The fundamental purpose of this research is to investigate the existence theory as well as the uniqueness of solutions to a coupled system of fractional order differential equations with Caputo derivatives. In this regard, we utilize the definition and properties of a newly developed conception of complex valued fuzzy rectangular $ b $-metric spaces to explore the fuzzy form of some significant fixed point and coupled fixed point results. We further present certain examples and a core lemma in the case of complex valued fuzzy rectangular $ b $-metric spaces.
Citation: Sumaiya Tasneem Zubair, Kalpana Gopalan, Thabet Abdeljawad, Nabil Mlaiki. Novel fixed point technique to coupled system of nonlinear implicit fractional differential equations in complex valued fuzzy rectangular $ b $-metric spaces[J]. AIMS Mathematics, 2022, 7(6): 10867-10891. doi: 10.3934/math.2022608
The fundamental purpose of this research is to investigate the existence theory as well as the uniqueness of solutions to a coupled system of fractional order differential equations with Caputo derivatives. In this regard, we utilize the definition and properties of a newly developed conception of complex valued fuzzy rectangular $ b $-metric spaces to explore the fuzzy form of some significant fixed point and coupled fixed point results. We further present certain examples and a core lemma in the case of complex valued fuzzy rectangular $ b $-metric spaces.
[1] | H. Afshari, S. M. A. Aleomraninejad, Some fixed point results of $F$-contraction mapping in $D$-metric spaces by Samet's method, J. Math. Anal. Model., 2 (2021), 1–8. https://doi.org/10.48185/jmam.v2i3.299 doi: 10.48185/jmam.v2i3.299 |
[2] | A. Ali, H. Išık, H. Aydi, E. Ameer, J. R. Lee, M. Arshad, On multivalued Suzuki-type $\Theta$-contractions and related applications, Open Math. J., 2020 (2020), 1–14. https://doi.org/10.1515/math-2020-0139 doi: 10.1515/math-2020-0139 |
[3] | A. Ali, F. Uddin, M. Arshad, M. Rashid, Hybrid fixed point results via generalized dynamic process for F-HRS type contractions with application, Phys. A: Stat. Mech. Appl., 538 (2020). https://doi.org/10.1016/j.physa.2019.122669 |
[4] | A. Ali, M. Arshad, A. Asif, E. Savas, C. Park, D. Y. Shin, On multi-valued maps for $\phi$-contractions involving orbits with application, AIMS Math., 6 (2021), 7532–7554. https://doi.org/10.3934/math.2021440 doi: 10.3934/math.2021440 |
[5] | N. Ameth, A nonlinear implicit fractional equation with caputo derivative, J. Math., 2021 (2021), 5547003. https://doi.org/10.1155/2021/5547003 doi: 10.1155/2021/5547003 |
[6] | A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex-valued metric spaces, Numer. Func. Anal. Opt., 32 (2011), 243–253. https://doi.org/10.1080/01630563.2011.533046 doi: 10.1080/01630563.2011.533046 |
[7] | Y. Chen, H. An, Numerical solutions of coupled Burgers equations with time and space fractional derivatives, Appl. Math. Comput., 200 (2008), 87–95. https://doi.org/10.1016/j.aej.2016.03.028 doi: 10.1016/j.aej.2016.03.028 |
[8] | R. Chugh, S. Kumar, Weakly compatible maps in generalized fuzzy metric spaces, J. Anal., 10 (2002), 65–74. |
[9] | L. Danfeng, A. Mehboob, Z. Akbar, R. Usman, L. Zhiguo, Existence and stability of implicit fractional differential equations with Stieltjes boundary conditions involving Hadamard derivatives, Complexity, 2021 (2021), 8824935. https://doi.org/10.1155/2021/8824935 doi: 10.1155/2021/8824935 |
[10] | I. Demir, Fixed point theorems in complex valued fuzzy $b$-metric spaces with application to integral equations, Miskolc Math. Notes., 22 (2021), 153–171. https://doi.org/10.18514/MMN.2021.3173 doi: 10.18514/MMN.2021.3173 |
[11] | V. Gafiychuk, B. Datsko, V. Meleshko, D. Blackmore, Analysis of the solutions of coupled nonlinear fractional reaction-difusion equations, Chaos Soliton. Fract., 41 (2009), 1095–1104. https://doi.org/10.1016/j.chaos.2008.04.039 doi: 10.1016/j.chaos.2008.04.039 |
[12] | A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets Syst., 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7 doi: 10.1016/0165-0114(94)90162-7 |
[13] | M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets Syst., 27 (1988), 385–389. https://doi.org/10.1016/0165-0114(88)90064-4 doi: 10.1016/0165-0114(88)90064-4 |
[14] | H. A. Hammad, H. Aydi, M. De la Sen, Solutions of fractional differential type equations by fixed point techniques for multi-valued contractions, Complexity, 2021 (2021), 5730853. https://doi.org/10.1155/2021/5730853 doi: 10.1155/2021/5730853 |
[15] | Humaira, H. A. Hammad, M. Sarwar, Manuel De la Sen, Existence theorem for a unique solution to a coupled system of impulsive fractional differential equations in complex-valued fuzzy metric spaces, Adv. Differ. Equ., 242 (2021). https://doi.org/10.1186/s13662-021-03401-0 |
[16] | Humaira, M. Sarwar, T. Abdeljawad, Existence of solutions for nonlinear impulsive fractional differential equations via common fixed-point techniques in complex valued fuzzy metric spaces, Math. Probl. Eng., 2020 (2020), 7042715. https://doi.org/10.1155/2020/7042715 |
[17] | I. Kramosil, J. Michalek, Fuzzy metrics and statistical metric spaces, Kybernetika, 11 (1975), 336–344. |
[18] | K. D. Kucche, J. J. Nieto, V. Venktesh, Theory of nonlinear implicit fractional differential equations, Differ. Equ. Dyn. Syst., 28 (2020), 1–17. https://doi.org/10.1007/s12591-016-0297-7 doi: 10.1007/s12591-016-0297-7 |
[19] | F. Mehmood, R. Ali, N. Hussain, Contractions in fuzzy rectangular $b$-metric spaces with application, J. Intell. Fuzzy Syst., 37 (2019), 1275–1285. https://doi.org/10.3233/JIFS-182719 doi: 10.3233/JIFS-182719 |
[20] | N. Mlaiki, D. Rizk, F. Azmi, Fixed points of $(\psi, \phi)$-contractions and Fredholm type integral equation, J. Math. Anal. Model., 2 (2021), 91–100. https://doi.org/10.48185/jmam.v2i1.194 doi: 10.48185/jmam.v2i1.194 |
[21] | S. Nădăban, Fuzzy $b$-metric spaces, Int. J. Comput. Commun., 11 (2016), 273–281. https://doi.org/10.15837/ijccc.2016.2.2443 |
[22] | J. Patil, A. Chaudhari, M. S. Abdo, B. Hardan, A. Bachhav, Positive solution for a class of Caputo-type fractional differential equations, J. Math. Anal. Model., 2 (2021), 16–29. https://doi.org/10.48185/jmam.v2i2.274 doi: 10.48185/jmam.v2i2.274 |
[23] | T. Qi, Y. Liu, Y. Zou, Existence result for a class of coupled fractional differential systems with integral boundary value conditions, J. Nonlinear Sci. Appl, 10 (2017), 4034–4045. http://dx.doi.org/10.22436/jnsa.010.07.52 doi: 10.22436/jnsa.010.07.52 |
[24] | K. Sathiyanathan, V. Krishnaveni, Nonlinear implicit caputo fractional differential equations with integral boundary bonditions in Banach space, Glob. J. Pure Appl. Math., 13 (2017), 3895–3907. |
[25] | S. Shukla, R. Rodríguez-Lopez, M. Abbas, Fixed point results for contractive mappings in complex-valued fuzzy metric spaces, Fixed Point Theor., 19 (2018), 1–22. https://doi.org/10.24193/fpt-ro.2018.2.56 doi: 10.24193/fpt-ro.2018.2.56 |
[26] | Z. Sumaiya Tasneem, G. Kalpana, T. Abdeljawad, B. Abdalla, On fuzzy extended hexagonal $b$-metric spaces with applications to nonlinear fractional differential equations, Symmetry, 13 (2021). https://doi.org/10.3390/sym13112032 |
[27] | A. Zada, Z. Ali, J. Xu, Y. Cul, Stability results for a coupled system of impulsive fractional differential equations, Mathematics, 7 (2019). https://doi.org/10.3390/math7100927 |
[28] | Y. Zhang, Z. Bai, T. Feng, Existence results for a coupled system of nonlinear fractional three-point boundary value problems at resonance, Comput. Math. Appl., 61 (2011), 1032–1047. https://doi.org/10.1016/j.camwa.2010.12.053 doi: 10.1016/j.camwa.2010.12.053 |
[29] | S. Zhang, Positive solutions for boundary-value problems of nonlinear fractional differential equations, Electron. J. Differ. Equ., 36 (2006), 1–12. https://doi.org/10.1016/j.jmaa.2005.02.052 doi: 10.1016/j.jmaa.2005.02.052 |