Research article Special Issues

$ q $-Noor integral operator associated with starlike functions and $ q $-conic domains

  • Received: 14 January 2022 Revised: 10 March 2022 Accepted: 14 March 2022 Published: 31 March 2022
  • MSC : Primary 30C45, Secondary 30C50

  • In this paper, we will discuss some generalized classes of analytic functions related with conic domains in the context of $ q $-calculus. In this work, we define and explore Janowski type $ q $-starlike functions in $ q $ -conic domains. We investigate some important properties such as necessary and sufficient conditions, coefficient estimates, convolution results, linear combination, weighted mean, arithmetic mean, radii of starlikeness, growth and distortion results for these classes. It is important to mention that our results are generalization of number of existing results.

    Citation: Syed Ghoos Ali Shah, Shahbaz Khan, Saqib Hussain, Maslina Darus. $ q $-Noor integral operator associated with starlike functions and $ q $-conic domains[J]. AIMS Mathematics, 2022, 7(6): 10842-10859. doi: 10.3934/math.2022606

    Related Papers:

  • In this paper, we will discuss some generalized classes of analytic functions related with conic domains in the context of $ q $-calculus. In this work, we define and explore Janowski type $ q $-starlike functions in $ q $ -conic domains. We investigate some important properties such as necessary and sufficient conditions, coefficient estimates, convolution results, linear combination, weighted mean, arithmetic mean, radii of starlikeness, growth and distortion results for these classes. It is important to mention that our results are generalization of number of existing results.



    加载中


    [1] B. Ahmad, S. K. Ntouyas, Boundary value problems for q-difference inclusions, Abstr. Appl. Anal., 2011 (2011), Article ID 292860. https://doi.org/10.1155/2011/292860
    [2] W. Zhou, H. Liu, Existence solutions for boundary value problem of nonlinear fractional q-difference equations, Adv. Differ. Equ., 2013 (2013), 1–12. https://doi.org/10.1186/1687-1847-2013-113 doi: 10.1186/1687-1847-2013-113
    [3] C. Yu, J. Wang, Existence of solutions for nonlinear second-order q-difference equations with first-order q-derivatives, Adv. Differ. Equ., 2013 (2013), 1–11. https://doi.org/10.1186/1687-1847-2013-365 doi: 10.1186/1687-1847-2013-365
    [4] S. Khan, S. Hussain, M. Darus, Inclusion relations of $q$ -Bessel functions associated with generalized conic domain, AIMS Math., 6 (2021), 3624–3640. https://doi.org/10.3934/math.2021216 doi: 10.3934/math.2021216
    [5] J. W. Alexander, Functions which map the interior of the unit circleupon simple regions, Anal. Math., 17 (1915), 12–22. https://doi.org/10.2307/2007212 doi: 10.2307/2007212
    [6] W. Kaplan, Close-to-convex Schlicht functions, Mich. Math. J., 1 (1952), 169–185. https://doi.org/10.1307/mmj/1028988895 doi: 10.1307/mmj/1028988895
    [7] F. H. Jackson, On $q$-functions and a certain difference operator, Earth Environ. Sci. Trans. R. Soc. Edinb., 46 (1909), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751
    [8] M. Arif, M. U. Haq, J. L. Liu, A Subfamily of Univalent Functions Associated with $q$-Analogue of Noor Integral Operator, J. Funct. Spaces, 2018 (2018). https://doi.org/10.1155/2018/3818915 doi: 10.1155/2018/3818915
    [9] K. I. Noor, Some new classes of integral operators, J. Math. Anal. Appl., 16 (1999), 71–80.
    [10] K. I. Noor, M. A. Noor, On integral operators, J. Math. Anal. Appl., 238 (1999), 341–352. https://doi.org/10.1006/jmaa.1999.6501 doi: 10.1006/jmaa.1999.6501
    [11] A. Rasheed, S. Hussain, S. G. A. Shah, M. Darus, S. Lodhi, Majorization problem for two subclasses of meromorphic functions associated with a convolution operator, AIMS Math., 5 (2020), 5157–5170. https://doi.org/10.3934/math.2020331 doi: 10.3934/math.2020331
    [12] S. G. A. Shah, S. Hussain, A. Rasheed, Z. Shareef, M. Darus, Application of Quasisubordination to Certain Classes of Meromorphic Functions, J. Funct. Spaces, 2020 (2020). https://doi.org/10.1155/2020/4581926 doi: 10.1155/2020/4581926
    [13] S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327–336. https://doi.org/10.1016/S0377-0427(99)00018-7 doi: 10.1016/S0377-0427(99)00018-7
    [14] S. Kanas, A. Wisniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl., 45 (2000), 647–658.
    [15] S. G. A. Shah, S. Noor, M. Darus, W. Ul Haq, S. Hussain, On meromorphic functions defined by a new class of liu-srivastava integral operator, Int. J. Anal. Appl., 18 (2020), 1056–1065.
    [16] S. G. A. Shah, S. Noor, S. Hussain, A. Tasleem, A. Rasheed, M. Darus, Analytic Functions Related with Starlikeness, Math. Probl. Eng., 2021 (2021). https://doi.org/10.1155/2021/9924434 doi: 10.1155/2021/9924434
    [17] W. Janowski, Some exremal problem for certain families of analytic functions, Ann. Pol. Math., 28 (1973), 297–326. https://doi.org/10.4064/ap-28-3-297-326 doi: 10.4064/ap-28-3-297-326
    [18] S. Mahmood, M. Jabeen, S. N. Malik, H. M. Srivastava, R. Manzoor, S. M. Riaz, Some coefficient inequalities of $q$-starlike functions associated with conic domain defined by $q$-derivative, J. Funct. Space., 2018 (2018), 8492072. https://doi.org/10.1155/2018/8492072 doi: 10.1155/2018/8492072
    [19] H. M. Srivastava, M. Tahir, B. Khan, Z. Ahmad, N. Khan, Some general classes of $q$-starlike functions associated with the Janowski functions, Symmetry, 11 (2019), 292. https://doi.org/10.3390/sym11020292 doi: 10.3390/sym11020292
    [20] H. Tang, S. Khan, S. Hussain, N. Khan, Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of order $\alpha$, AIMS Math., 6 (2021), 5421–5439. https://doi.org/10.3934/math.2021320 doi: 10.3934/math.2021320
    [21] K. I. Noor, S. N. Malik, On coefficient inequalities of functions associated with conic domains, Comput. Math. Appl., 62 (2011), 2209–2217. https://doi.org/10.1016/j.camwa.2011.07.006 doi: 10.1016/j.camwa.2011.07.006
    [22] W. Rogosinski, On the coefficients of subordinate functions, Proc. Lond. Math. Soc., 2 (1945), 48–82. https://doi.org/10.1112/plms/s2-48.1.48 doi: 10.1112/plms/s2-48.1.48
    [23] H. M. Srivastava, B. Khan, N. Khan, Zahoor, Coefficients inequalities for $q$-starlike functions associated with Janowski functions, Tech. Rep., 2017.
    [24] A. W. Goodman, Univalent Functions, vols. Ⅰ–Ⅱ, Mariner Publishing Company, Tempa, Florida, USA, 1983.
    [25] M. Naeem, S. Hussain, S. Khan, T. Mahmood, M. Darus, Z. Shareef, Janowski Type $q$-Convex and $q$-Close-to-Convex Functions Associated with $q$-Conic Domain, Mathematics, 8 (2020), 440. https://doi.org/10.3390/math8030440 doi: 10.3390/math8030440
    [26] X. Zhang, S. Khan, S. Hussain, H. Tang, Z. Shareef, New subclass of $q$-starlike functions associated with generalized conic domain, AIMS Math., 5 (2020), 4830–4848. https://doi.org/10.3934/math.2020308 doi: 10.3934/math.2020308
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1476) PDF downloads(74) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog