Research article

Symmetry of large solutions for semilinear elliptic equations in a symmetric convex domain

  • Received: 29 July 2021 Revised: 26 September 2021 Accepted: 08 October 2021 Published: 01 April 2022
  • MSC : 35A21, 35B06

  • In this paper, we consider the solutions of the boundary blow-up problem

    $ \begin{eqnarray*} \begin{cases} \Delta u = \frac{1}{u^\gamma} +f(u) \ \ \ \ \mathrm{in}\ \ \ \Omega,\\ \ u>0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathrm{in}\ \ \ \Omega, \\ \ u = +\infty \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathrm{on} \ \ \partial\Omega, \end{cases} \end{eqnarray*} $

    where $ \gamma > 0, \ \Omega $ is a bounded convex smooth domain and symmetric w.r.t. a direction. $ f $ is a locally Lipschitz continuous and non-decreasing function. We prove symmetry and monotonicity of solutions of the problem above by the moving planes method. A maximum principle in narrow domains plays an important role in proof of the main result.

    Citation: Keqiang Li, Shangjiu Wang, Shaoyong Li. Symmetry of large solutions for semilinear elliptic equations in a symmetric convex domain[J]. AIMS Mathematics, 2022, 7(6): 10860-10866. doi: 10.3934/math.2022607

    Related Papers:

  • In this paper, we consider the solutions of the boundary blow-up problem

    $ \begin{eqnarray*} \begin{cases} \Delta u = \frac{1}{u^\gamma} +f(u) \ \ \ \ \mathrm{in}\ \ \ \Omega,\\ \ u>0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathrm{in}\ \ \ \Omega, \\ \ u = +\infty \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \mathrm{on} \ \ \partial\Omega, \end{cases} \end{eqnarray*} $

    where $ \gamma > 0, \ \Omega $ is a bounded convex smooth domain and symmetric w.r.t. a direction. $ f $ is a locally Lipschitz continuous and non-decreasing function. We prove symmetry and monotonicity of solutions of the problem above by the moving planes method. A maximum principle in narrow domains plays an important role in proof of the main result.



    加载中


    [1] A. Canino, M. Grandinetti, B. Sciunzi, Symmetry of solutions of some semilinear elliptic equations with a singular nonlinearities, J. Differ. Equations, 255 (2013), 4437–4447. http://dx.doi.org/10.1016/j.jde.2013.08.014 doi: 10.1016/j.jde.2013.08.014
    [2] C. Cortázar, M. Elgueta, J. Garc a-Melián, Symmetry of large solutions for semilinear elliptic equations in a ball, J. Math. Pure. Appl., 121 (2019), 286–297. http://dx.doi.org/10.1007/BF02413056 doi: 10.1007/BF02413056
    [3] A. Porreta, L. Véron, Symmetry of large solutions of nonlinear elliptic equations in a ball, J. Funct. Anal., 236 (2006), 581–591. http://dx.doi.org/10.1016/j.jfa.2006.03.010 doi: 10.1016/j.jfa.2006.03.010
    [4] A. D. Alexandrov, A characteristic property of the spheres, Annali di Matematica, 58 (1962), 303–315. http://dx.doi.org/10.1007/BF02413056 doi: 10.1007/BF02413056
    [5] H. Beresticki, L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Bras. Mat., 22 (1991), 1–37. http://dx.doi.org/10.1007/BF01244896 doi: 10.1007/BF01244896
    [6] B. Gidas, W. M. Ni, L. Nirenberg, Symmetry and related properties via the maximum principle, Commun. Math. Phys., 68 (1979), 209–243. http://dx.doi.org/10.1007/BF01221125 doi: 10.1007/BF01221125
    [7] J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech. Anal., 43 (1971), 304–318. http://dx.doi.org/10.1007/BF00250468 doi: 10.1007/BF00250468
    [8] J. Keller, On solutions to $\Delta u = f (u)$, Commun. Pure Appl. Math., 10 (1957), 503–510. http://dx.doi.org/10.1002/cpa.3160100402 doi: 10.1002/cpa.3160100402
    [9] S. Dumont, L. Dupaigne, O. Goubet, V. Radulescu, Back to the Keller-Osserman condition for boundary blow-up solutions, Adv. Nonlinear Stud., 7 (2007), 271–298. http://dx.doi.org/10.1515/ans-2007-0205 doi: 10.1515/ans-2007-0205
    [10] R. Osserman, On the inequality $\Delta u \geq f (u)$, Pacific J. Math., 7 (1957), 1641–1647.
    [11] H. Brezis, personal communication, January 2005.
    [12] O. Costin, L. Dupaigne, Boundary blow-up solutions in the unit ball: asymptotics, uniqueness and symmetry, J. Differ. Equations, 249 (2010), 931–964. http://dx.doi.org/10.1016/j.jde.2010.02.023 doi: 10.1016/j.jde.2010.02.023
    [13] P. J. McKenna, W. Reichel, W. Walter, Symmetry and multiplicity for nonlinear elliptic differential equations with boundary blow-up, Nonlinear Anal. Theor., 28 (1997), 1213–1225. http://dx.doi.org/10.1016/S0362-546X(97)82870-2 doi: 10.1016/S0362-546X(97)82870-2
    [14] C. Bandle, M. Essèn, On the solutions of quasilinear elliptic problems with boundary blow-up, Sympos. Math., 35 (1994), 93–111. http://dx.doi.org/10.1016/C2013-0-12242-8 doi: 10.1016/C2013-0-12242-8
    [15] M. Del Pino, R. Letelier, The influence of domain geometry in boundary blow-up elliptic problems, Nonlinear Anal. Theor., 48 (2002), 897–904. http://dx.doi.org/10.1016/S0362-546X(00)00222-4 doi: 10.1016/S0362-546X(00)00222-4
    [16] Y. Du, Q. Huang, Blow-up solutions for a class of semilinear elliptic and parabolic equations, SIAM J. Math. Anal., 31 (1999), 1–18. http://dx.doi.org/10.1137/S0036141099352844 doi: 10.1137/S0036141099352844
    [17] J. García-Melián, R. Letelier-Albornoz, J. Sabina de Lis, Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blow-up, Proc. Amer. Math. Soc., 129 (2001), 3593–3602. http://dx.doi.org/10.1090/S0002-9939-01-06229-3 doi: 10.1090/S0002-9939-01-06229-3
    [18] J. García-Melián, Large solutions for an elliptic system of quasilinear equations, J. Differ. Equations, 245 (2008), 3735–3752. http://dx.doi.org/10.1016/j.jde.2008.04.004 doi: 10.1016/j.jde.2008.04.004
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1509) PDF downloads(61) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog