Divergence as a degree of the difference between two data is widely used in the classification problems. In this paper, $ f $-divergence, Hellinger divergence and variation divergence of the monotone set-valued measures are defined and discussed. It proves that Hellinger divergence and variation divergence satisfy the triangle inequality and symmetry by means of the set operations and partial ordering relations. Meanwhile, the necessary and sufficient conditions of Radon-Nikodym derivatives of the monotone set-valued measures are investigated. Next, we define the conjugate measure of the monotone set-valued measure and use it to define and discuss a new version $ f $-divergence, and we prove that the new version $ f $-divergence is nonnegative. In addition, we define the generalized $ f $-divergence by using the generalized Radon-Nikodym derivatives of two monotone set-valued measures and examples are given. Finally, some examples are given to illustrate the rationality of the definitions and the operability of the applications of the results.
Citation: Zengtai Gong, Chengcheng Shen. Monotone set-valued measures: Choquet integral, $ f $-divergence and Radon-Nikodym derivatives[J]. AIMS Mathematics, 2022, 7(6): 10892-10916. doi: 10.3934/math.2022609
Divergence as a degree of the difference between two data is widely used in the classification problems. In this paper, $ f $-divergence, Hellinger divergence and variation divergence of the monotone set-valued measures are defined and discussed. It proves that Hellinger divergence and variation divergence satisfy the triangle inequality and symmetry by means of the set operations and partial ordering relations. Meanwhile, the necessary and sufficient conditions of Radon-Nikodym derivatives of the monotone set-valued measures are investigated. Next, we define the conjugate measure of the monotone set-valued measure and use it to define and discuss a new version $ f $-divergence, and we prove that the new version $ f $-divergence is nonnegative. In addition, we define the generalized $ f $-divergence by using the generalized Radon-Nikodym derivatives of two monotone set-valued measures and examples are given. Finally, some examples are given to illustrate the rationality of the definitions and the operability of the applications of the results.
[1] | H. Agahi, A modified Kullback-Leibler divergence for non-additive measures based on Choquet integral, Fuzzy Sets Syst., 367 (2019), 107–117. https://doi.org/10.1016/j.fss.2019.01.021 doi: 10.1016/j.fss.2019.01.021 |
[2] | H. Agahi, Fundamental properties of relative entropy and Lin divergence for Choquet integral, Int. J. Approx. Reason., 134 (2021) 15–22. https://doi.org/10.1016/j.ijar.2021.03.009 doi: 10.1016/j.ijar.2021.03.009 |
[3] | S. Amari, $\alpha$-Divergence is Unique, belonging to both $f$-divergence and Bregman divergence classes, IEEE Trans. Inform. Theory, 55 (2009), 4925–4931. https://doi.org/10.1109/TIT.2009.2030485 doi: 10.1109/TIT.2009.2030485 |
[4] | R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl., 12 (1965), 1–12. |
[5] | R. Beran, Minimum hellinger distance estimates for parametric models, Ann. Stat., 5 (1997), 445–463. |
[6] | J. Burbea, C. Rao, On the convexity of some divergence measures based on entropy functions, IEEE Trans. Inform. Theory, 28 (1982), 489–495. https://doi.org/10.1109/TIT.1982.1056497 doi: 10.1109/TIT.1982.1056497 |
[7] | H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations, Ann. Math. Stat., 23 (1952), 493–507. |
[8] | G. Choquet, Theory of capacities, Ann. Inst. Fourier, 5 (1954), 131–295. https://doi.org/10.5802/aif.53 doi: 10.5802/aif.53 |
[9] | D. A. Cieslak, T. R. Hoens, N. V. Chawla, W. P. Kegelmeyer, Hellinger distance decision trees are robust and skew-insensitive, Data Min. Knowl. Disc., 24 (2012), 136–158. https://doi.org/10.1007/s10618-011-0222-1 doi: 10.1007/s10618-011-0222-1 |
[10] | I. Csiszár, Information-type measures of difference of probability distributions and indirect observations, Studia Sci. Math. Hungar., 2 (1967), 299–318. |
[11] | I. Csiszár, Information measures: A critical survey, In: Transactions of the seventh Prague conference on information theory, statistical decision functions, Random processes, 1974, 73–86. |
[12] | S. S. Dragomir, V. Gluščević, C. E. M. Pearce, Csiszár $f$-divergence, Ostrowski's inequality and mutual information, Nonlinear Anal., 47 (2001), 2375–2386. https://doi.org/10.1016/S0362-546X(01)00361-3 doi: 10.1016/S0362-546X(01)00361-3 |
[13] | A. C. Gavriluţ, Properties of regularity for multisubmeasures, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat., 2004,373–292. |
[14] | A. C. Gavriluţ, Non-atomicity and the Darboux property for fuzzy and non-fuzzy Borel/Baire multivalued set functions, Fuzzy Sets Syst., 160 (2009), 1308–1317. https://doi.org/10.1016/j.fss.2008.06.009 doi: 10.1016/j.fss.2008.06.009 |
[15] | A. C. Gavriluţ, Rugularlity and autocontinuity of set multifunctions, Fuzzy Sets Syst., 161 (2010), 681–693. https://doi.org/10.1016/j.fss.2009.05.007 doi: 10.1016/j.fss.2009.05.007 |
[16] | A. C. Gavriluţ, Abstract rugular null-null-additive set multifunctions in Hausdorff topology, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat., 59 (2013), 129–147. |
[17] | A. C. Gavriluţ, Alexandroff theorem in Hausdorff topology for null-null-additive set multifunctions, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat., 2013,237–251. https://doi.org/10.2478/v10157-012-0046-3 doi: 10.2478/v10157-012-0046-3 |
[18] | A. C. Gavriluţ, A. Croitoru, Pseudo-atoms and Darboux property for set multifunctions, Fuzzy Sets Syst., 161 (2010), 2897–2908. https://doi.org/10.1016/j.fss.2010.06.007 doi: 10.1016/j.fss.2010.06.007 |
[19] | Z. T. Gong, X. Y. Kou, T. Xie, Interval-valued Choquet integral for set-valued mappings: Definitions, integral representations and primitive characteristics, AIMS Math., 5 (2020), 6277–6297. https://doi.org/10.3934/math.2020404 doi: 10.3934/math.2020404 |
[20] | T. Grbić, I. Štajner-Papuga, L. Nedović, Pseudo-integral of set-valued functions, In: New dimensions in fuzzy logic and related technologies, 1 (2007), 221–225. |
[21] | E. Hellinger, Neue begründung der theorie quadratischer formen von unendlichvielen veränderlichen, J. Reine Angew. Math., 1909 (1909), 210–271. https://doi.org/10.1515/crll.1909.136.210 doi: 10.1515/crll.1909.136.210 |
[22] | K. C. Jain, A. Srivastava, On symmetric information divergence measures of Csiszar's $f$-divergence class, J. Appl. Math. Stat. Inform., 3 (2007), 85–102. |
[23] | R. Kadian, S. Kumar, Jensen-Renyi's-Tsallis fuzzy divergence information measure with its applications, Commun. Math. Stat., 2021, 1–32. https://doi.org/10.1007/s40304-020-00228-1 doi: 10.1007/s40304-020-00228-1 |
[24] | S. Kullback, R. A. Leibler, On information and sufficiency, Ann. Math. Stat., 22 (1951), 79–86. |
[25] | F. Liese, I. Vajda, On divergences and informations in statistics and information theory, IEEE Trans. Inform. Theory, 52 (2006), 4394–4412. https://doi.org/10.1109/TIT.2006.881731 doi: 10.1109/TIT.2006.881731 |
[26] | E. Nikita, P. Nikitas, Measures of divergence for binary data used in biodistance studies, Archaeol. Anthropol. Sci., 13 (2021), 1–14. https://doi.org/10.1007/s12520-021-01292-6 doi: 10.1007/s12520-021-01292-6 |
[27] | K. Pearson, On the criterion that a given system of deviations from the probable in the case of correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling, Lond. Edinb. Dublin Philos. Mag. J. Sci., 50 (1900), 157–175. https://doi.org/10.1080/14786440009463897 doi: 10.1080/14786440009463897 |
[28] | V. V. Prelov, On the maximum values of $f$-divergence and Rényi divergence under a given variational distance, Prob. Inform. Transm., 56 (2020), 1–12. https://doi.org/10.1134/S0032946020010019 doi: 10.1134/S0032946020010019 |
[29] | N. Shlomo, L. Antal, M. Elliot, Measuring disclosure risk and data utility for flexible table generators, J. Off. Stast., 31 (2015), 305–324. https://doi.org/10.1515/JOS-2015-0019 doi: 10.1515/JOS-2015-0019 |
[30] | M. Stojaković, Set valued probability and its connection with set valued measure, Stat. Probab. Lett., 82 (2012), 1043–1048. https://doi.org/10.1016/j.spl.2012.02.021 doi: 10.1016/j.spl.2012.02.021 |
[31] | M. Sugeno, Theory of fuzzy integral and its applications, Tokyo Institute of Thconology, 1974. |
[32] | M. Sugeno, A note on derivatives of functions with respect to fuzzy measures, Fuzzy Sets Syst., 222 (2013), 1–17. https://doi.org/10.1016/j.fss.2012.11.003 doi: 10.1016/j.fss.2012.11.003 |
[33] | N. X. Thao, Some new entropies and divergence measures of intuitionistic fuzzy sets based on Archimedean t-conorm and application in supplier selection, Soft Comput., 25 (2021), 5791–5805. https://doi.org/10.1007/s00500-021-05575-x doi: 10.1007/s00500-021-05575-x |
[34] | F. Topsoe, Some inequalities for information divergence and related measures of discrimination, IEEE Trans. Inform. Theory, 46 (2000), 1602–1609. https://doi.org/10.1109/18.850703 doi: 10.1109/18.850703 |
[35] | V. Torra, Y. Narukawa, M. Sugeno, On the $f$-divergence for non-additive measures, Fuzzy Sets Syst., 292 (2016), 364–379. https://doi.org/10.1016/j.fss.2015.07.006 doi: 10.1016/j.fss.2015.07.006 |
[36] | V. Torra, Y. Narukawa, M. Sugeno, On the $f$-divergence for discrete non-additive measures, Inform. Sci., 512 (2020), 50–63. https://doi.org/10.1016/j.ins.2019.09.033 doi: 10.1016/j.ins.2019.09.033 |
[37] | A. Umar, R. N. Saraswat, Decision-making in machine learning using novel picture fuzzy divergence measure, Neural Comput. Appl., 34 (2022), 457–475. https://doi.org/10.1007/s00521-021-06353-4 doi: 10.1007/s00521-021-06353-4 |
[38] | J. R. Wu, X. W. Kai, J. J. Li, Atoms of monotone set-valued measures and integrals, Fuzzy Sets Syst., 304 (2016), 131–139. https://doi.org/10.1016/j.fss.2016.05.006 doi: 10.1016/j.fss.2016.05.006 |
[39] | D. L. Zhang, C. M. Guo, Fuzzy integrals of set-valued mappings and fuzzy mappings, Fuzzy Sets Syst., 75 (1995), 103–109. https://doi.org/10.1016/0165-0114(94)00342-5 doi: 10.1016/0165-0114(94)00342-5 |
[40] | D. L. Zhang, C. M. Guo, D. Y. Liu, Set-valued Choquet integrals revisited, Fuzzy Sets Syst., 147 (2004), 475–485. https://doi.org/10.1016/j.fss.2004.04.005 doi: 10.1016/j.fss.2004.04.005 |
[41] | K. Y. Zhao, R. T. Sun, L. Li, M. M. Hou, G. Yuan, R. Z. Sun, An optimal evidential data fusion algorithm based on the new divergence measure of basic probability assignment, Soft Comput., 25 (2021), 11449–11457. https://doi.org/10.1007/s00500-021-06040-5 doi: 10.1007/s00500-021-06040-5 |