (4.3),
we can be write as

‖u − ū‖PC ≤ Zφ(ε),

with φ(0) = φ(T ) = 0. Therefore, solution of the implicit-impulsive problem (1.2) is g-H-U stable. �

5. Illustrative example

In this section, we study counter example to verify our results.

Example 1. Considered the implicit-IFDEs problem

CF

0 D
1
5
r u(r) =

r2

25
+

sin(u(r)) + sin(CF0 D
1
5
r u(r))

47 + r2 , r ∈ [0, 1],

∆u(
1
3

) =
e−u(

1
3 )

55
,

u(0) =
cos |u|

15
.

(5.1)

Here ω = 1
5 and CF0 D

1
5
r u(r) = δu(r), we can set

g(r, u(r), δu(r)) =
r2

25
+

sin(u(r)) + sin(δu(r))
47 + r2 , where u(r) ∈ X, δu(r) ∈ R,

I1(u(
1
3

)) =
e−u(

1
3 )

55
,

and
f(u) =

cos |u|
15

.

Clearly f and g are continuous functions. Now for u(r), ū(r) ∈ X, δu(r), δ̄u(r) ∈ R and r ∈ [0, 1]. Now,
we consider

∣∣∣∣∣g(r, u(r), δu(r)) − g(r, ū(r), δ̄u(r))
∣∣∣∣∣ ≤

∣∣∣∣∣ sin(u(r)) + sin(ū(r))
∣∣∣∣∣

47 + r2 +

∣∣∣∣∣ sin(δu(r)) + sin(δ̄u(r))
∣∣∣∣∣

47 + r2 ,

≤
1

47 + r2

(
|u(r) − ū(r)| + |δu(r) − δ̄u(r)|

)
.
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Applying maximum on both side, so we get

max
r∈[0,1]

∣∣∣∣∣g(r, u(r), δu(r)) − g(r, ū(r), δ̄u(r))
∣∣∣∣∣ ≤ 1

48

(
‖u − ū‖ + ‖δ − δ̄‖

)
.

Which satisfy hypothesis H2, we have

Cg = C∗g =
1

48
.

Now next we set for u(r), ū(r) ∈ X, we have∣∣∣∣∣I1(u(
1
3

)) − I1(ū(
1
3

))
∣∣∣∣∣ =

∣∣∣∣∣e−u( 1
3 )

55
−

e−ū(
1
3 )

55

∣∣∣∣∣
≤

1
55

(∣∣∣∣∣u(1
3

) − ū(
1
3

)
∣∣∣∣∣)

≤
1

55

(∥∥∥∥∥u − ū∥∥∥∥∥
PC

)
.

Hence, hypothesis H3, is satisfied, so L = 1
55 . Next we consider a function f(u) = cos |u|

15 , for u, ū ∈ R, we
have

|f(u) − f(ū)| =|
cos |u|

15
−

cos |ū|
15
|

≤
1

15
|u − ū|.

Therefore, H4, is satisfied, so K f = 1
15 . Further, we need to verify the condition of the theorems, for this

we know that ω = 1
5 and Gω = 4

5 ,Qω = 1
5 , we have the condition of theorem 2 is

[
K f + LI +

(
Gω + (n + 1)Qω

) Cg
1 −C∗g

]
=

[ 1
15

+
1

55
+

(4
5

+ 2 ×
1
5

) 1
48

1 − 1
48

]
=

856
7755

= 0.11038 < 1.

Therefore, the condition of Theorem 2, is satisfied, hence the mentioned implicit-impulsive
problem (5.1) has a unique solution. Further, we need to verify the condition of the theorem 3, we
have

0 <
(
K f + Gω

Cg
1 −C∗g

+ LI

)
=

790
7755

< 1.

Also the condition of Theorem 3, holds, so the solution of the said problem (5.1), is at least one solution.
In the last, we need to verify the stability results, for this, we verify the condition of the Theorem 4, we
have

Z = 0 · 2698 < 1.

Therefore, condition of the Theorem 4, is satisfied, hence the solution of the problem (5.1), has H-U
and g- H-U stable.
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Remark 3. Here we consider the given Example 1 and provide the graphical presentation in Figure 1.
We present graphical presentation of solution at different values of fractional order ω = 0.45, 0.65.0.85
and at the given values of impulsive points r1 = 1

4 , r2 = 1
2 , r3 = 3

4 .

From Figure 1, we see the stability behavior for different fractional order.
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Figure 1. Graphical presentation for different fractional order and given impulsive points of
Example 1.

Example 2. Take another implicit-IFDEs problem

CF

0 D
1
7
r u(r) =

r3

15
+

cos(u(r))
35

+
cos(CF0 D

1
7
r u(r))

25 + r
, r ∈ [0, 1],

∆u(
1
5

) =
e−u(

1
5 )

35
,

u(0) =
sin(|u|)

25
.

(5.2)

Here ω = 1
7 and CF0 D

1
7
r u(r) = δu(r), we can set

g(r, u(r), δu(r)) =
r3

15
+

cos(u(r))
35

+
cos(CF0 D

1
7
r u(r))

25 + r
, where u(r) ∈ X, δu(r) ∈ R,

I1(u(
1
5

)) =
eu(

1
5 )

35
,

and
f(u) =

sin(|u|)
25

.

Clearly f and g are continuous functions. For u(r), ū(r) ∈ X, δu(r), δ̄u(r) ∈ R and r ∈ [0, 1]. Consider,

∣∣∣∣∣g(r, u(r), δu(r)) − g(r, ū(r), δ̄u(r))
∣∣∣∣∣ ≤

∣∣∣∣∣ cos(u(r)) + cos(ū(r))
∣∣∣∣∣

35
+

∣∣∣∣∣ cos(δu(r)) + cos(δ̄u(r))
∣∣∣∣∣

25 + r
,

≤
1

35

(
|u(r) − ū(r)|

)
+

1
25 + r

(
|δu(r) − δ̄u(r)|

)
.
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Taking maximum on both side, we get

max
r∈[0,1]

∣∣∣∣∣g(r, u(r), δu(r)) − g(r, ū(r), δ̄u(r))
∣∣∣∣∣ ≤ 1

35

(
‖u − ū‖

)
+

1
25

(
‖δ − δ̄‖

)
.

One can see that the hypothesis H2 is satisfy, we have

Cg =
1

35
and C∗g =

1
25
.

Next consider for u(r), ū(r) ∈ X, we have∣∣∣∣∣I1(u(
1
5

)) − I1(ū(
1
5

))
∣∣∣∣∣ =

∣∣∣∣∣e−u( 1
5 )

35
−

e−ū(
1
5 )

35

∣∣∣∣∣
≤

1
35

(∣∣∣∣∣u(1
5

) − ū(
1
5

)
∣∣∣∣∣)

≤
1

35

(∥∥∥∥∥u − ū∥∥∥∥∥).
Hence, the hypothesis H3, is satisfied, where LI = 1

35 .

Next we consider a function f(u) =
sin(|u|)

25 , for u, ū ∈ R, we have

|f(u) − f(ū)| =

∣∣∣∣∣sin(|u|)
25

−
sin(|ū|)

25

∣∣∣∣∣
≤

1
25

∣∣∣∣∣u − ū∣∣∣∣∣.
Here K f = 1

25 , so the hypothesis H3, is satisfied.
Moreover, we need to verify the sufficient conditions of the theorems. For this we have ω = 1

7 and
Gω = 6

7 ,Qω = 1
7 . First we have to verify the condition of the Theorem 2, is[

K f + LI +

(
Gω + (n + 1)Qω

) Cg
1 −C∗g

]
=

[ 1
25

+
1

35
+

(6
7

+ 2 ×
1
7

) 1
35

1 − 1
35

]
=

161
525

= 0.3067 < 1.

One can see that condition of the Theorem 2, is satisfied. Therefore, the implicit-impulsive
problem (5.2) has a unique solution.
Further, verify condition of the Theorem 3, we have

0 <
(
K f + Gω

Cg
1 −C∗g

+ LI

)
=

73
700

< 1.

Also holds condition of the Theorem 3, hence solution of the said problem (5.2), is at least one solution.
In the last, we need to verify the stability results, for this, we have to verify condition of the Theorem 4,
we get

Z = 0 · 792 < 1.

Therefore, condition of the Theorem 4, is satisfied, hence the solution of the problem (5.2), has H-U
and g-H-U stable.
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Remark 4. Here we consider the given Example 2 and provide the graphical presentation in Figure 2.
We present graphical presentation of solution at different values of fractional order ω = 0.25, 0.45.0.99
and at the given values of impulsive points r1 = 1

4 , r2 = 1
2 , r3 = 3

4 . From Figure 2, we see the stability
behavior for different fractional order.
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Figure 2. Graphical presentation for different fractional order and given impulsive points of
Example 2.

6. Conclusions

We have in fact obtained some conditions necessary for the solution of existence, uniqueness and
stability of the said implicit-impulsive FDEs with involving CFFD. we obtain this conditions using the
fixed point theorem as Krasnoselskii’s and Banach contraction principle. In this article, we have used
Banach’s contraction theorem for the uniqueness of solution and Krasnoselskii’s fixed point theorem
for the existence of the solution for the said problem (1.2). Also we have studied this problem for the
stability of H-U and g-H-U stable. All the results have been demonstrated by a proper example. We
have also presented the solution through graph by taking different fractional order and impulsive points
using RKM methods.
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