Research article Special Issues

q-Noor integral operator associated with starlike functions and q-conic domains

  • In this paper, we will discuss some generalized classes of analytic functions related with conic domains in the context of q-calculus. In this work, we define and explore Janowski type q-starlike functions in q -conic domains. We investigate some important properties such as necessary and sufficient conditions, coefficient estimates, convolution results, linear combination, weighted mean, arithmetic mean, radii of starlikeness, growth and distortion results for these classes. It is important to mention that our results are generalization of number of existing results.

    Citation: Syed Ghoos Ali Shah, Shahbaz Khan, Saqib Hussain, Maslina Darus. q-Noor integral operator associated with starlike functions and q-conic domains[J]. AIMS Mathematics, 2022, 7(6): 10842-10859. doi: 10.3934/math.2022606

    Related Papers:

    [1] Ekram E. Ali, Miguel Vivas-Cortez, Rabha M. El-Ashwah . New results about fuzzy $ \mathbf{\gamma } $-convex functions connected with the $ \mathfrak{q} $-analogue multiplier-Noor integral operator. AIMS Mathematics, 2024, 9(3): 5451-5465. doi: 10.3934/math.2024263
    [2] Shahid Khan, Saqib Hussain, Maslina Darus . Inclusion relations of $ q $-Bessel functions associated with generalized conic domain. AIMS Mathematics, 2021, 6(4): 3624-3640. doi: 10.3934/math.2021216
    [3] Saqib Hussain, Shahid Khan, Muhammad Asad Zaighum, Maslina Darus . Certain subclass of analytic functions related with conic domains and associated with Salagean q-differential operator. AIMS Mathematics, 2017, 2(4): 622-634. doi: 10.3934/Math.2017.4.622
    [4] Xiaoli Zhang, Shahid Khan, Saqib Hussain, Huo Tang, Zahid Shareef . New subclass of q-starlike functions associated with generalized conic domain. AIMS Mathematics, 2020, 5(5): 4830-4848. doi: 10.3934/math.2020308
    [5] Jianhua Gong, Muhammad Ghaffar Khan, Hala Alaqad, Bilal Khan . Sharp inequalities for $ q $-starlike functions associated with differential subordination and $ q $-calculus. AIMS Mathematics, 2024, 9(10): 28421-28446. doi: 10.3934/math.20241379
    [6] Shujaat Ali Shah, Ekram Elsayed Ali, Adriana Cătaș, Abeer M. Albalahi . On fuzzy differential subordination associated with $ q $-difference operator. AIMS Mathematics, 2023, 8(3): 6642-6650. doi: 10.3934/math.2023336
    [7] Ibtisam Aldawish, Mohamed Aouf, Basem Frasin, Tariq Al-Hawary . New subclass of analytic functions defined by $ q $-analogue of $ p $-valent Noor integral operator. AIMS Mathematics, 2021, 6(10): 10466-10484. doi: 10.3934/math.2021607
    [8] Huo Tang, Kadhavoor Ragavan Karthikeyan, Gangadharan Murugusundaramoorthy . Certain subclass of analytic functions with respect to symmetric points associated with conic region. AIMS Mathematics, 2021, 6(11): 12863-12877. doi: 10.3934/math.2021742
    [9] F. Müge Sakar, Arzu Akgül . Based on a family of bi-univalent functions introduced through the Faber polynomial expansions and Noor integral operator. AIMS Mathematics, 2022, 7(4): 5146-5155. doi: 10.3934/math.2022287
    [10] Ebrahim Amini, Mojtaba Fardi, Shrideh Al-Omari, Rania Saadeh . Certain differential subordination results for univalent functions associated with $ q $-Salagean operators. AIMS Mathematics, 2023, 8(7): 15892-15906. doi: 10.3934/math.2023811
  • In this paper, we will discuss some generalized classes of analytic functions related with conic domains in the context of q-calculus. In this work, we define and explore Janowski type q-starlike functions in q -conic domains. We investigate some important properties such as necessary and sufficient conditions, coefficient estimates, convolution results, linear combination, weighted mean, arithmetic mean, radii of starlikeness, growth and distortion results for these classes. It is important to mention that our results are generalization of number of existing results.



    The quantum (or q-) calculus is an important area of study in the field of traditional mathematical analysis. Quantum calculus is a fascinating area of mathematical science with historical background, as well as a revived focus in the modern era. Quantum calculus is the modern name for the investigation of calculus without notation of limit. The quantum calculus or q-calculus began with Jackson in the early twentieth century, but this type of calculus had already been investigated by Euler and Jacobi. Recently q-calculus attract researchers for its wide applications in mathematics and related areas, such as number theory, combinatorics, orthogonal polynomials, basic hyper-geometric functions and other sciences. In recent years, the topic of q-calculus has attracted the attention of several researchers, and a variety of new results can be found in the papers [1,2,3,4] and the references cited therein.

    A function ˆg is analytic at a point ξ0 if ˆg(ξ) exists at ξ0 as well as in some neighborhood of ξ0. A function ˆg(ξ) is analytic in D if ˆg(ξ) is analytic at each point of D. In most of the cases it is much harder to use a random domain, so Riemann mapping theorem allows us to replace it with open unit disk defined as:

    U={ξC:|ξ|<1}.

    An analytic function ˆg is univalent in U, if ˆg(ξ1)=ˆg(ξ2) then ξ1=ξ2. A function ˆg(ξ) is said to be the class A if it has a Taylor series of the form

    ˆg(ξ)=ξ+t=2atξt,ξU. (1.1)

    A collection of functions of the form (1.1), which are analytic and univalent in U are placed in the class S. An analytic function p(ξ) having positive real part i.e., {p(ξ)}>0 and p(0)=1 is placed in class P. Or equivalently

    pP:p(ξ)=1+t=1atξt{p(ξ)}>0,ξU. (1.2)

    The class of normalized convex functions is given by

    C={ˆg:ˆgS;((ξˆg(ξ))ˆg(ξ))>0,ξU}.

    Similarly, the class of normalized starlike functions with respect to origin is defined as:

    S={ˆg:ˆgS;(ξˆg(ξ)ˆg(ξ))>0,ξU},

    for details, see [5]. A function ˆg(ξ)QC, the class of quasi-convex function if and only if there exists ˆh(ξ)C such that ((ξˆg(ξ))ˆh(ξ))>0. In 1952, Kaplan [6] introduced the class KC of close-to-convex function. A function is of the form (1.2) is in KC if and only if there exists ˆh(ξ)S such that (ξˆg(ξ)ˆh(ξ))>0. Let ˆg(ξ) is of the form (1.1) and ˆh(ξ) is of the form

    ˆh(ξ)=ξ+t=2btξt,ξU. (1.3)

    Then the Hadamard product(convolution) of ˆg and ˆh is defined as:

    (ˆgˆh)(ξ)=ξ+t=2atbtξt=(ˆhˆg)(ξ). (1.4)

    The q-derivative of a function ˆg belonging to A defined as:

    Dqˆg(ξ)=ˆg(qξ)ˆg(ξ)ξ(q1)forξ0, (1.5)

    for details, see [7], where q(0,1) and ξU. For ξ=0, (1.5) can be written as ˆg(0) provided that the derivative exist. By using (1.1) and (1.5) the Maclaurin's series representation of Dqˆg is given by

    Dqˆg(ξ)=1+t=0[t,q]atξt1,tN. (1.6)

    It can be noted from (1.5) that

    limq1(Dqˆg(ξ))=limq1(ˆg(qξ)ˆg(ξ)ξ(q1))=ˆg(ξ),  where[t,q]=1qt1q.

    For any non negative integer t, the q-number shift factorial is given by

    [t,q]!={1,t=0[1,q][2,q][t,q],tN (1.7)

    see [8]. For y>0, the q-genralized Pochammar symbol is defined as:

    [y,q]t={1,t=0[y,q][y+1,q][y+t1,q],tN (1.8)

    For μ>1, we defined a function F1q,1+μ(ξ) such that

    Fq,1+μ(ξ)F1q,1+μ(ξ)=ξDqˆg(ξ), (1.9)

    where

    Fq,1+μ(ξ)=ξ+t=2([1+μ,q]t1[t1,q]!ξt),   forξU. (1.10)

    The study of operators plays an important role in the geometric function theory. Many differential and integral operators can be written in terms of convolution of certain analytic functions. In [8] q-analogue of Noor integral operator μq:AA is define as:

    μqˆg(ξ)=ˆg(ξ)F1q,1+μ(ξ)=ξ+t=2ψt1atξt, (1.11)

    where

    ψt1=[t,q]![1+μ,q]t1. (1.12)

    From (1.11) we can easily obtain the following identity

    [1+μ,q]μqˆg(ξ)=[μ,q]μ+1qˆg(ξ)+qμξDq(μ+1qˆg(ξ)), (1.13)

    from (1.11). It can be seen that 0qˆg(ξ)=ξDqˆg(ξ), 1qˆg(ξ)=ˆg(ξ) and

    limq1(μqˆg(ξ))=ξ+t=2t!(1+μ)t1atξt. (1.14)

    From (1.14), we can observe that by applying limit q1, the operator defined in (1.11) reduces to well known Noor integral operator see ([9,10,11,12]).

    In [13,14], Kanas and Waniowska introduced the concept of a conic domain Ξl for l0 as:

    Ξl={U+iV:U>lV2+(U1)2}. (1.15)

    This domain merely represent the right half plane for l=0, a hyperbola for 0<l<1, parabola for l=1 and ellipse for l>1. The extremal functions ϖl for this conic region Ξl is given by

    ϖl(ξ)={1+ξ1ξ                                                                  l=0,1+{2π2(logξ+11ξ)2}                                          l=1,1+21l2sinh2[(2πarccosl)(arctanhξ)]              0<l<1,1+1l21sin[π2R(n)U(ξ)n0(11n2y21x2)dx]+1l21       l>1, (1.16)

    where U(ξ)=ξn1nξ, for all ξU, 0<l<1 and l=cosh[πR(n)4R(n)] where R(n) is Legendre's complete elliptic integral of first kind and R(n) is complementary integral of R(n) for more details, see [13,14,15,16]. If we take ϖl(ξ)=1+δ(l)ξ+δ1(l)ξ2+, then

    δ(l)={8(arccosl)2π2(1l2)                    0l<1,8π2                             l=1,π24n(l21)(1+n)R2(n)        l>1. (1.17)

    Let δ1(l)=δ2(l)δ(l), where

    δ2(l)={2+(2πarccosl)23               0l<1,23                                   l=1,4R2(n)(1+n2+6n)π224(1+n)nR2(n)             l>1. (1.18)

    Definition 1. [17] Let p be a analytic function with p(0)=1. Then pP(λ,M) if and only if

    p(ξ)λξ+1Mξ+1,         where1M<λ1. (1.19)

    In [17] it was shown that pP(λ,M) if and only if there exists a function p P such that

    (1+λ)p(ξ)(λ1)(1+M)p(ξ)(M1)λξ+1Mξ+1.

    Definition 2. [18] A function ˆgA is in the class kSTq(N,O) if and only if

    [G(ξ)H(ξ)]>k|G(ξ)H(ξ)1|, (1.20)

    where

    G(ξ)=(OL1L2)(ξDq(ˆg(ξ))ˆg(ξ))(NL1L2),H(ξ)=(OL1+L2)(ξDq(ˆg(ξ))ˆg(ξ))(NL1+L2),

    and k0, 1O<N1, L1=q+1 and L2=3q. For q1, kSTq(N,O) was discussed in [21].

    Lemma 1. [22] Suppose d(ξ)=1+t=1ctξt1+t=1Ctξt=H(ξ). If H(U) is convex and H(ξ)A, then

    |C1||ct|,    for1t. (2.1)

    Lemma 2. [18] Suppose 1+t=1ctξt=d(ξ)kSTq(N,O), then

    L1(λM)4δ(l)=|δ(l,λ,M)||ct|, (2.2)

    where δ(l) is given by (1.17).

    Lemma 3. [18] If d(ξ)=ξ+t=1btξtkSTq(N,O) for ξU and k0, then

    |bt|t2p=0[|(NO)δ(l)L14O[p,q]|4[p+1,q]q], (2.3)

    where δ(l) is given by (1.17).

    Lemma 4. If dS, G S and ˆgC then

    ˆg(ξ)d(ξ)G(ξ)ˆg(ξ)d(ξ)cˉo(G(U)),    forallξU. (2.4)

    Where cˉo(G(U)) is the closed convex hull G(U).

    Lemma 5. [18] A function ˆgA will be in the class kSTq(N,O), if

    t=2{2(k+1)L2q[t1,q]+|(OL1+L2)[t,q](NL1+L2)|}|at|<L1|ON|.

    Motivated by the work of Mahmood et al. [18], Noor and Malik [21] and Arif et al. [8], we define a new subclasses of Janowski type q-starlike functions associated with q-conic domains as:

    Definition 3. A function ˆg(ξ)A is apparently in the function class kSTq(μ,N,O) if and only if

    [A(ξ)B(ξ)]>k|A(ξ)B(ξ)1|,

    where

    A(ξ)=(OL1L2)(ξDq(μqˆg(ξ))μqˆg(ξ))(NL1L2),B(ξ)=(OL1+L2)(ξDq(μqˆg(ξ))μqˆg(ξ))(NL1+L2),

    and  k0, 1O<N1, μ>1, L1=1+q and L2=3q.

    It is noted that, for μ=1, the function class kSTq(μ,N,O) reduces to well known class kSTq(N,O). Also 0STq(1,N,O)=S(N,O) introduced by Srivastava et al. [19,23], further for q1, kSTq1(N,O)=kST(N,O) this class was studied by Noor and Malik [21] also see [20,26].

    Theorem 1. A function ˆg(ξ)A and of the form (1.1) is in the class kSTq(μ,N,O), if it fulfill the following restriction

    t=2Λt|at|<L1|ON|,

    where Λt={2(k+1)L2q[t1,q]+|(OL1+L2)[t,q](NL1+L2)|}ψt1.

    Proof. Assume that (1.20) hold, then it is suffices to prove that

    k|(OL1L2)(ξDq(μqˆg(ξ))μqˆg(ξ))(NL1L2)(OL1+L2)(ξDq(μqˆg(ξ))μqˆg(ξ))(NL1+L2)1|[(OL1L2)(ξDq(μqˆg(ξ))μqˆg(ξ))(NL1L2)(OL1+L2)(ξDq(μqˆg(ξ))μqˆg(ξ))(NL1+L2)1]<1.

    We consider,

    k|(OL1L2)(ξDq(μqˆg(ξ))μqˆg(ξ))(NL1L2)(OL1+L2)(ξDq(μqˆg(ξ))μqˆg(ξ))(NL1+L2)1|[(OL1L2)(ξDq(μqˆg(ξ))μqˆg(ξ))(NL1L2)(OL1+L2)(ξDq(μqˆg(ξ))μqˆg(ξ))(NL1+L2)1]k|(OL1L2)(ξDq(μqˆg(ξ))μqˆg(ξ))(NL1L2)(OL1+L2)(ξDq(μqˆg(ξ))μqˆg(ξ))(NL1+L2)1|=2L2(k+1)|μqˆg(ξ)ξDq(μqˆg(ξ))(OL1+L2)(ξDq(μqˆg(ξ)))(NL1+L2)μqˆg(ξ)|2L2(k+1)t=2|(1[t,q])ψt1||at|L1|ON|t=2|{(OL1+L2)[t,q](NL1+L2)}ψt1||at|.

    The last inequalities is bounded above by 1 if

    2L2(1+k)t=2|(1[t,q])ψt1||at|<L1|ON|t=2|{(OL1+L2)[t,q](NL1+L2)}ψt1||at|,

    which reduces to

    t=2Λt|at|<L1|ON|.

    This complete the proof.

    For μ=1, we have the following corollary.

    Corollary 1. [18] A function ˆg(ξ)A and of the type (1.1) is considered to be in the function class kSTq(1,N,O), if it fulfill the following criterion

    t=2{2(1+k)L2q[t1,q]+|(OL1+L2)[t,q](NL1+L2)|}|at|<L1|ON|.

    If q1, then corollary (3.2) reduces to:

    Corollary 2. [21] A function ˆg(ξ)A of the form (1.1) is considered to be in the class kST(1,N,O), if it fulfill the following criterion

    t=2{2(1+k)(t1)+|t(O+1)(N+1)|}|at|<|ON|.

    Further if we take N=1, O=1 then we have kST(1,1).

    Corollary 3. [14] A function ˆg(ξ)A of the form (1.1) is considered to be in the function class kST(1,1,1), if it fulfill the following criterion

    t=2{t+k(t1)}|at|<1.

    Theorem 2. Let a function ˆgkSTq(μ,N,O) is of the form (1.1). Then

    |at|t2j=0|(NO)(q+1)δlψj14[j,q]qOψj|4[j+1,q]qψj+1,    (tN{1}). (3.1)

    This result is sharp.

    Proof. Since ˆgkSTq(μ,N,O), so let

    ξDq(μqˆg(ξ))μqˆg(ξ)=(ξ), (3.2)

    where

    (ξ)(N(1+q)+L2)ϖl(ξ)((q+1)N+L2)(O(q+1)+L2)ϖl(ξ)((q+1)O+L2). (3.3)

    If

    ϖl(ξ)=1+δl(ξ)+(δl(ξ))2+(δl(ξ))3+,

    then

    ((q+1)N+L2)ϖl(ξ)((q+1)N+L2)((q+1)O+L2)ϖl(ξ)((1+q)O+L2)=1+14(q+1)(NO)δl+14[(14Nq14N+14Oq+14O)((O+1)(1+q)+22q)]δ2l+.

    Let (ξ)=1+t=1ctξt, then by Lemma 2.1 and relation (3.3), we get

    ct14(NO)(1+q)|δl|. (3.4)

    Now from (3.2), we have

    ξDq(μqˆg(ξ))=(ξ)μqˆg(ξ),

    which implies that

    t=2([t,q]1)ψt1atξt=(t=2ψt1atξt)(t=1ctξt).

    By comparing coefficient of ξt, we obtain

    ([t,q]1)ψt1at=t1j=1|atj||ψj1||cj|,(a1=1),

    which yields

    |at|1q[t1,q]ψt1t1j=1|ψj1||atj||cj|.

    By using (3.4), above inequalities can be written as:

    |at|(NO)(1+q)|δl||ψj1|4q[t1,q]ψt1t1j=1|aj|. (3.5)

    Next we need to show that

    (NO)(1+q)|δl||ψj1|4q[t1,q]t1j=1|aj|t2j=0|(NO)(1+q)δlψj14qO[j,q]ψj|4[j+1,q]qψj+1. (3.6)

    To derive (3.6), we will utilize the principle of mathematical induction.

    For t=2, (3.5) become

    |a2|(NO)(q+1)|δl||ψj1|4[1,q]qψ1.

    Which shows that (3.1) is true for t=2.

    For t=3, (3.5) give us

    |a3|(NO)(q+1)|δl||ψj1|4q[2,q]ψ2(1+|a2|)(q+1)(NO)|δl||ψj1|4q[2,q]ψ2(1+(NO)(1+q)|ψj1||δl|4q[1,q]ψ1).

    This shows that (3.1) is true for t=3. Now suppose that (3.6), for t=m that is

    |am|(NO)(1+q)|δl||ψj1|4[m1,q]qψm1m1j=1|aj|. (3.7)

    On the other hand from (3.1), we have

    |am|m2j=0|(NO)(1+q)δlψj14qO[j,q]ψj|4q[j+1,q]ψj+1,(mN{1}).

    Using induction hypothesis on (3.6), we have

    (q+1)(NO)|δl||ψj1|4ψm1q[m1,q]m1j=1|aj|m2j=0|(NO)(q+1)δlψj14qO[j,q]ψj|4ψj+1q[j+1,q]. (3.8)

    As

    m2j=0(NO)(q+1)δlψj1+4qO[j,q]4[j+1,q]ψj+1q((NO)(q+1)|δl|ψj1+4[m1,q]q4ψjq[m,q])((q+1)(NO)|ψj1||δl|4qψm1[m1,q]m1j=1|aj|)=(NO)(1+q)|δl|ψj14ψj[m,q]q((q+1)(NO)|δl|ψj14ψj+1[m1,q]qm1j=1|aj|+mj=1|aj|)=(NO)(1+q)|δl|ψj14q[m,q]ψjmj=1|aj|.

    Thus

    (NO)(1+q)|δl|ψj14[m,q]qψjmj=1|aj|m1j=0|(NO)(1+q)δlψj14q[j,q]ψj|4q[j+1,q]ψj+1,

    which shows that inequality (3.8), is true for t=m+1 and hence we obtained the required result.

    For μ=1, we have the following corollary.

    Corollary 4. [18] Consider a function ˆgkSTq(N,O) is of the form (1.1), then

    |at|t2j=0|(1+q)(NO)δl4qO[j,q]|4[j+1,q]q,  (tN{1}).

    If k=0, then corollary (3.6) reduces to:

    Corollary 5. [23] Consider a function ˆgSTq(N,O) is of the type (1.1), then

    |at|t2j=0|(1+q)(NO)2qO[j,q]|2[j+1,q]q,  (tN{1}).

    Further if we take q1 then we have ST(N,O).

    Corollary 6. [21] Consider a function ˆgST(N,O) is of the type (1.1), then

    |at|t2j=0|(NO)δl2Oj|2(1+j),  (tN{1}).

    If we take N=1 and O=1 then we have kSTq(N,O).

    Corollary 7. [14] Consider a function ˆgST is of the type (1.1), then

    |at|t2j=0|δl+j|(j+1), (tN{1}).

    Further if we take N=12α, O=1, k=0 and0α<1 then we have S(α).

    Corollary 8. [24] Let the function ˆgS(α) be of the form (1.1), then

    |at|t2j=0|j2α|(t1)!,       (tN{1}).

    Next we show that the class kPq(μ,N,O) is closed under convolution with convex function.

    Theorem 3. If ˆgkPq(μ,N,O) and χC, then ˆgχkPq(μ,N,O).

    Proof. We want to prove that

    ξDq(χ(ξ)μqˆg(ξ))(χ(ξ)μqˆg(ξ))kPq(μ,N,O).

    It can be easily seen that

    ξDq[χ(ξ)μqˆg(ξ)][χ(ξ)μqˆg(ξ)]=μqˆg(ξ)χ(ξ)((ξDq(μqˆg(ξ)))(μqˆg(ξ)))μqˆg(ξ)χ(ξ)=χ(ξ)μqˆg(ξ)Ψ(ξ)χ(ξ)ˆg(ξ),

    where, ξDq(μqˆg(ξ))μqˆg(ξ)=Ψ(ξ)kPq(μ,N,O). By using Lemma 4, we obtain the required result.

    For μ=1, we have the following corollary.

    Corollary 9. [25] If ˆgkPq(N,O) and χC, then ˆgχkPq(N,O).

    Theorem 4. If ˆgkSTq(μ,N,O) and ΦC, then ˆgΦkSTq(μ,N,O).

    Proof. We want to prove that

    ξDq(Φ(ξ)μqˆg(ξ))(μqˆg(ξ)Φ(ξ))kPq(μ,N,O).

    It can be easily seen that

    ξDq(Φ(ξ)μqˆg(ξ))(Φ(ξ)μqˆg(ξ))=μqˆg(ξ)χ(ξ)(ξDq(μqˆg(ξ))μqˆg(ξ))μqˆg(ξ)Φ(ξ)=Φ(ξ)μqˆg(ξ)Ψ(ξ)Φ(ξ)μqˆg(ξ),

    where, ξDq(μqˆg(ξ))μqˆg(ξ)=Ψ(ξ)kPq(μ,N,O), by applying Lemma 4, we obtain the required result.

    For μ=1, we have the following corollary.

    Corollary 10. [25] If ˆgkSTq(N,O) and ΦC, then ˆgΦkSTq(N,O).

    Linear combination for our defined classes are defined as following.

    Theorem 5. Let ˆgikSTq(μ,N,O) and have the form

    ˆgi(ξ)=ξ+t=1at,iξt,   fori=1,2,3,,n.

    Then

    FkSTq(μ,N,O),whereF(ξ)=ni=1ciˆgi(ξ)withni=1ci=1.

    Proof. By using (1.20), one can write

    t=2[{2(k+1)L2q[t1,q]+|(OL1+L2)[t,q](NL1+L2)|}ψt1L1|ON|]|at,i|<1.

    Therefore

    F(ξ)=ni=2ci(ξ+t=2at,iξt)=ξ+t=2(ni=2ciat,i)ξt,

    however

    t=2[{2(k+1)L2q[t1,q]+|(OL1+L2)[t,q](NL1+L2)|}ψt1L1|ON|](ni=2ciat,i)=ni=2(t=2[{2(k+1)L2q[t1,q]+|(OL1+L2)[t,q](NL1+L2)|}ψt1L1|ON|]at,i)ci1.

    Theorem 6. If ˆg and ˆh belongs to kSTq(μ,N,O) where,

    hW(ξ)={(1W)ˆg(ξ)+(1+W)ˆh(ξ)2}.

    Proof. As

    hW(ξ)={(1W)ˆg(ξ)+(1+W)ˆh(ξ)2}=ξ+t=2{(1W)at+t=2(1+W)bt2}ξt.

    To prove that hW(ξ) kSTq(μ,N,O), we need to show

    t=2[{2(k+1)L2q[t1,q]+|(OL1+L2)[t,q](NL1+L2)|}ψt1L1|ON|]{(1W)at+(1+W)bt2}<1.

    For this, consider

    (1W)2t=2{{2(k+1)L2q[t1,q]+|(OL1+L2)[t,q](NL1+L2)|}L1|ON|}ψt1at+(1+W)2t=2{{2(k+1)L2q[t1,q]+|(OL1+L2)[t,q](NL1+L2)|}L1|ON|}ψt1bt<(1W)2(1)+(1+W)2(1)=1.

    Corollary 11. If we take μ=1, if ˆg and ˆh belongs to kSTq(1,N,O)=kSTq(N,O), then their weighted mean hW is also in kSTq(N,O).

    Further for q1, then their weighted mean hW is also in kST(N,O). Where,

    hW(ξ)={(1W)ˆg(ξ)+(1+W)ˆh(ξ)2}.

    Theorem 7. Let ˆgikSTq(μ,N,O) where i=1,2,,ν then the arithmetic mean

    AM(ξ)=1ννi=1ˆgi(ξ),

    also belongs to the class kSTq(μ,N,O).

    Proof. As AM(ξ)=1ννi=1ˆgi(ξ) and ˆgi(ξ)=ξ+t=2at,iξt then we have

    AM(ξ)=1ννi=1(ξ+t=2at,iξt)=ξ+t=2(1ννi=1at,i)ξt. (3.9)

    Since ˆgikSTq(μ,N,O) for every i=1,2,,ν, so by using (1.20) and (3.9), we get

    t=2ψt1{2(k+1)L2q[t1,q]+|(OL1+L2)[t,q](NL1+L2)|}(1ννi=1at,i)1ννi=1(L1|ON|)=L1|ON|,

    i.e.

    t=2ψt1{2(k+1)L2q[t1,q]+|(OL1+L2)[t,q](NL1+L2)|}(1ννi=1at,i)L1|ON|.

    This complete the proof.

    Corollary 12. If we take μ=1, ˆgikSTq(N,O) with i=1,2,,ν then the arithmetic mean

    AM(ξ)=1ννi=1ˆgi(ξ)

    this belongs to the class kSTq(N,O).

    Further, for μ=1,ˆgikSTq1(1,N,O)=kST(N,O) where i=1,2,,ν then the arithmetic mean AM(ξ) also belongs to the class kST(N,O).

    Theorem 8. Let ˆgkSTq(μ,N,O), then ˆg will belongs to the family S(α) called starlike functions of order α(0α<1) for |ξ|<r1, where

    r1=[(1α){2(1+k)L2q[t1,q]+|(OL1+L2)[t,q](NL1+L2)|}[t,q]!L1|ON|(tα)[μ+1,q]t1](1t1).

    Proof. Let ˆgkSTq(μ,N,O). To prove ˆgS(α), we need to show

    |ξˆg(ξ)/ˆg(ξ)1ξˆg(ξ)/ˆg(ξ)+12α|<1.

    Using values of ˆg(ξ) along with some staightforward calculations, we have

    t=2(tα1α)|at||ξ|t1<1. (3.10)

    Since ˆgkSTq(μ,N,O), so from (1.20), we can easily obtain

    t=2[t,q]![μ+1,q]t1({2(k+1)L2q[t1,q]+|(OL1+L2)[t,q](NL1+L2)|}L1|ON|)|at|<1.

    The inequality (3.10), holds if the following relation are true

    t=2(tα1α)|at||ξ|t1<t=2[t,q]![μ+1,q]t1({2(k+1)L2q[t1,q]+|(OL1+L2)[t,q](NL1+L2)|}L1|ON|)|at|,

    which implies that

    |ξ|<((1α){2(k+1)L2q[t1,q]+|(OL1+L2)[t,q](NL1+L2)|}[t,q]!L1|ON|(tα)[μ+1,q]t1)(1t1).

    Which completes the proof.

    Corollary 13. If we take μ=1, if ˆgkSTq(N,O), then |ξ|<r2, where

    r2=[(1α){2(1+k)L2q[t1,q]+|(OL1+L2)[t,q](NL1+L2)|}[t,q]!L1|ON|(tα)](1t1).

    Further, ˆgkSTq1(1,N,O)=kST(N,O), ˆg then |ξ|<r3, where

    r3=[(1α){2(1+k)(t1)+|(O+1)t(N+1)|}|ON|(tα)](1t1).

    Theorem 9. If ˆgkSTq(μ,N,O) has the form (1.1), then

    r(1ζ)|ˆg(ξ)|r(ζ+1),

    where

    ζ=L1|ON|{2(k+1)L2q+|(OL1+L2)(1+q)(NL1+L2)|}ψ1with|ξ|=r<1.

    Proof. Consider

    |ˆg(ξ)|=|ξ+t=2atξt|=r+t=2|at|rt,

    This implies

    |ˆg(ξ)|r+rt=2|at|=r(1+t=2|at|). (3.11)

    Similarly,

    |ˆg(ξ)|r(1t=2|at|). (3.12)

    It can be easily observed that

    {2(k+1)L2q[1,q]+|(OL1+L2)[2,q](NL1+L2)|}ψ1t=2att=2{2(k+1)L2q[t1,q]+|(OL1+L2)[t,q](NL1+L2)|}ψt1|at|.

    By using (1.20), we obtain

    {2(k+1)L2q[1,q]+|(OL1+L2)[2,q](NL1+L2)|}ψ1t=2|at|L1|ON|,

    which gives

    t=2|at|L1|ON|{2(k+1)L2q[1,q]+|(OL1+L2)[2,q](NL1+L2)|}ψ1=L1|ON|{2(k+1)L2q+|(OL1+L2)(1+q)(NL1+L2)|}ψ1,

    now using this relation in (3.11) and (3.12), we get

    r(1ζ)|ˆg(ξ)|r(ζ+1).

    As required.

    Corollary 14. If we take μ=1, and ˆgkSTq(N,O), has the form (1.1), then

    r(1ζ1)|ˆg(ξ)|r(1+ζ1),

    where

    ζ1=L1|ON|{2(k+1)L2q+|(OL1+L2)(1+q)(NL1+L2)|}.

    Further, ˆgkSTq1(1,N,O)=kST(N,O), has the form (1.1), then

    r(1ζ2)|ˆg(ξ)|r(1+ζ2),

    where,

    ζ2=|ON|{2(k+1)+|2(O+1)(N+1)|}.

    Corollary 15. If ˆgkSTq(N,O), has the form (1.1), then

    (1rtϰ1)|ˆg(ξ)|(1+rtϰ1),

    where,

    ϰ1=L1|ON|{2(k+1)L2q+|(OL1+L2)(1+q)(NL1+L2)|}.

    Further, ˆgkSTq1(1,N,O)=kST(N,O), has the form (1.1), then

    (1rtϰ2)|ˆg(ξ)|(1+rtϰ2),

    where,

    ϰ2=|ON|{2(k+1)+|2(O+1)(N+1)|}.

    By using q-analogue of Noor integral operator, we studied various properties such as necessary and sufficient conditions, coefficient bounds, convolution properties, linear combinations, weighted means, arithmetic means, distortion and covering theorems and radii of starlikenss, for a newly define class of analytic functions in conic regions. We also pointed out many special cases in the form of corollaries by specializing the parameters.

    The work here is supported by FRGS/1/2019/STG06/UKM/01/1.

    The authors declare that there is no conflict of interests in this paper.



    [1] B. Ahmad, S. K. Ntouyas, Boundary value problems for q-difference inclusions, Abstr. Appl. Anal., 2011 (2011), Article ID 292860. https://doi.org/10.1155/2011/292860
    [2] W. Zhou, H. Liu, Existence solutions for boundary value problem of nonlinear fractional q-difference equations, Adv. Differ. Equ., 2013 (2013), 1–12. https://doi.org/10.1186/1687-1847-2013-113 doi: 10.1186/1687-1847-2013-113
    [3] C. Yu, J. Wang, Existence of solutions for nonlinear second-order q-difference equations with first-order q-derivatives, Adv. Differ. Equ., 2013 (2013), 1–11. https://doi.org/10.1186/1687-1847-2013-365 doi: 10.1186/1687-1847-2013-365
    [4] S. Khan, S. Hussain, M. Darus, Inclusion relations of q -Bessel functions associated with generalized conic domain, AIMS Math., 6 (2021), 3624–3640. https://doi.org/10.3934/math.2021216 doi: 10.3934/math.2021216
    [5] J. W. Alexander, Functions which map the interior of the unit circleupon simple regions, Anal. Math., 17 (1915), 12–22. https://doi.org/10.2307/2007212 doi: 10.2307/2007212
    [6] W. Kaplan, Close-to-convex Schlicht functions, Mich. Math. J., 1 (1952), 169–185. https://doi.org/10.1307/mmj/1028988895 doi: 10.1307/mmj/1028988895
    [7] F. H. Jackson, On q-functions and a certain difference operator, Earth Environ. Sci. Trans. R. Soc. Edinb., 46 (1909), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751
    [8] M. Arif, M. U. Haq, J. L. Liu, A Subfamily of Univalent Functions Associated with q-Analogue of Noor Integral Operator, J. Funct. Spaces, 2018 (2018). https://doi.org/10.1155/2018/3818915 doi: 10.1155/2018/3818915
    [9] K. I. Noor, Some new classes of integral operators, J. Math. Anal. Appl., 16 (1999), 71–80.
    [10] K. I. Noor, M. A. Noor, On integral operators, J. Math. Anal. Appl., 238 (1999), 341–352. https://doi.org/10.1006/jmaa.1999.6501 doi: 10.1006/jmaa.1999.6501
    [11] A. Rasheed, S. Hussain, S. G. A. Shah, M. Darus, S. Lodhi, Majorization problem for two subclasses of meromorphic functions associated with a convolution operator, AIMS Math., 5 (2020), 5157–5170. https://doi.org/10.3934/math.2020331 doi: 10.3934/math.2020331
    [12] S. G. A. Shah, S. Hussain, A. Rasheed, Z. Shareef, M. Darus, Application of Quasisubordination to Certain Classes of Meromorphic Functions, J. Funct. Spaces, 2020 (2020). https://doi.org/10.1155/2020/4581926 doi: 10.1155/2020/4581926
    [13] S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327–336. https://doi.org/10.1016/S0377-0427(99)00018-7 doi: 10.1016/S0377-0427(99)00018-7
    [14] S. Kanas, A. Wisniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl., 45 (2000), 647–658.
    [15] S. G. A. Shah, S. Noor, M. Darus, W. Ul Haq, S. Hussain, On meromorphic functions defined by a new class of liu-srivastava integral operator, Int. J. Anal. Appl., 18 (2020), 1056–1065.
    [16] S. G. A. Shah, S. Noor, S. Hussain, A. Tasleem, A. Rasheed, M. Darus, Analytic Functions Related with Starlikeness, Math. Probl. Eng., 2021 (2021). https://doi.org/10.1155/2021/9924434 doi: 10.1155/2021/9924434
    [17] W. Janowski, Some exremal problem for certain families of analytic functions, Ann. Pol. Math., 28 (1973), 297–326. https://doi.org/10.4064/ap-28-3-297-326 doi: 10.4064/ap-28-3-297-326
    [18] S. Mahmood, M. Jabeen, S. N. Malik, H. M. Srivastava, R. Manzoor, S. M. Riaz, Some coefficient inequalities of q-starlike functions associated with conic domain defined by q-derivative, J. Funct. Space., 2018 (2018), 8492072. https://doi.org/10.1155/2018/8492072 doi: 10.1155/2018/8492072
    [19] H. M. Srivastava, M. Tahir, B. Khan, Z. Ahmad, N. Khan, Some general classes of q-starlike functions associated with the Janowski functions, Symmetry, 11 (2019), 292. https://doi.org/10.3390/sym11020292 doi: 10.3390/sym11020292
    [20] H. Tang, S. Khan, S. Hussain, N. Khan, Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of order α, AIMS Math., 6 (2021), 5421–5439. https://doi.org/10.3934/math.2021320 doi: 10.3934/math.2021320
    [21] K. I. Noor, S. N. Malik, On coefficient inequalities of functions associated with conic domains, Comput. Math. Appl., 62 (2011), 2209–2217. https://doi.org/10.1016/j.camwa.2011.07.006 doi: 10.1016/j.camwa.2011.07.006
    [22] W. Rogosinski, On the coefficients of subordinate functions, Proc. Lond. Math. Soc., 2 (1945), 48–82. https://doi.org/10.1112/plms/s2-48.1.48 doi: 10.1112/plms/s2-48.1.48
    [23] H. M. Srivastava, B. Khan, N. Khan, Zahoor, Coefficients inequalities for q-starlike functions associated with Janowski functions, Tech. Rep., 2017.
    [24] A. W. Goodman, Univalent Functions, vols. Ⅰ–Ⅱ, Mariner Publishing Company, Tempa, Florida, USA, 1983.
    [25] M. Naeem, S. Hussain, S. Khan, T. Mahmood, M. Darus, Z. Shareef, Janowski Type q-Convex and q-Close-to-Convex Functions Associated with q-Conic Domain, Mathematics, 8 (2020), 440. https://doi.org/10.3390/math8030440 doi: 10.3390/math8030440
    [26] X. Zhang, S. Khan, S. Hussain, H. Tang, Z. Shareef, New subclass of q-starlike functions associated with generalized conic domain, AIMS Math., 5 (2020), 4830–4848. https://doi.org/10.3934/math.2020308 doi: 10.3934/math.2020308
  • This article has been cited by:

    1. Syed Ghoos Ali Shah, Saqib Hussain, F. M¨uge Sakar, Akhter Rasheed, Muhammad Naeem, Uniformly convex and starlike functions related with Liu-Owa integral operator, 2022, 1016-2526, 645, 10.52280/pujm.2022.541002
    2. Ayotunde Lasode, Timothy Opoola, Some properties of a class of generalized Janowski-type $q$-starlike functions associated with Opoola $q$-differential operator and $q$-differential subordination, 2023, 73, 1303-5991, 349, 10.31801/cfsuasmas.1281348
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1881) PDF downloads(74) Cited by(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog