In this paper, we will discuss some generalized classes of analytic functions related with conic domains in the context of q-calculus. In this work, we define and explore Janowski type q-starlike functions in q -conic domains. We investigate some important properties such as necessary and sufficient conditions, coefficient estimates, convolution results, linear combination, weighted mean, arithmetic mean, radii of starlikeness, growth and distortion results for these classes. It is important to mention that our results are generalization of number of existing results.
Citation: Syed Ghoos Ali Shah, Shahbaz Khan, Saqib Hussain, Maslina Darus. q-Noor integral operator associated with starlike functions and q-conic domains[J]. AIMS Mathematics, 2022, 7(6): 10842-10859. doi: 10.3934/math.2022606
[1] | Ekram E. Ali, Miguel Vivas-Cortez, Rabha M. El-Ashwah . New results about fuzzy $ \mathbf{\gamma } $-convex functions connected with the $ \mathfrak{q} $-analogue multiplier-Noor integral operator. AIMS Mathematics, 2024, 9(3): 5451-5465. doi: 10.3934/math.2024263 |
[2] | Shahid Khan, Saqib Hussain, Maslina Darus . Inclusion relations of $ q $-Bessel functions associated with generalized conic domain. AIMS Mathematics, 2021, 6(4): 3624-3640. doi: 10.3934/math.2021216 |
[3] | Saqib Hussain, Shahid Khan, Muhammad Asad Zaighum, Maslina Darus . Certain subclass of analytic functions related with conic domains and associated with Salagean q-differential operator. AIMS Mathematics, 2017, 2(4): 622-634. doi: 10.3934/Math.2017.4.622 |
[4] | Xiaoli Zhang, Shahid Khan, Saqib Hussain, Huo Tang, Zahid Shareef . New subclass of q-starlike functions associated with generalized conic domain. AIMS Mathematics, 2020, 5(5): 4830-4848. doi: 10.3934/math.2020308 |
[5] | Jianhua Gong, Muhammad Ghaffar Khan, Hala Alaqad, Bilal Khan . Sharp inequalities for $ q $-starlike functions associated with differential subordination and $ q $-calculus. AIMS Mathematics, 2024, 9(10): 28421-28446. doi: 10.3934/math.20241379 |
[6] | Shujaat Ali Shah, Ekram Elsayed Ali, Adriana Cătaș, Abeer M. Albalahi . On fuzzy differential subordination associated with $ q $-difference operator. AIMS Mathematics, 2023, 8(3): 6642-6650. doi: 10.3934/math.2023336 |
[7] | Ibtisam Aldawish, Mohamed Aouf, Basem Frasin, Tariq Al-Hawary . New subclass of analytic functions defined by $ q $-analogue of $ p $-valent Noor integral operator. AIMS Mathematics, 2021, 6(10): 10466-10484. doi: 10.3934/math.2021607 |
[8] | Huo Tang, Kadhavoor Ragavan Karthikeyan, Gangadharan Murugusundaramoorthy . Certain subclass of analytic functions with respect to symmetric points associated with conic region. AIMS Mathematics, 2021, 6(11): 12863-12877. doi: 10.3934/math.2021742 |
[9] | F. Müge Sakar, Arzu Akgül . Based on a family of bi-univalent functions introduced through the Faber polynomial expansions and Noor integral operator. AIMS Mathematics, 2022, 7(4): 5146-5155. doi: 10.3934/math.2022287 |
[10] | Ebrahim Amini, Mojtaba Fardi, Shrideh Al-Omari, Rania Saadeh . Certain differential subordination results for univalent functions associated with $ q $-Salagean operators. AIMS Mathematics, 2023, 8(7): 15892-15906. doi: 10.3934/math.2023811 |
In this paper, we will discuss some generalized classes of analytic functions related with conic domains in the context of q-calculus. In this work, we define and explore Janowski type q-starlike functions in q -conic domains. We investigate some important properties such as necessary and sufficient conditions, coefficient estimates, convolution results, linear combination, weighted mean, arithmetic mean, radii of starlikeness, growth and distortion results for these classes. It is important to mention that our results are generalization of number of existing results.
The quantum (or q-) calculus is an important area of study in the field of traditional mathematical analysis. Quantum calculus is a fascinating area of mathematical science with historical background, as well as a revived focus in the modern era. Quantum calculus is the modern name for the investigation of calculus without notation of limit. The quantum calculus or q-calculus began with Jackson in the early twentieth century, but this type of calculus had already been investigated by Euler and Jacobi. Recently q-calculus attract researchers for its wide applications in mathematics and related areas, such as number theory, combinatorics, orthogonal polynomials, basic hyper-geometric functions and other sciences. In recent years, the topic of q-calculus has attracted the attention of several researchers, and a variety of new results can be found in the papers [1,2,3,4] and the references cited therein.
A function ˆg is analytic at a point ξ0 if ˆg′(ξ) exists at ξ0 as well as in some neighborhood of ξ0. A function ˆg(ξ) is analytic in D if ˆg(ξ) is analytic at each point of D. In most of the cases it is much harder to use a random domain, so Riemann mapping theorem allows us to replace it with open unit disk defined as:
U={ξ∈C:|ξ|<1}. |
An analytic function ˆg is univalent in U, if ˆg(ξ1)=ˆg(ξ2) then ξ1=ξ2. A function ˆg(ξ) is said to be the class A if it has a Taylor series of the form
ˆg(ξ)=ξ+∞∑t=2atξt,ξ∈U. | (1.1) |
A collection of functions of the form (1.1), which are analytic and univalent in U are placed in the class S. An analytic function p(ξ) having positive real part i.e., ℜ{p(ξ)}>0 and p(0)=1 is placed in class P. Or equivalently
p∈P:p(ξ)=1+∞∑t=1atξt⟺ℜ{p(ξ)}>0,ξ∈U. | (1.2) |
The class of normalized convex functions is given by
C={ˆg:ˆg∈S;ℜ((ξˆg′(ξ))′ˆg(ξ))>0,ξ∈U}. |
Similarly, the class of normalized starlike functions with respect to origin is defined as:
S∗={ˆg:ˆg∈S;ℜ(ξˆg′(ξ)ˆg′(ξ))>0,ξ∈U}, |
for details, see [5]. A function ˆg(ξ)∈QC, the class of quasi-convex function if and only if there exists ˆh(ξ)∈C such that ℜ((ξˆg′(ξ))′ˆh′(ξ))>0. In 1952, Kaplan [6] introduced the class KC of close-to-convex function. A function is of the form (1.2) is in KC if and only if there exists ˆh(ξ)∈S∗ such that ℜ(ξˆg′(ξ)ˆh(ξ))>0. Let ˆg(ξ) is of the form (1.1) and ˆh(ξ) is of the form
ˆh(ξ)=ξ+∞∑t=2btξt,ξ∈U. | (1.3) |
Then the Hadamard product(convolution) of ˆg and ˆh is defined as:
(ˆg∗ˆh)(ξ)=ξ+∞∑t=2atbtξt=(ˆh∗ˆg)(ξ). | (1.4) |
The q-derivative of a function ˆg belonging to A defined as:
Dqˆg(ξ)=ˆg(qξ)−ˆg(ξ)ξ(q−1)forξ≠0, | (1.5) |
for details, see [7], where q∈(0,1) and ξ∈U. For ξ=0, (1.5) can be written as ˆg′(0) provided that the derivative exist. By using (1.1) and (1.5) the Maclaurin's series representation of Dqˆg is given by
Dqˆg(ξ)=1+∞∑t=0[t,q]atξt−1,t∈N. | (1.6) |
It can be noted from (1.5) that
limq→1−(Dqˆg(ξ))=limq→1−(ˆg(qξ)−ˆg(ξ)ξ(q−1))=ˆg′(ξ), where[t,q]=1−qt1−q. |
For any non negative integer t, the q-number shift factorial is given by
[t,q]!={1,t=0[1,q][2,q]⋯[t,q],t∈N | (1.7) |
see [8]. For y>0, the q-genralized Pochammar symbol is defined as:
[y,q]t={1,t=0[y,q][y+1,q]⋯[y+t−1,q],t∈N | (1.8) |
For μ>−1, we defined a function F−1q,1+μ(ξ) such that
Fq,1+μ(ξ)∗F−1q,1+μ(ξ)=ξDqˆg(ξ), | (1.9) |
where
Fq,1+μ(ξ)=ξ+∞∑t=2([1+μ,q]t−1[t−1,q]!ξt), forξ∈U. | (1.10) |
The study of operators plays an important role in the geometric function theory. Many differential and integral operators can be written in terms of convolution of certain analytic functions. In [8] q-analogue of Noor integral operator ℑμq:A→A is define as:
ℑμqˆg(ξ)=ˆg(ξ)∗F−1q,1+μ(ξ)=ξ+∞∑t=2ψt−1atξt, | (1.11) |
where
ψt−1=[t,q]![1+μ,q]t−1. | (1.12) |
From (1.11) we can easily obtain the following identity
[1+μ,q]ℑμqˆg(ξ)=[μ,q]ℑμ+1qˆg(ξ)+qμξDq(ℑμ+1qˆg(ξ)), | (1.13) |
from (1.11). It can be seen that ℑ0qˆg(ξ)=ξDqˆg(ξ), ℑ1qˆg(ξ)=ˆg(ξ) and
limq→1−(ℑμqˆg(ξ))=ξ+∞∑t=2t!(1+μ)t−1atξt. | (1.14) |
From (1.14), we can observe that by applying limit q→1, the operator defined in (1.11) reduces to well known Noor integral operator see ([9,10,11,12]).
In [13,14], Kanas and Waniowska introduced the concept of a conic domain Ξl for l≥0 as:
Ξl={U+iV:U>l√V2+(U−1)2}. | (1.15) |
This domain merely represent the right half plane for l=0, a hyperbola for 0<l<1, parabola for l=1 and ellipse for l>1. The extremal functions ϖl for this conic region Ξl is given by
ϖl(ξ)={1+ξ1−ξ l=0,1+{2π2(log√ξ+11−√ξ)2} l=1,1+21−l2sinh2[(2πarccosl)(arctanh√ξ)] 0<l<1,1+1l2−1sin[π2R(n)∫U(ξ)√n0(1√1−n2y2√1−x2)dx]+1l2−1 l>1, | (1.16) |
where U(ξ)=ξ−√n1−√nξ, for all ξ∈U, 0<l<1 and l=cosh[πR′(n)4R(n)] where R(n) is Legendre's complete elliptic integral of first kind and R′(n) is complementary integral of R(n) for more details, see [13,14,15,16]. If we take ϖl(ξ)=1+δ(l)ξ+δ1(l)ξ2+⋯, then
δ(l)={8(arccosl)2π2(1−l2) 0≤l<1,8π2 l=1,π24√n(l2−1)(1+n)R2(n) l>1. | (1.17) |
Let δ1(l)=δ2(l)δ(l), where
δ2(l)={2+(2πarccosl)23 0≤l<1,23 l=1,4R2(n)(1+n2+6n)−π224(1+n)√nR2(n) l>1. | (1.18) |
Definition 1. [17] Let p be a analytic function with p(0)=1. Then p∈P(λ,M) if and only if
p(ξ)≺λξ+1Mξ+1, where−1≤M<λ≤1. | (1.19) |
In [17] it was shown that p∈P(λ,M) if and only if there exists a function p∈ P such that
(1+λ)p(ξ)−(λ−1)(1+M)p(ξ)−(M−1)≺λξ+1Mξ+1. |
Definition 2. [18] A function ˆg∈A is in the class k−STq(N,O) if and only if
ℜ[G(ξ)H(ξ)]>k|G(ξ)H(ξ)−1|, | (1.20) |
where
G(ξ)=(OL1−L2)(ξDq(ˆg(ξ))ˆg(ξ))−(NL1−L2),H(ξ)=(OL1+L2)(ξDq(ˆg(ξ))ˆg(ξ))−(NL1+L2), |
and k≥0, −1≤O<N≤1, L1=q+1 and L2=3−q. For q→1, k−STq(N,O) was discussed in [21].
Lemma 1. [22] Suppose d(ξ)=1+∑∞t=1ctξt≺1+∑∞t=1Ctξt=H(ξ). If H(U) is convex and H(ξ)∈A, then
|C1|≥|ct|, for1≤t. | (2.1) |
Lemma 2. [18] Suppose 1+∑∞t=1ctξt=d(ξ)∈k−STq(N,O), then
L1(λ−M)4δ(l)=|δ(l,λ,M)|≥|ct|, | (2.2) |
where δ(l) is given by (1.17).
Lemma 3. [18] If d(ξ)=ξ+∑∞t=1btξt∈k−STq(N,O) for ξ∈U and k≥0, then
|bt|≤t−2∏p=0[|(N−O)δ(l)L1−4O[p,q]|4[p+1,q]q], | (2.3) |
where δ(l) is given by (1.17).
Lemma 4. If d∈S∗, G∈ S and ˆg∈C then
ˆg(ξ)∗d(ξ)G(ξ)ˆg(ξ)∗d(ξ)∈cˉo(G(U)), forallξ∈U. | (2.4) |
Where cˉo(G(U)) is the closed convex hull G(U).
Lemma 5. [18] A function ˆg∈A will be in the class k−STq(N,O), if
∞∑t=2{2(k+1)L2q[t−1,q]+|(OL1+L2)[t,q]−(NL1+L2)|}|at|<L1|O−N|. |
Motivated by the work of Mahmood et al. [18], Noor and Malik [21] and Arif et al. [8], we define a new subclasses of Janowski type q-starlike functions associated with q-conic domains as:
Definition 3. A function ˆg(ξ)∈A is apparently in the function class k−STq(μ,N,O) if and only if
ℜ[A(ξ)B(ξ)]>k|A(ξ)B(ξ)−1|, |
where
A(ξ)=(OL1−L2)(ξDq(ℑμqˆg(ξ))ℑμqˆg(ξ))−(NL1−L2),B(ξ)=(OL1+L2)(ξDq(ℑμqˆg(ξ))ℑμqˆg(ξ))−(NL1+L2), |
and k≥0, −1≤O<N≤1, μ>−1, L1=1+q and L2=3−q.
It is noted that, for μ=1, the function class k−STq(μ,N,O) reduces to well known class k−STq(N,O). Also 0−STq(1,N,O)=S∗(N,O) introduced by Srivastava et al. [19,23], further for q→1, k−STq→1−(N,O)=k−ST(N,O) this class was studied by Noor and Malik [21] also see [20,26].
Theorem 1. A function ˆg(ξ)∈A and of the form (1.1) is in the class k−STq(μ,N,O), if it fulfill the following restriction
∞∑t=2Λt|at|<L1|O−N|, |
where Λt={2(k+1)L2q[t−1,q]+|(OL1+L2)[t,q]−(NL1+L2)|}ψt−1.
Proof. Assume that (1.20) hold, then it is suffices to prove that
k|(OL1−L2)(ξDq(ℑμqˆg(ξ))ℑμqˆg(ξ))−(NL1−L2)(OL1+L2)(ξDq(ℑμqˆg(ξ))ℑμqˆg(ξ))−(NL1+L2)−1|−ℜ[(OL1−L2)(ξDq(ℑμqˆg(ξ))ℑμqˆg(ξ))−(NL1−L2)(OL1+L2)(ξDq(ℑμqˆg(ξ))ℑμqˆg(ξ))−(NL1+L2)−1]<1. |
We consider,
k|(OL1−L2)(ξDq(ℑμqˆg(ξ))ℑμqˆg(ξ))−(NL1−L2)(OL1+L2)(ξDq(ℑμqˆg(ξ))ℑμqˆg(ξ))−(NL1+L2)−1|−ℜ[(OL1−L2)(ξDq(ℑμqˆg(ξ))ℑμqˆg(ξ))−(NL1−L2)(OL1+L2)(ξDq(ℑμqˆg(ξ))ℑμqˆg(ξ))−(NL1+L2)−1]≤k|(OL1−L2)(ξDq(ℑμqˆg(ξ))ℑμqˆg(ξ))−(NL1−L2)(OL1+L2)(ξDq(ℑμqˆg(ξ))ℑμqˆg(ξ))−(NL1+L2)−1|=2L2(k+1)|ℑμqˆg(ξ)−ξDq(ℑμqˆg(ξ))(OL1+L2)(ξDq(ℑμqˆg(ξ)))−(NL1+L2)ℑμqˆg(ξ)|≤2L2(k+1)∞∑t=2|(1−[t,q])ψt−1||at|L1|O−N|−∞∑t=2|{(OL1+L2)[t,q]−(NL1+L2)}ψt−1||at|. |
The last inequalities is bounded above by 1 if
2L2(1+k)∞∑t=2|(1−[t,q])ψt−1||at|<L1|O−N|−∞∑t=2|{(OL1+L2)[t,q]−(NL1+L2)}ψt−1||at|, |
which reduces to
∞∑t=2Λt|at|<L1|O−N|. |
This complete the proof.
For μ=1, we have the following corollary.
Corollary 1. [18] A function ˆg(ξ)∈A and of the type (1.1) is considered to be in the function class k−STq(1,N,O), if it fulfill the following criterion
∞∑t=2{2(1+k)L2q[t−1,q]+|(OL1+L2)[t,q]−(NL1+L2)|}|at|<L1|O−N|. |
If q→1−, then corollary (3.2) reduces to:
Corollary 2. [21] A function ˆg(ξ)∈A of the form (1.1) is considered to be in the class k−ST(1,N,O), if it fulfill the following criterion
∞∑t=2{2(1+k)(t−1)+|t(O+1)−(N+1)|}|at|<|O−N|. |
Further if we take N=1, O=−1 then we have k−ST(1,−1).
Corollary 3. [14] A function ˆg(ξ)∈A of the form (1.1) is considered to be in the function class k−ST(1,1,−1), if it fulfill the following criterion
∞∑t=2{t+k(t−1)}|at|<1. |
Theorem 2. Let a function ˆg∈k−STq(μ,N,O) is of the form (1.1). Then
|at|≤t−2∏j=0|(N−O)(q+1)δlψj−1−4[j,q]qOψj|4[j+1,q]qψj+1, (t∈N∖{1}). | (3.1) |
This result is sharp.
Proof. Since ˆg∈k−STq(μ,N,O), so let
ξDq(ℑμqˆg(ξ))ℑμqˆg(ξ)=℘(ξ), | (3.2) |
where
℘(ξ)≺(N(1+q)+L2)ϖl(ξ)−((q+1)N+L2)(O(q+1)+L2)ϖl(ξ)−((q+1)O+L2). | (3.3) |
If
ϖl(ξ)=1+δl(ξ)+(δl(ξ))2+(δl(ξ))3+⋯, |
then
((q+1)N+L2)ϖl(ξ)−((q+1)N+L2)((q+1)O+L2)ϖl(ξ)−((1+q)O+L2)=1+14(q+1)(N−O)δl+14[(−14Nq−14N+14Oq+14O)((O+1)(1+q)+2−2q)]δ2l+⋯. |
Let ℘(ξ)=1+∑∞t=1ctξt, then by Lemma 2.1 and relation (3.3), we get
ct≤14(N−O)(1+q)|δl|. | (3.4) |
Now from (3.2), we have
ξDq(ℑμqˆg(ξ))=℘(ξ)ℑμqˆg(ξ), |
which implies that
∞∑t=2([t,q]−1)ψt−1atξt=(∞∑t=2ψt−1atξt)(∞∑t=1ctξt). |
By comparing coefficient of ξt, we obtain
([t,q]−1)ψt−1at=t−1∑j=1|at−j||ψj−1||cj|,(a1=1), |
which yields
|at|≤1q[t−1,q]ψt−1t−1∑j=1|ψj−1||at−j||cj|. |
By using (3.4), above inequalities can be written as:
|at|≤(N−O)(1+q)|δl||ψj−1|4q[t−1,q]ψt−1t−1∑j=1|aj|. | (3.5) |
Next we need to show that
(N−O)(1+q)|δl||ψj−1|4q[t−1,q]t−1∑j=1|aj|≤t−2∏j=0|(N−O)(1+q)δlψj−1−4qO[j,q]ψj|4[j+1,q]qψj+1. | (3.6) |
To derive (3.6), we will utilize the principle of mathematical induction.
For t=2, (3.5) become
|a2|≤(N−O)(q+1)|δl||ψj−1|4[1,q]qψ1. |
Which shows that (3.1) is true for t=2.
For t=3, (3.5) give us
|a3|≤(N−O)(q+1)|δl||ψj−1|4q[2,q]ψ2(1+|a2|)≤(q+1)(N−O)|δl||ψj−1|4q[2,q]ψ2(1+(N−O)(1+q)|ψj−1||δl|4q[1,q]ψ1). |
This shows that (3.1) is true for t=3. Now suppose that (3.6), for t=m that is
|am|≤(N−O)(1+q)|δl||ψj−1|4[m−1,q]qψm−1m−1∑j=1|aj|. | (3.7) |
On the other hand from (3.1), we have
|am|≤m−2∏j=0|(N−O)(1+q)δlψj−1−4qO[j,q]ψj|4q[j+1,q]ψj+1,(m∈N∖{1}). |
Using induction hypothesis on (3.6), we have
(q+1)(N−O)|δl||ψj−1|4ψm−1q[m−1,q]m−1∑j=1|aj|≤m−2∏j=0|(N−O)(q+1)δlψj−1−4qO[j,q]ψj|4ψj+1q[j+1,q]. | (3.8) |
As
m−2∏j=0(N−O)(q+1)δlψj−1+4qO[j,q]4[j+1,q]ψj+1q≥((N−O)(q+1)|δl|ψj−1+4[m−1,q]q4ψjq[m,q])((q+1)(N−O)|ψj−1||δl|4qψm−1[m−1,q]m−1∑j=1|aj|)=(N−O)(1+q)|δl|ψj−14ψj[m,q]q((q+1)(N−O)|δl|ψj−14ψj+1[m−1,q]qm−1∑j=1|aj|+m∑j=1|aj|)=(N−O)(1+q)|δl|ψj−14q[m,q]ψjm∑j=1|aj|. |
Thus
(N−O)(1+q)|δl|ψj−14[m,q]qψjm∑j=1|aj|≤m−1∏j=0|(N−O)(1+q)δlψj−1−4q[j,q]ψj|4q[j+1,q]ψj+1, |
which shows that inequality (3.8), is true for t=m+1 and hence we obtained the required result.
For μ=1, we have the following corollary.
Corollary 4. [18] Consider a function ˆg∈k−STq(N,O) is of the form (1.1), then
|at|≤t−2∏j=0|(1+q)(N−O)δl−4qO[j,q]|4[j+1,q]q, (t∈N∖{1}). |
If k=0, then corollary (3.6) reduces to:
Corollary 5. [23] Consider a function ˆg∈ST∗q(N,O) is of the type (1.1), then
|at|≤t−2∏j=0|(1+q)(N−O)−2qO[j,q]|2[j+1,q]q, (t∈N∖{1}). |
Further if we take q→1− then we have ST(N,O).
Corollary 6. [21] Consider a function ˆg∈ST(N,O) is of the type (1.1), then
|at|≤t−2∏j=0|(N−O)δl−2Oj|2(1+j), (t∈N∖{1}). |
If we take N=1 and O=−1 then we have k−STq(N,O).
Corollary 7. [14] Consider a function ˆg∈ST is of the type (1.1), then
|at|≤t−2∏j=0|δl+j|(j+1), (t∈N∖{1}). |
Further if we take N=1−2α, O=−1, k=0 and0≤α<1 then we have S∗(α).
Corollary 8. [24] Let the function ˆg∈S∗(α) be of the form (1.1), then
|at|≤t−2∏j=0|j−2α|(t−1)!, (t∈N∖{1}). |
Next we show that the class k−Pq(μ,N,O) is closed under convolution with convex function.
Theorem 3. If ˆg∈k−Pq(μ,N,O) and χ∈C, then ˆg∗χ∈k−Pq(μ,N,O).
Proof. We want to prove that
ξDq(χ(ξ)∗ℑμqˆg(ξ))(χ(ξ)∗ℑμqˆg(ξ))∈k−Pq(μ,N,O). |
It can be easily seen that
ξDq[χ(ξ)∗ℑμqˆg(ξ)][χ(ξ)∗ℑμqˆg(ξ)]=ℑμqˆg(ξ)∗χ(ξ)((ξDq(ℑμqˆg(ξ)))(ℑμqˆg(ξ)))ℑμqˆg(ξ)∗χ(ξ)=χ(ξ)∗ℑμqˆg(ξ)Ψ(ξ)χ(ξ)∗ˆg(ξ), |
where, ξDq(ℑμqˆg(ξ))ℑμqˆg(ξ)=Ψ(ξ)∈k−Pq(μ,N,O). By using Lemma 4, we obtain the required result.
For μ=1, we have the following corollary.
Corollary 9. [25] If ˆg∈k−Pq(N,O) and χ∈C, then ˆg∗χ∈k−Pq(N,O).
Theorem 4. If ˆg∈k−STq(μ,N,O) and Φ∈C, then ˆg∗Φ∈k−STq(μ,N,O).
Proof. We want to prove that
ξDq(Φ(ξ)∗ℑμqˆg(ξ))(ℑμqˆg(ξ)∗Φ(ξ))∈k−Pq(μ,N,O). |
It can be easily seen that
ξDq(Φ(ξ)∗ℑμqˆg(ξ))(Φ(ξ)∗ℑμqˆg(ξ))=ℑμqˆg(ξ)∗χ(ξ)(ξDq(ℑμqˆg(ξ))ℑμqˆg(ξ))ℑμqˆg(ξ)∗Φ(ξ)=Φ(ξ)∗ℑμqˆg(ξ)Ψ(ξ)Φ(ξ)∗ℑμqˆg(ξ), |
where, ξDq(ℑμqˆg(ξ))ℑμqˆg(ξ)=Ψ(ξ)∈k−Pq(μ,N,O), by applying Lemma 4, we obtain the required result.
For μ=1, we have the following corollary.
Corollary 10. [25] If ˆg∈k−STq(N,O) and Φ∈C, then ˆg∗Φ∈k−STq(N,O).
Linear combination for our defined classes are defined as following.
Theorem 5. Let ˆgi∈k−STq(μ,N,O) and have the form
ˆgi(ξ)=ξ+∞∑t=1at,iξt, fori=1,2,3,⋯,n. |
Then
F∈k−STq(μ,N,O),whereF(ξ)=n∑i=1ciˆgi(ξ)withn∑i=1ci=1. |
Proof. By using (1.20), one can write
∞∑t=2[{2(k+1)L2q[t−1,q]+|(OL1+L2)[t,q]−(NL1+L2)|}ψt−1L1|O−N|]|at,i|<1. |
Therefore
F(ξ)=n∑i=2ci(ξ+∞∑t=2at,i⋅ξt)=ξ+∞∑t=2(n∑i=2ci⋅at,i)ξt, |
however
∞∑t=2[{2(k+1)L2q[t−1,q]+|(OL1+L2)[t,q]−(NL1+L2)|}ψt−1L1|O−N|](n∑i=2ciat,i)=n∑i=2(∞∑t=2[{2(k+1)L2q[t−1,q]+|(OL1+L2)[t,q]−(NL1+L2)|}ψt−1L1|O−N|]at,i)ci≤1. |
Theorem 6. If ˆg and ˆh belongs to k−STq(μ,N,O) where,
hW(ξ)={(1−W)ˆg(ξ)+(1+W)ˆh(ξ)2}. |
Proof. As
hW(ξ)={(1−W)ˆg(ξ)+(1+W)ˆh(ξ)2}=ξ+∞∑t=2{(1−W)at+∞∑t=2(1+W)bt2}ξt. |
To prove that hW(ξ)∈ k−STq(μ,N,O), we need to show
∑∞t=2[{2(k+1)L2q[t−1,q]+|(OL1+L2)[t,q]−(NL1+L2)|}ψt−1L1|O−N|]{(1−W)at+(1+W)bt2}<1. |
For this, consider
(1−W)2∞∑t=2{{2(k+1)L2q[t−1,q]+|(OL1+L2)[t,q]−(NL1+L2)|}L1|O−N|}ψt−1at+(1+W)2∞∑t=2{{2(k+1)L2q[t−1,q]+|(OL1+L2)[t,q]−(NL1+L2)|}L1|O−N|}ψt−1bt<(1−W)2(1)+(1+W)2(1)=1. |
Corollary 11. If we take μ=1, if ˆg and ˆh belongs to k−STq(1,N,O)=k−STq(N,O), then their weighted mean hW is also in k−STq(N,O).
Further for q→1−, then their weighted mean hW is also in k−ST(N,O). Where,
hW(ξ)={(1−W)ˆg(ξ)+(1+W)ˆh(ξ)2}. |
Theorem 7. Let ˆgi∈k−STq(μ,N,O) where i=1,2,⋯,ν then the arithmetic mean
AM(ξ)=1νν∑i=1ˆgi(ξ), |
also belongs to the class k−STq(μ,N,O).
Proof. As AM(ξ)=1ν∑νi=1ˆgi(ξ) and ˆgi(ξ)=ξ+∑∞t=2at,iξt then we have
AM(ξ)=1νν∑i=1(ξ+∞∑t=2at,iξt)=ξ+∞∑t=2(1νν∑i=1at,i)ξt. | (3.9) |
Since ˆgi∈k−STq(μ,N,O) for every i=1,2,⋯,ν, so by using (1.20) and (3.9), we get
∞∑t=2ψt−1{2(k+1)L2q[t−1,q]+|(OL1+L2)[t,q]−(NL1+L2)|}(1νν∑i=1at,i)≤1νν∑i=1(L1|O−N|)=L1|O−N|, |
i.e.
∞∑t=2ψt−1{2(k+1)L2q[t−1,q]+|(OL1+L2)[t,q]−(NL1+L2)|}(1νν∑i=1at,i)≤L1|O−N|. |
This complete the proof.
Corollary 12. If we take μ=1, ˆgi∈k−STq(N,O) with i=1,2,⋯,ν then the arithmetic mean
AM(ξ)=1νν∑i=1ˆgi(ξ) |
this belongs to the class k−STq(N,O).
Further, for μ=1,ˆgi∈k−STq→1(1,N,O)=k−ST(N,O) where i=1,2,⋯,ν then the arithmetic mean AM(ξ) also belongs to the class k−ST(N,O).
Theorem 8. Let ˆg∈k−STq(μ,N,O), then ˆg will belongs to the family S∗(α) called starlike functions of order α(0≤α<1) for |ξ|<r1, where
r1=[(1−α){2(1+k)L2q[t−1,q]+|(OL1+L2)[t,q]−(NL1+L2)|}[t,q]!L1|O−N|(t−α)[μ+1,q]t−1](1t−1). |
Proof. Let ˆg∈k−STq(μ,N,O). To prove ˆg∈S∗(α), we need to show
|ξˆg′(ξ)/ˆg(ξ)−1ξˆg′(ξ)/ˆg(ξ)+1−2α|<1. |
Using values of ˆg(ξ) along with some staightforward calculations, we have
∞∑t=2(t−α1−α)|at||ξ|t−1<1. | (3.10) |
Since ˆg∈k−STq(μ,N,O), so from (1.20), we can easily obtain
∞∑t=2[t,q]![μ+1,q]t−1({2(k+1)L2q[t−1,q]+|(OL1+L2)[t,q]−(NL1+L2)|}L1|O−N|)|at|<1. |
The inequality (3.10), holds if the following relation are true
∞∑t=2(t−α1−α)|at||ξ|t−1<∞∑t=2[t,q]![μ+1,q]t−1({2(k+1)L2q[t−1,q]+|(OL1+L2)[t,q]−(NL1+L2)|}L1|O−N|)|at|, |
which implies that
|ξ|<((1−α){2(k+1)L2q[t−1,q]+|(OL1+L2)[t,q]−(NL1+L2)|}[t,q]!L1|O−N|(t−α)[μ+1,q]t−1)(1t−1). |
Which completes the proof.
Corollary 13. If we take μ=1, if ˆg∈k−STq(N,O), then |ξ|<r2, where
r2=[(1−α){2(1+k)L2q[t−1,q]+|(OL1+L2)[t,q]−(NL1+L2)|}[t,q]!L1|O−N|(t−α)](1t−1). |
Further, ˆg∈k−STq→1(1,N,O)=k−ST(N,O), ˆg then |ξ|<r3, where
r3=[(1−α){2(1+k)(t−1)+|(O+1)t−(N+1)|}|O−N|(t−α)](1t−1). |
Theorem 9. If ˆg∈k−STq(μ,N,O) has the form (1.1), then
r(1−ζ)≤|ˆg(ξ)|≤r(ζ+1), |
where
ζ=L1|O−N|{2(k+1)L2q+|(OL1+L2)(1+q)−(NL1+L2)|}ψ1with|ξ|=r<1. |
Proof. Consider
|ˆg(ξ)|=|ξ+∞∑t=2atξt|=r+∞∑t=2|at|rt, |
This implies
|ˆg(ξ)|≤r+r∞∑t=2|at|=r(1+∞∑t=2|at|). | (3.11) |
Similarly,
|ˆg(ξ)|≥r(1−∞∑t=2|at|). | (3.12) |
It can be easily observed that
{2(k+1)L2q[1,q]+|(OL1+L2)[2,q]−(NL1+L2)|}ψ1∞∑t=2at≤∞∑t=2{2(k+1)L2q[t−1,q]+|(OL1+L2)[t,q]−(NL1+L2)|}ψt−1|at|. |
By using (1.20), we obtain
{2(k+1)L2q[1,q]+|(OL1+L2)[2,q]−(NL1+L2)|}ψ1∞∑t=2|at|≤L1|O−N|, |
which gives
∞∑t=2|at|≤L1|O−N|{2(k+1)L2q[1,q]+|(OL1+L2)[2,q]−(NL1+L2)|}ψ1=L1|O−N|{2(k+1)L2q+|(OL1+L2)(1+q)−(NL1+L2)|}ψ1, |
now using this relation in (3.11) and (3.12), we get
r(1−ζ)≤|ˆg(ξ)|≤r(ζ+1). |
As required.
Corollary 14. If we take μ=1, and ˆg∈k−STq(N,O), has the form (1.1), then
r(1−ζ1)≤|ˆg(ξ)|≤r(1+ζ1), |
where
ζ1=L1|O−N|{2(k+1)L2q+|(OL1+L2)(1+q)−(NL1+L2)|}. |
Further, ˆg∈k−STq→1(1,N,O)=k−ST(N,O), has the form (1.1), then
r(1−ζ2)≤|ˆg(ξ)|≤r(1+ζ2), |
where,
ζ2=|O−N|{2(k+1)+|2(O+1)−(N+1)|}. |
Corollary 15. If ˆg∈k−STq(N,O), has the form (1.1), then
(1−rtϰ1)≤|ˆg′(ξ)|≤(1+rtϰ1), |
where,
ϰ1=L1|O−N|{2(k+1)L2q+|(OL1+L2)(1+q)−(NL1+L2)|}. |
Further, ˆg∈k−STq→1(1,N,O)=k−ST(N,O), has the form (1.1), then
(1−rtϰ2)≤|ˆg′(ξ)|≤(1+rtϰ2), |
where,
ϰ2=|O−N|{2(k+1)+|2(O+1)−(N+1)|}. |
By using q-analogue of Noor integral operator, we studied various properties such as necessary and sufficient conditions, coefficient bounds, convolution properties, linear combinations, weighted means, arithmetic means, distortion and covering theorems and radii of starlikenss, for a newly define class of analytic functions in conic regions. We also pointed out many special cases in the form of corollaries by specializing the parameters.
The work here is supported by FRGS/1/2019/STG06/UKM/01/1.
The authors declare that there is no conflict of interests in this paper.
[1] | B. Ahmad, S. K. Ntouyas, Boundary value problems for q-difference inclusions, Abstr. Appl. Anal., 2011 (2011), Article ID 292860. https://doi.org/10.1155/2011/292860 |
[2] |
W. Zhou, H. Liu, Existence solutions for boundary value problem of nonlinear fractional q-difference equations, Adv. Differ. Equ., 2013 (2013), 1–12. https://doi.org/10.1186/1687-1847-2013-113 doi: 10.1186/1687-1847-2013-113
![]() |
[3] |
C. Yu, J. Wang, Existence of solutions for nonlinear second-order q-difference equations with first-order q-derivatives, Adv. Differ. Equ., 2013 (2013), 1–11. https://doi.org/10.1186/1687-1847-2013-365 doi: 10.1186/1687-1847-2013-365
![]() |
[4] |
S. Khan, S. Hussain, M. Darus, Inclusion relations of q -Bessel functions associated with generalized conic domain, AIMS Math., 6 (2021), 3624–3640. https://doi.org/10.3934/math.2021216 doi: 10.3934/math.2021216
![]() |
[5] |
J. W. Alexander, Functions which map the interior of the unit circleupon simple regions, Anal. Math., 17 (1915), 12–22. https://doi.org/10.2307/2007212 doi: 10.2307/2007212
![]() |
[6] |
W. Kaplan, Close-to-convex Schlicht functions, Mich. Math. J., 1 (1952), 169–185. https://doi.org/10.1307/mmj/1028988895 doi: 10.1307/mmj/1028988895
![]() |
[7] |
F. H. Jackson, On q-functions and a certain difference operator, Earth Environ. Sci. Trans. R. Soc. Edinb., 46 (1909), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751
![]() |
[8] |
M. Arif, M. U. Haq, J. L. Liu, A Subfamily of Univalent Functions Associated with q-Analogue of Noor Integral Operator, J. Funct. Spaces, 2018 (2018). https://doi.org/10.1155/2018/3818915 doi: 10.1155/2018/3818915
![]() |
[9] | K. I. Noor, Some new classes of integral operators, J. Math. Anal. Appl., 16 (1999), 71–80. |
[10] |
K. I. Noor, M. A. Noor, On integral operators, J. Math. Anal. Appl., 238 (1999), 341–352. https://doi.org/10.1006/jmaa.1999.6501 doi: 10.1006/jmaa.1999.6501
![]() |
[11] |
A. Rasheed, S. Hussain, S. G. A. Shah, M. Darus, S. Lodhi, Majorization problem for two subclasses of meromorphic functions associated with a convolution operator, AIMS Math., 5 (2020), 5157–5170. https://doi.org/10.3934/math.2020331 doi: 10.3934/math.2020331
![]() |
[12] |
S. G. A. Shah, S. Hussain, A. Rasheed, Z. Shareef, M. Darus, Application of Quasisubordination to Certain Classes of Meromorphic Functions, J. Funct. Spaces, 2020 (2020). https://doi.org/10.1155/2020/4581926 doi: 10.1155/2020/4581926
![]() |
[13] |
S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327–336. https://doi.org/10.1016/S0377-0427(99)00018-7 doi: 10.1016/S0377-0427(99)00018-7
![]() |
[14] | S. Kanas, A. Wisniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl., 45 (2000), 647–658. |
[15] | S. G. A. Shah, S. Noor, M. Darus, W. Ul Haq, S. Hussain, On meromorphic functions defined by a new class of liu-srivastava integral operator, Int. J. Anal. Appl., 18 (2020), 1056–1065. |
[16] |
S. G. A. Shah, S. Noor, S. Hussain, A. Tasleem, A. Rasheed, M. Darus, Analytic Functions Related with Starlikeness, Math. Probl. Eng., 2021 (2021). https://doi.org/10.1155/2021/9924434 doi: 10.1155/2021/9924434
![]() |
[17] |
W. Janowski, Some exremal problem for certain families of analytic functions, Ann. Pol. Math., 28 (1973), 297–326. https://doi.org/10.4064/ap-28-3-297-326 doi: 10.4064/ap-28-3-297-326
![]() |
[18] |
S. Mahmood, M. Jabeen, S. N. Malik, H. M. Srivastava, R. Manzoor, S. M. Riaz, Some coefficient inequalities of q-starlike functions associated with conic domain defined by q-derivative, J. Funct. Space., 2018 (2018), 8492072. https://doi.org/10.1155/2018/8492072 doi: 10.1155/2018/8492072
![]() |
[19] |
H. M. Srivastava, M. Tahir, B. Khan, Z. Ahmad, N. Khan, Some general classes of q-starlike functions associated with the Janowski functions, Symmetry, 11 (2019), 292. https://doi.org/10.3390/sym11020292 doi: 10.3390/sym11020292
![]() |
[20] |
H. Tang, S. Khan, S. Hussain, N. Khan, Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of order α, AIMS Math., 6 (2021), 5421–5439. https://doi.org/10.3934/math.2021320 doi: 10.3934/math.2021320
![]() |
[21] |
K. I. Noor, S. N. Malik, On coefficient inequalities of functions associated with conic domains, Comput. Math. Appl., 62 (2011), 2209–2217. https://doi.org/10.1016/j.camwa.2011.07.006 doi: 10.1016/j.camwa.2011.07.006
![]() |
[22] |
W. Rogosinski, On the coefficients of subordinate functions, Proc. Lond. Math. Soc., 2 (1945), 48–82. https://doi.org/10.1112/plms/s2-48.1.48 doi: 10.1112/plms/s2-48.1.48
![]() |
[23] | H. M. Srivastava, B. Khan, N. Khan, Zahoor, Coefficients inequalities for q-starlike functions associated with Janowski functions, Tech. Rep., 2017. |
[24] | A. W. Goodman, Univalent Functions, vols. Ⅰ–Ⅱ, Mariner Publishing Company, Tempa, Florida, USA, 1983. |
[25] |
M. Naeem, S. Hussain, S. Khan, T. Mahmood, M. Darus, Z. Shareef, Janowski Type q-Convex and q-Close-to-Convex Functions Associated with q-Conic Domain, Mathematics, 8 (2020), 440. https://doi.org/10.3390/math8030440 doi: 10.3390/math8030440
![]() |
[26] |
X. Zhang, S. Khan, S. Hussain, H. Tang, Z. Shareef, New subclass of q-starlike functions associated with generalized conic domain, AIMS Math., 5 (2020), 4830–4848. https://doi.org/10.3934/math.2020308 doi: 10.3934/math.2020308
![]() |
1. | Syed Ghoos Ali Shah, Saqib Hussain, F. M¨uge Sakar, Akhter Rasheed, Muhammad Naeem, Uniformly convex and starlike functions related with Liu-Owa integral operator, 2022, 1016-2526, 645, 10.52280/pujm.2022.541002 | |
2. | Ayotunde Lasode, Timothy Opoola, Some properties of a class of generalized Janowski-type $q$-starlike functions associated with Opoola $q$-differential operator and $q$-differential subordination, 2023, 73, 1303-5991, 349, 10.31801/cfsuasmas.1281348 |