Probabilistic group theory is concerned with the probability of group elements or group subgroups satisfying certain conditions. On the other hand, a polygroup is a generalization of a group and a special case of a hypergroup. This paper generalizes probabilistic group theory to probabilistic polygroup theory. In this regard, we extend the concept of the subgroup commutativity degree of a finite group to the subpolygroup commutativity degree of a finite polygroup $ P $. The latter measures the probability of two random subpolygroups $ H, K $ of $ P $ commuting (i.e., $ HK = KH $). First, using the subgroup commutativity table and the subpolygroup commutativity table, we present some results related to the new defined concept for groups and for polygroups. We then consider the special case of a polygroup associated to a group. We study the subpolygroup lattice and relate this to the subgroup lattice of the base group; this includes deriving an explicit formula for the subpolygroup commutativity degree in terms of the subgroup commutativity degree. Finally, we illustrate our results via non-trivial examples by applying the formulas that we prove to the associated polygroups of some well-known groups such as the dihedral group and the symmetric group.
Citation: Madeleine Al Tahan, Sarka Hoskova-Mayerova, B. Davvaz, A. Sonea. On subpolygroup commutativity degree of finite polygroups[J]. AIMS Mathematics, 2023, 8(10): 23786-23799. doi: 10.3934/math.20231211
Probabilistic group theory is concerned with the probability of group elements or group subgroups satisfying certain conditions. On the other hand, a polygroup is a generalization of a group and a special case of a hypergroup. This paper generalizes probabilistic group theory to probabilistic polygroup theory. In this regard, we extend the concept of the subgroup commutativity degree of a finite group to the subpolygroup commutativity degree of a finite polygroup $ P $. The latter measures the probability of two random subpolygroups $ H, K $ of $ P $ commuting (i.e., $ HK = KH $). First, using the subgroup commutativity table and the subpolygroup commutativity table, we present some results related to the new defined concept for groups and for polygroups. We then consider the special case of a polygroup associated to a group. We study the subpolygroup lattice and relate this to the subgroup lattice of the base group; this includes deriving an explicit formula for the subpolygroup commutativity degree in terms of the subgroup commutativity degree. Finally, we illustrate our results via non-trivial examples by applying the formulas that we prove to the associated polygroups of some well-known groups such as the dihedral group and the symmetric group.
[1] | M. Al-Tahan, A. Sonea, B. Davvaz, Subpolygroup commutativity degree of finite polygroups, Proceedings of the 3rd International Conference on Symmetry, 2021, 8–13. |
[2] | G. Birhoff, Lattice theory, Providence: American Mathematical Soc., 1967. |
[3] | P. Bonansinga, Sugli ipergruppi quasicanonici, Atti Soc. Pelor. Sc. Fis. Mat. Nat., 27 (1981), 9–17. |
[4] | P. Bonansinga, Ipergruppi debolmente quasicanonici, Atti Sem. Mat. Fis. Univ. Modena, 30 (1981), 286–298. |
[5] | S. Comer, Polygroups derived from cogroups, J. Algebra, 89 (1984), 397–405. http://dx.doi.org/10.1016/0021-8693(84)90225-4 doi: 10.1016/0021-8693(84)90225-4 |
[6] | P. Corsini, V. Leoreanu, Applications of hyperstructures theory, New York: Springer, 2003. http://dx.doi.org/10.1007/978-1-4757-3714-1 |
[7] | A. Das, R. Nath, On generalized relative commutativity degree of a finite group, Int. Electron. J. Algeb., 7 (2010), 140–151. |
[8] | A. Das, R. Nath, M. Pournaki, A survey on the estimation of commutativity in finite groups, SE Asian Bull. Math., 37 (2013), 161–180. |
[9] | B. Davvaz, Polygroup theory and related systems, Singapore: World Scientific, 2013. |
[10] | A. Erfanian, R. Rezaei, P. Lescot, On the relative commutativity degree of a subgroup of a finite group, Commun. Algebra, 35 (2007), 4183–4197. http://dx.doi.org/10.1080/00927870701545044 doi: 10.1080/00927870701545044 |
[11] | M. Jafarpour, H. Aghabozorgt, B. Davvaz, On nilpotent and solvable polygroups, Bull. Iran. Math. Soc., 39 (2013), 487–499. |
[12] | P. Lescot, Isoclinism classes and commutativity degrees of finite groups, J. Algebra, 177 (1995), 847–869. http://dx.doi.org/10.1006/jabr.1995.1331 doi: 10.1006/jabr.1995.1331 |
[13] | P. Lescot, Central extensions and commutativity degree, Commun. Algebra, 29 (2001), 4451–4460. http://dx.doi.org/10.1081/AGB-100106768 doi: 10.1081/AGB-100106768 |
[14] | F. Marty, Sur une generalization de la notion de group, Proceedings of 8th congress Math, 1934, 45–49. |
[15] | J. Mittas, Hypergroupes canoniques hypervalues, CR Acad. Sci. Paris, 271 (1970), 4–7. |
[16] | J. Mittas, Hypergroupes canoniques, Math. Balkanica, 2 (1972), 165–179. |
[17] | D. Rusin, What is the probability that two elements of a finite group commute? Pac. J. Math., 82 (1979), 237–247. http://dx.doi.org/10.2140/pjm.1979.82.237 doi: 10.2140/pjm.1979.82.237 |
[18] | A. Sonea, $HX$-groups associated with the dihedral group $D_n$, J. Mult.-Valued Log. S., 33 (2019), 11–26. |
[19] | A. Sonea, New aspects in polygroup theory, An. St. Univ. Ovidius Constanta, 28 (2020), 241–254. http://dx.doi.org/10.2478/auom-2020-0044 doi: 10.2478/auom-2020-0044 |
[20] | A. Sonea, I. Cristea, The class equation and the commutativity degree for complete hypergroups, Mathematics, 8 (2020), 2253. http://dx.doi.org/10.3390/math8122253 doi: 10.3390/math8122253 |
[21] | M. Tarnauceanu, Subgroup commutativity degrees of finite groups, J. Algebra, 321 (2009), 2508–2520. http://dx.doi.org/10.1016/j.jalgebra.2009.02.010 doi: 10.1016/j.jalgebra.2009.02.010 |