Research article

Asymptotic behavior of solutions of the third-order nonlinear advanced differential equations

  • Received: 19 June 2023 Revised: 10 July 2023 Accepted: 24 July 2023 Published: 04 August 2023
  • MSC : 34C10, 34K11

  • The aim of this work is to study some asymptotic properties of a class of third-order advanced differential equations. We present new oscillation criteria that complete, simplify and improve some previous results. We also provide many different examples to clarify the significance of our results.

    Citation: Belgees Qaraad, Muneerah AL Nuwairan. Asymptotic behavior of solutions of the third-order nonlinear advanced differential equations[J]. AIMS Mathematics, 2023, 8(10): 23800-23814. doi: 10.3934/math.20231212

    Related Papers:

  • The aim of this work is to study some asymptotic properties of a class of third-order advanced differential equations. We present new oscillation criteria that complete, simplify and improve some previous results. We also provide many different examples to clarify the significance of our results.



    加载中


    [1] J. K. Hale, Functional differential equations, New York: Springer, 1971. https://doi.org/10.1007/978-1-4615-9968-5
    [2] M. Al Nuwairan, A. G. Ibrahim, Nonlocal impulsive differential equations and inclusions involving Atangana-Baleanu fractional derivative in infinite dimensional spaces, AIMS Mathematics, 8 (2023), 11752–11780. https://doi.org/10.3934/math.2023595 doi: 10.3934/math.2023595
    [3] M. Al Nuwairan, Bifurcation and analytical solutions of the space-fractional stochastic Schrödinger equation with white noise, Fractal Fract., 7 (2023), 157. https://doi.org/10.3390/fractalfract7020157 doi: 10.3390/fractalfract7020157
    [4] M. Almulhim, M. Al Nuwairan, Bifurcation of traveling wave solution of Sakovich equation with Beta fractional derivative, Fractal Fract., 7 (2023), 372. https://doi.org/10.3390/fractalfract7050372 doi: 10.3390/fractalfract7050372
    [5] M. Al Nuwairan, The exact solutions of the conformable time fractional version of the generalized Pochhammer-Chree equation, Math. Sci., 17 (2023), 305–316. https://doi.org/10.1007/s40096-022-00471-3 doi: 10.1007/s40096-022-00471-3
    [6] A. Aldhafeeri, M. Al Nuwairan, Bifurcation of some novel wave solutions for modified nonlinear Schrödinger equation with time M-fractional derivative, Mathematics, 11 (2023), 1219. https://doi.org/10.3390/math11051219 doi: 10.3390/math11051219
    [7] M. Alfadhli, A. A. Elmandouh, M. Al Nuwairan, Some dynamic aspects of a sextic galactic potential in a rotating reference frame, Appl. Sci., 13 (2023), 1123. https://doi.org/10.3390/app13021123 doi: 10.3390/app13021123
    [8] N. Guglielmi, E. Iacomini, A. Viguerie, Delay differential equations for the spatially resolved simulation of epidemics with specific application to COVID-19, Math. Method. Appl. Sci., 45 (2022), 4752–4771. https://doi.org/10.1002/mma.8068 doi: 10.1002/mma.8068
    [9] A. I. K. Butt, M. Imran, S. Batool, M. Al Nuwairan, Theoretical analysis of a COVID-19 CF-fractional model to optimally control the spread of pandemic, Symmetry, 15 (2023), 380. https://doi.org/10.3390/sym15020380 doi: 10.3390/sym15020380
    [10] A. I. K. Butt, S. Batool, M. Imran, M. Al Nuwairan, Design and analysis of a new COVID-19 model with comparative study of control strategies, Mathematics, 11 (2023), 1978. https://doi.org/10.3390/math11091978 doi: 10.3390/math11091978
    [11] L. E. Elsgolts, S. B. Norkin, Introduction to the theory and application of differential equations with deviating arguments, mathematics in science and engineering, New York: Academic Press, 1973.
    [12] W. B. Fite, Properties of the solutions of certain functional-differential equations, T. Am. Math. Soc., 22 (1921), 311–319. https://doi.org/10.2307/1988895 doi: 10.2307/1988895
    [13] R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation theory for second order linear, half-linear, superlinear and sublinear dynamic equations, Dordrecht: Springer, 2002. https://doi.org/10.1007/978-94-017-2515-6
    [14] R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation theory for second order dynamic equations, 1 Eds., London: CRC Press, 2003. https://doi.org/10.4324/9780203222898
    [15] R. P. Agarwal, M. Bohner, W. T. Li, Nonoscillation and oscillation theory for functional differential equations, 1 Eds., Boca Raton: CRC Press, 2004. https://doi.org/10.1201/9780203025741
    [16] R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation theory for difference and functional differential equations, Dordrecht: Springer, 2013. https://doi.org/10.1007/978-94-015-9401-1
    [17] O. Dosly, P. Rehak, Half-linear differential equations, Amsterdam: North-Holland, 2005.
    [18] T. Li, Y. V. Rogovchenko, Oscillation criteria for second-order superlinear Emden-Fowler neutral differential equations, Monatsh. Math., 184 (2017), 489–500. https://doi.org/10.1007/s00605-017-1039-9 doi: 10.1007/s00605-017-1039-9
    [19] M. Bohner, T. S. Hassan, T. Li, Fite-Hille-Wintner-type oscillation criteria for second-order half-linear dynamic equations with deviating arguments, Indagat. Math. New Ser., 29 (2018), 548–560. https://doi.org/10.1016/j.indag.2017.10.006 doi: 10.1016/j.indag.2017.10.006
    [20] S. H. Saker, J. Dzurina, On the oscillation of certain class of third-order nonlinear delay differential equations, Math. Bohem., 135 (2010), 225–237. https://doi.org/10.21136/MB.2010.140700 doi: 10.21136/MB.2010.140700
    [21] B. Baculikova, Oscillatory behavior of the second order functional differential equations, Appl. Math. Lett., 72 (2017), 35–41. https://doi.org/10.1016/j.aml.2017.04.003 doi: 10.1016/j.aml.2017.04.003
    [22] I. Jadlovska, Iterative oscillation results for second-order differential equations with advanced argument, Electron. J. Differ. Eq., 2017 (2017), 162.
    [23] J. Dzurina, A comparison theorem for linear delay differential equations, Arch. Math. Brno., 31 (1995), 113–120.
    [24] R. P. Agarwal, C. Zhang, T. Li, New Kamenev-type oscillation criteria for second-order nonlinear advanced dynamic equations, Appl. Math. Comput., 225 (2013), 822–828. https://doi.org/10.1016/j.amc.2013.09.072 doi: 10.1016/j.amc.2013.09.072
    [25] T. S. Hassan, Kamenev-type oscillation criteria for second order nonlinear dynamic equations on time scales, Appl. Math. Comput., 217 (2011), 5285–5297. https://doi.org/10.1016/j.amc.2010.11.052 doi: 10.1016/j.amc.2010.11.052
    [26] G. E. Chatzarakis, J. Dzurina, I. Jadlovska, New oscillation criteria for second-order half-linear advanced differential equations, Appl. Math. Comput., 347 (2019), 404–416. https://doi.org/10.1016/j.amc.2018.10.091 doi: 10.1016/j.amc.2018.10.091
    [27] G. E. Chatzarakis, O. Moaaz, T. Li, B. Qaraad, Some oscillation theorems for nonlinear second-order differential equations with an advanced argument, Adv. Differ. Equ., 2020 (2020), 160. https://doi.org/10.1186/s13662-020-02626-9 doi: 10.1186/s13662-020-02626-9
    [28] B. Baculikova, J. Dzurina, Oscillation of third-order functional differential equations, Electron. J. Qual. Theory Differ. Equ., 2010 (2010), 1–10. https://doi.org/10.14232/ejqtde.2010.1.43 doi: 10.14232/ejqtde.2010.1.43
    [29] B. Baculikova, J. Dzurina, Oscillation of third-order nonlinear differential equations, Appl. Math. Lett., 24 (2011), 466–470. https://doi.org/10.1016/j.aml.2010.10.043 doi: 10.1016/j.aml.2010.10.043
    [30] S. R. Grace, R. P. Agarwal, R. Pavani, E. Thandapani, On the oscillation of certainthird order nonlinear functional differential equations, Appl. Math. Comput., 202 (2008), 102–112. https://doi.org/10.1016/j.amc.2008.01.025 doi: 10.1016/j.amc.2008.01.025
    [31] O. Moaaz, B. Qaraad, R. A. El-Nabulsi, O. Bazighifan, New results for Kneser solutions of third-order nonlinear neutral differential equations, Mathematics, 8 (2020), 686. https://doi.org/10.3390/math8050686 doi: 10.3390/math8050686
    [32] A. A. Themairi, B. Qaraad, O. Bazighifan, K. Nonlaopon, New conditions for testing the oscillation of third-order differential equations with distributed arguments, Symmetry, 14 (2022), 2416. https://doi.org/10.3390/sym14112416 doi: 10.3390/sym14112416
    [33] A. A. Themairi, B. Qaraad, O. Bazighifan, K. Nonlaopon, Third-order neutral differential equations with damping and distributed delay: new asymptotic properties of solutions, Symmetry, 14 (2022), 2192. https://doi.org/10.3390/sym14102192 doi: 10.3390/sym14102192
    [34] C. Zhang, T. Li, B. Sun, E. Thandapani, On the oscillation of higher-order half-lineardelay differential equations, Appl. Math. Lett., 24 (2011), 1618–1621. https://doi.org/10.1016/j.aml.2011.04.015 doi: 10.1016/j.aml.2011.04.015
    [35] T. Li, C. Zhang, B. Baculikova, J. Dzurina, On the oscillation of third-order quasilinear delay differential equations, Tatra Mt. Math. Publ., 48 (2011), 117–123. https://doi.org/10.2478/v10127-011-0011-7 doi: 10.2478/v10127-011-0011-7
    [36] T. Li, C. Zhang, G. Xing, Oscillation of third-order neutral delay differential equations, Abstr. Appl. Anal., 2012 (2012), 569201. https://doi.org/10.1155/2012/569201 doi: 10.1155/2012/569201
    [37] J. Yao, X. Zhang, J. Yu, New oscillation criteria for third-order half-linear advanced differential equations, Ann. Appl. Math., 36 (2020), 309–330.
    [38] J. Dzurina, B. Baculikova, Property (A) of third-order advanced differential equations, Math. Slovaca, 64 (2014), 339–346. https://doi.org/10.2478/s12175-014-0208-8 doi: 10.2478/s12175-014-0208-8
    [39] J. Dzurina, E. Thandapani, S. Tamilvanan, Oscillation of solutions to third-order half-linear neutral differential equations, Electron. J. Differ. Eq., 2012 (2012), 29.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1013) PDF downloads(68) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog