The features of analytical functions were mostly studied using a fuzzy subset and a $ \mathfrak{q} $-difference operator in this study, as we investigate many fuzzy differential subordinations related to the $ \mathfrak{q} $-analogue multiplier-Noor integral operator. By applying fuzzy subordination to univalent functions whose range is symmetric with respect to the real axis, we create a few new subclasses of analytical functions. We define numerous classes related to the family of linear $ \mathfrak{q} $ -operators and introduce them. Here, we focus on the inclusion results and other integral features.
Citation: Ekram E. Ali, Miguel Vivas-Cortez, Rabha M. El-Ashwah. New results about fuzzy $ \mathbf{\gamma } $-convex functions connected with the $ \mathfrak{q} $-analogue multiplier-Noor integral operator[J]. AIMS Mathematics, 2024, 9(3): 5451-5465. doi: 10.3934/math.2024263
The features of analytical functions were mostly studied using a fuzzy subset and a $ \mathfrak{q} $-difference operator in this study, as we investigate many fuzzy differential subordinations related to the $ \mathfrak{q} $-analogue multiplier-Noor integral operator. By applying fuzzy subordination to univalent functions whose range is symmetric with respect to the real axis, we create a few new subclasses of analytical functions. We define numerous classes related to the family of linear $ \mathfrak{q} $ -operators and introduce them. Here, we focus on the inclusion results and other integral features.
[1] | G. I. Oros, G. Oros, The notion of subordination in fuzzy sets theory, Gen. Math., 19 (2011), 97–103. |
[2] | S. S. Miller, P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 298–305. https://doi.org/10.1016/0022-247X(78)90181-6 doi: 10.1016/0022-247X(78)90181-6 |
[3] | S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157–171. https://doi.org/10.1307/mmj/1029002507 doi: 10.1307/mmj/1029002507 |
[4] | G. I. Oros, G. Oros, Fuzzy differential subordination, Acta Univ. Apulensis, 30 (2012), 55–64. |
[5] | G. I. Oros, G. Oros, Dominants and best dominants in fuzzy differential subordinations, Stud. Univ. Babes-Bolyai Math., 57 (2012), 239–248. |
[6] | G. I. Oros, Briot-Bouquet fuzzy differential subordination, An. Univ. Oradea Fasc. Mat., 19 (2012). |
[7] | A. Alb Lupas, A note on special fuzzy differential subordinations using generalized Salagean operator and Ruscheweyh derivative, J. Comput. Anal. Appl., 15 (2013), 1476–1483. |
[8] | H. M. Srivastava, Operators of basic (or $\mathfrak{q}$-) calculus and fractional $\mathfrak{q}$-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A Sci., 44 (2020), 327–344. https://doi.org/10.1007/s40995-019-00815-0 doi: 10.1007/s40995-019-00815-0 |
[9] | Q. Hu, H. M. Srivastava, B. Ahmad, N. Khan, M. G. Khan, W. K. Mashwani, et al., A subclass of multivalent Janowski type $\mathfrak{q}$-starlike functions and its consequences, Symmetry, 13 (2021), 1275. https://doi.org/10.3390/sym13071275 doi: 10.3390/sym13071275 |
[10] | S. Khan, S. Hussain, M. Naeem, M. Darus, A. Rasheed, A subclass of $\mathfrak{q}$-starlike functions defined by using a symmetric $\mathfrak{q}$-derivative operator and related with generalized symmetric conic domains, Mathematics, 9 (2021), 917. https://doi.org/10.3390/math9090917 doi: 10.3390/math9090917 |
[11] | M. S. Rehman, Q. Z. Ahmad, H. M. Srivastava, N. Khan, M. Darus, B. Khan, Applications of higher-order $\mathfrak{q}$-derivatives to the subclass of $\mathfrak{q}$-starlike functions associated with the Janowski functions, AIMS Mathematics, 6 (2020), 1110–1125. https://doi.org/10.3934/math.2021067 doi: 10.3934/math.2021067 |
[12] | A. A. Lupas, A. Catas, Fuzzy differential subordination of the Atangana-Baleanu fractional integral, Symmetry, 13 (2021), 1929. https://doi.org/10.3390/sym13101929 doi: 10.3390/sym13101929 |
[13] | G. I. Oros, Fuzzy differential subordinations obtained using a hypergeometric integral operator, Mathematics, 9 (2021), 2539. https://doi.org/10.3390/math9202539 doi: 10.3390/math9202539 |
[14] | G. I. Oros, Univalence criteria for analytic functions obtained using fuzzy differential subordinations, Turkish J. Math., 46 (2022), 1478–1491. https://doi.org/10.55730/1300-0098.3174 doi: 10.55730/1300-0098.3174 |
[15] | G. I. Oros, S. Dzitac, Applications of subordination chains and fractional integral in fuzzy differential subordinations, Mathematics, 10 (2022), 1690. https://doi.org/10.3390/math10101690 doi: 10.3390/math10101690 |
[16] | S. A. Shah, E. E. Ali, A. A. Maitlo, T. Abdeljawad, A. M. Albalahi, Inclusion results for the class of fuzzy $\alpha $-convex functions, AIMS Mathematics, 8 (2022), 1375–1383. https://doi.org/10.3934/math.2023069 doi: 10.3934/math.2023069 |
[17] | E. E. Ali, M. Vivas-Cortez, S. A. Shah, A. M. Albalahi, Certain results on fuzzy $p$-valent functions involving the linear operator, Mathematics, 11 (2023), 3968. https://doi.org/10.3390/math11183968 doi: 10.3390/math11183968 |
[18] | S. A. Shah, E. E. Ali, A. Catas, A. M. Albalahi, On fuzzy differential subordination associated with $\mathfrak{q}$-difference operator, AIMS Mathematics, 8 (2023), 6642–6650. https://doi.org/10.3934/math.2023336 doi: 10.3934/math.2023336 |
[19] | F. H. Jackson, On $\mathfrak{q}$-functions and a certain difference operator, Earth Env. Sci. Trans. R. Soc. Edinburgh, 46 (1909), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751 |
[20] | F. H. Jackson, On $\mathfrak{q}$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203. |
[21] | R. D. Carmichael, The general theory of linear $\mathfrak{q}$-difference equations, Amer. J. Math., 34 (1912), 147–168. |
[22] | T. E. Mason, On properties of the solution of linear $\mathfrak{q}$-difference equations with entire function coefficients, Amer. J. Math., 37 (1915), 439–444. https://doi.org/10.2307/2370216 doi: 10.2307/2370216 |
[23] | W. J. Trjitzinsky, Analytic theory of linear $\mathfrak{q}$-difference equations, Acta Math., 61 (1933), 1–38. https://doi.org/10.1007/BF02547785 doi: 10.1007/BF02547785 |
[24] | M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Var. Theory Appl., 14 (1990), 77–84. https://doi.org/10.1080/17476939008814407 doi: 10.1080/17476939008814407 |
[25] | H. Aldweby, M. Darus, Some subordination results on $\mathfrak{q}$-analogue of Ruscheweyh differential operator, Abstr. Appl. Anal., 2014 (2014), 958563. https://doi.org/10.1155/2014/958563 doi: 10.1155/2014/958563 |
[26] | E. E. Ali, T. Bulboaca, Subclasses of multivalent analytic functions associated with a q-difference operator, Mathematics, 8 (2020), 2184. https://doi.org/10.3390/math8122184 doi: 10.3390/math8122184 |
[27] | E. E. Ali, A. Y. Lashin, A. M. Albalahi, Coefficient estimates for some classes of biunivalent function associated with Jackson q-difference operator, J. Funct. Spaces, 2022 (2022), 2365918. https://doi.org/10.1155/2022/2365918 doi: 10.1155/2022/2365918 |
[28] | M. Govindaraj, S. Sivasubramanian, On a class of analytic functions related to conic domains involving $\mathfrak{q}$-calculus, Anal. Math., 43 (2017), 475–487. https://doi.org/10.1007/s10476-017-0206-5 doi: 10.1007/s10476-017-0206-5 |
[29] | W. Y. Kota, R. M. El-Ashwah, Some application of subordination theorems associated with fractional $\mathfrak{q}$-calculus operator, Math. Bohem., 148 (2023), 131–148. http://doi.org/10.21136/MB.2022.0047-21 doi: 10.21136/MB.2022.0047-21 |
[30] | E. E. Ali, G. I. Oros, S. A. Shah, A. M. Albalahi, Applications of q-calculus multiplier operators and subordination for the study of particular analytic function subclasses, Mathematics, 11 (2023), 2705. https://doi.org/10.3390/math11122705 doi: 10.3390/math11122705 |
[31] | E. E. Ali, H. M. Srivastava, A. M. Y. Lashin, A. M. Albalahi, Applications of some subclasses of meromorphic functions associated with the $\mathfrak{q}$-derivatives of the $\mathfrak{q}$-binomials, Mathematics, 11 (2023), 2496. https://doi.org/10.3390/math11112496 doi: 10.3390/math11112496 |
[32] | E. E. Ali, H. M. Srivastava, A. M. Albalahi, Subclasses of $p$-valent $k$-uniformly convex and starlike functions defined by the $ \mathfrak{q}$-derivative operator, Mathematics, 11 (2023), 2578. https://doi.org/10.3390/math11112578 doi: 10.3390/math11112578 |
[33] | A. Alb Lupas, G. I. Oros, Sandwich-type results regarding Riemann-Liouville fractional integral of q-hypergeometric function, Demonstr. Math., 56 (2023), 20220186. https://doi.org/10.1515/dema-2022-0186 doi: 10.1515/dema-2022-0186 |
[34] | H. M. Srivastava, S. Khan, Q. Z. Ahmad, N. Khan, S. Hussain, The Faber polynomial expansion method and its application to the general coefficient problem for some subclasses of bi-univalent functions associated with a certain q-integral operator, Stud. Univ. Babes-Bolyai Math., 63 (2018), 419–436. https://doi.org/10.24193/subbmath.2018.4.01 doi: 10.24193/subbmath.2018.4.01 |
[35] | Z. G. Wang, S. Hussain, M. Naeem, T. Mahmood, S. Khan, A subclass of univalent functions associated with q-analogue of Choi-Saigo-Srivastava operator, Hacet. J. Math. Stat., 49 (2019), 1471–1479. https://doi.org/10.15672/hujms.576878 doi: 10.15672/hujms.576878 |
[36] | E. E. Ali, G. I. Oros, A. M. Albalahi, Differential subordination and superordination studies involving symmetric functions using a $\mathfrak{q}$-analogue multiplier operator, AIMS Mathematics, 8 (2023), 27924–27946. https://doi.org/10.3934/math.20231428 doi: 10.3934/math.20231428 |
[37] | M. Vivas-Cortez, M. A. Ali, H. Budak, H. Kalsoom, P. Agarwa, Some new Hermite-Hadamard and related inequalities for convex functions via $(p, \mathfrak{q})$-integral, Entropy, 23 (2021), 828. https://doi.org/10.3390/e23070828 doi: 10.3390/e23070828 |
[38] | M. Vivas-Cortez, A. Kashuri, R. Liko, J. E. Hernndez, Some new $\mathfrak{q}$-integral inequalities using generalized quantum Montgomery identity via preinvex functions, Symmetry, 12 (2020), 553. https://doi.org/10.3390/sym12040553 doi: 10.3390/sym12040553 |
[39] | H. Kalsoom, M. Vivas-Cortez, M. Idrees, P. Agarwal, New parameterized inequalities for $\eta $-quasiconvex functions via $(p, \mathfrak{q})$-calculus, Entropy, 23 (2021), 1523. https://doi.org/10.3390/e23111523 doi: 10.3390/e23111523 |
[40] | M. K. Aouf, S. M. Madian, Subordination factor sequence results for starlike and convex classes defined by $\mathfrak{q}$-Catas operator, Afrika Mat., 32 (2021), 1239–1251. https://doi.org/10.1007/s13370-021-00896-4 doi: 10.1007/s13370-021-00896-4 |
[41] | R. M. El-Ashwah, Subordination results for some subclasses of analytic functions using generalized $\mathfrak{q}$-Dziok-Srivastava-Catas operator, Filomat, 37 (2023), 1855–1867. https://doi.org/10.2298/FIL2306855E doi: 10.2298/FIL2306855E |
[42] | M. Arif, M. U. Haq, J. L. Liu, A subfamily of univalent functions associated with $\mathfrak{q}$-analogue of Noor integral operator, J. Funct. Spaces, 2018 (2018), 3818915. https://doi.org/10.1155/2018/3818915 doi: 10.1155/2018/3818915 |
[43] | K. I. Noor, On new classes of integral operators, J. Natur. Geom., 16 (1999), 71–80. |
[44] | K. I. Noor, M. A. Noor, On integral operators, J. Math. Anal. Appl., 238 (1999), 341–352. https://doi.org/10.1006/jmaa.1999.6501 doi: 10.1006/jmaa.1999.6501 |
[45] | A. Cătaş, On certain classes of $p$-valent functions defined by multiplier transformations, In: Proceedings of the international symposium on geometric function theory and applications, Istanbul, Turkey, 2007,241–250. |
[46] | N. E. Cho, I. H. Kim, Multiplier transformations and strongly close-to-convex functions, Bull. Korean Math. Soc., 40 (2003), 399–410. http://dx.doi.org/10.4134/BKMS.2003.40.3.399 doi: 10.4134/BKMS.2003.40.3.399 |
[47] | N. E. Cho, H. M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Model., 37 (2003), 39–49. https://doi.org/10.1016/S0895-7177(03)80004-3 doi: 10.1016/S0895-7177(03)80004-3 |
[48] | F. M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Internat. J. Math. Math Sci., 2004 (2004), 172525. https://doi.org/10.1155/S0161171204108090 doi: 10.1155/S0161171204108090 |
[49] | M. K. Aouf, A. Shamandy, A. O. Mostafa, F. El-Emam, Subordination results with $\beta $-uniformly convex and starlike functions, Proc. Pakistan Acad. Sci., 46 (2009), 97–101. |
[50] | G. S. Sălăgean, Subclasses of univalent functions, In: Complex analysis-fifth Romanian-finish seminar, Berlin, Heidelberg: Springer, 1013 (1983). https://doi.org/10.1007/BFb0066543 |
[51] | S. S. Miller, P. T. Mocanu, Differential subordination theory and applications, CRC Press, 2014. https://doi.org/10.1201/9781482289817 |
[52] | S. G. Gal, A. I. Ban, Elemente de matematica fuzzy, Romania, Oradea: University of Oradea, 1996. |