In this paper, we aim to explore the oscillation of solutions for a class of second-order neutral functional differential equations. We propose new criteria to ensure that all obtained solutions are oscillatory. The obtained results can be used to develop and provide theoretical support for and further develop the oscillation study for a class of second-order neutral differential equations. Finally, an illustrated example is given to demonstrate the effectiveness of our new criteria.
Citation: Ali Muhib, Hammad Alotaibi, Omar Bazighifan, Kamsing Nonlaopon. Oscillation theorems of solution of second-order neutral differential equations[J]. AIMS Mathematics, 2021, 6(11): 12771-12779. doi: 10.3934/math.2021737
In this paper, we aim to explore the oscillation of solutions for a class of second-order neutral functional differential equations. We propose new criteria to ensure that all obtained solutions are oscillatory. The obtained results can be used to develop and provide theoretical support for and further develop the oscillation study for a class of second-order neutral differential equations. Finally, an illustrated example is given to demonstrate the effectiveness of our new criteria.
[1] | I. Györi, G. Ladas, Oscillation theory of delay differential equations with applications, The clarenden Press, Oxford, 1991. |
[2] | J.K. Hale, Theory of functional differential equations, Springer, New York, 1977. |
[3] | O. Moaaz, I. Dassios, O. Bazighifan, A. Muhib, Oscillation theorems for nonlinear differential equations of fourth-order, Mathematics, 8 (2020), 520. doi: 10.3390/math8040520 |
[4] | O. Bazifghifan, H. Ramos, On the asymptotic and oscillatory behavior of the solutions of a class of higher-order differential equations with middle term, Appl. Math. Lett., 107 (2020), 106431. doi: 10.1016/j.aml.2020.106431 |
[5] | A. Elbert, Oscillation and nonoscillation theorems for some nonlinear differential equations, In: ordinary and partial differential equations, Lect. Notes Math., 964 (1982), 187–212. |
[6] | D. D. Bainov, D. P. Mishev, Oscillation theory for neutral differential equations with delay, Adam Hilger, New York, 1991. |
[7] | A. Muhib, E. M. Elabbasy, O. Moaaz, New oscillation criteria for differential equations with sublinear and superlinear neutral terms, Turk. J. Math., 45 (2021), 919–928. doi: 10.3906/mat-2012-11 |
[8] | T. Li, Z. Han, P. Zhao, S. Sun, Oscillation of even-order neutral delay differential equations, Adv. Difference Equ., 2010 (2010), 1–9. |
[9] | O. Bazighifan, O. Moaaz, R. A. El-Nabulsi, A. Muhib, Some new oscillation results for fourth-order neutral differential equations with delay argument, Symmetry, 12 (2020), 1248. doi: 10.3390/sym12081248 |
[10] | O. Bazighifan, Improved approach for studying oscillatory properties of fourth-order advanced differential equations with $p$-Laplacian like operator, Mathematics, 81 (2020), 1–11. |
[11] | A. Muhib, T. Abdeljawad, O. Moaaz, E. M. Elabbasy, Oscillatory properties of odd-order delay differential equations with distribution deviating arguments, Appl. Sci., 10 (2020), 5952. doi: 10.3390/app10175952 |
[12] | A. Muhib, M. M. Khashan, O. Moaaz, Even-order differential equation with continuous delay: Nonexistence criteria of Kneser solutions, Adv. Difference Equ., 2021 (2021), 250. doi: 10.1186/s13662-021-03409-6 |
[13] | H. Liu, F. Meng, P. Liu, Oscillation and asymptotic analysis on a new generalized Emden-Fowler equation, Appl. Math. Comput., 219 (2012), 2739–2748. |
[14] | H. Ramos, O. Moaaz, A. Muhib, J. Awrejcewicz, More effective results for testing oscillation of non-canonical neutral delay differential equations, Mathematics, 9 (2021), 1114. doi: 10.3390/math9101114 |
[15] | O. Bazighifan, T. Abdeljawad, Q. M. Al-Mdallal, Differential equations of even-order with $p$-Laplacian like operators: Qualitative properties of the solutions, Adv. Differ. Equ., 2021 (2021), 96. doi: 10.1186/s13662-021-03254-7 |
[16] | Y. G. Sun, F. W. Meng, Note on the paper of Dzurina and Stavroulakis, Appl. Math. Comput., 174 (2006), 1634–1641. |
[17] | J. S. W. Wong, A second-order nonlinear oscillation theorems, Proc. Amer. Math. Soc., 40 (1973), 487–491. doi: 10.1090/S0002-9939-1973-0318585-6 |
[18] | R. P. Agarwal, S. L. Shieh, C. C. Yeh, Oscillation criteria for second-order retarded differential equations, Math. Comput. Model., 26 (1997), 1–11. |
[19] | L. Liu, Y. Bai, New oscillation criteria for second-order nonlinear neutral delay differential equations, J. Comput. Appl. Math., 231 (2009), 657–663. doi: 10.1016/j.cam.2009.04.009 |
[20] | Y. Sahiner, On oscillation of second-order neutral type delay differential equations, Appl. Math. Comput., 150 (2004), 697–706. |
[21] | P. G. Wang, Oscillation criteria for second-order neutral equations with distributed deviating arguments, Comput. Math. Appl., 47 (2004), 1935–1946. doi: 10.1016/j.camwa.2002.10.016 |
[22] | A. Muhib, On oscillation of second-order noncanonical neutral differential equations, J. Inequal. Appl., 2021 (2021), 79. doi: 10.1186/s13660-021-02595-x |
[23] | G. E.Chatzarakis, S. R. Grac, I. Jadlovská, A sharp oscillation criterion for second-order half-linear advanced differential equations, Acta Math. Hungar., 163 (2021), 552–562. doi: 10.1007/s10474-020-01110-w |
[24] | O. Moaaz, G. E. Chatzarakis, T. Abdeljawad, C. Cesarano, A. Nabih, Amended oscillation criteria for second-order neutral differential equations with damping term, Adv. Difference Equ., 2020 (2020), 553. doi: 10.1186/s13662-020-02739-1 |
[25] | Y. Sui, H. Yu, Oscillation of a kind of second-order quasilinear equation with mixed arguments, Appl. Math. Lett., 103 (2020), 106193. doi: 10.1016/j.aml.2019.106193 |
[26] | Y. Sui, H. Yu, Oscillation of damped second-order quasilinear wave equations with mixed arguments, Appl. Math. Lett., 117 (2021), 107060. doi: 10.1016/j.aml.2021.107060 |
[27] | B. Baculkov, Oscillatory behavior of the second-order functional differential equations, Appl. Math. Lett., 72 (2017), 35–41. doi: 10.1016/j.aml.2017.04.003 |
[28] | Y. Wu, Y. Yu, J. Zhang, J. Xiao, Oscillation criteria for second-order Emden-Fowler functional differential equations of neutral type. Appl. Math. Comput., 219, (2012), 2739–2748. |
[29] | R. Xu, F. Meng, Oscillation criteria for second-order quasi-linear neutral delay differential equations, Appl. Math. Comput., 192 (2007), 216–222. |
[30] | Z. T. Xu, P. X. Weng, Oscillation of second-order neutral equations with distributed deviating arguments, J. Comput. Appl. Math., 202, (2007), 460–477. |
[31] | O. Bazighifan, M. Ruggieri, S. S. Santra, A. Scapellato, Qualitative properties of solutions of second-order neutral differential equations, Symmetry, 12 (2020), 1520. doi: 10.3390/sym12091520 |
[32] | O. Moaaz, M. Anis, D. Baleanu, A. Muhib, More effective criteria for oscillation of second-order differential equations with neutral arguments, Mathematics, 8 (2020), 986. doi: 10.3390/math8060986 |
[33] | O. Moaaz, A. Muhib, S. Owyed, E. E. Mahmoud, A. Abdelnaser, Second-order neutral differential equations: Improved criteria for testing the oscillation, J. Math., 2021 (2021), 7. |
[34] | B. Baculikova, J, Dzurina, Oscillatory criteria via linearization of Half-Linear second order delay differential equations, Opuscula Math., 40 (2020), 523–536. doi: 10.7494/OpMath.2020.40.5.523 |