Research article

Least squares estimation for non-ergodic weighted fractional Ornstein-Uhlenbeck process of general parameters

  • Received: 01 April 2021 Accepted: 02 September 2021 Published: 07 September 2021
  • MSC : 62F12, 60F05, 60G15, 60H05

  • Let $ B^{a, b}: = \{B_t^{a, b}, t\geq0\} $ be a weighted fractional Brownian motion of parameters $ a > -1 $, $ |b| < 1 $, $ |b| < a+1 $. We consider a least square-type method to estimate the drift parameter $ \theta > 0 $ of the weighted fractional Ornstein-Uhlenbeck process $ X: = \{X_t, t\geq0\} $ defined by $ X_0 = 0; \ dX_t = \theta X_tdt+dB_t^{a, b} $. In this work, we provide least squares-type estimators for $ \theta $ based continuous-time and discrete-time observations of $ X $. The strong consistency and the asymptotic behavior in distribution of the estimators are studied for all $ (a, b) $ such that $ a > -1 $, $ |b| < 1 $, $ |b| < a+1 $. Here we extend the results of [1,2] (resp. [3]), where the strong consistency and the asymptotic distribution of the estimators are proved for $ -\frac12 < a < 0 $, $ -a < b < a+1 $ (resp. $ -1 < a < 0 $, $ -a < b < a+1 $). Simulations are performed to illustrate the theoretical results.

    Citation: Abdulaziz Alsenafi, Mishari Al-Foraih, Khalifa Es-Sebaiy. Least squares estimation for non-ergodic weighted fractional Ornstein-Uhlenbeck process of general parameters[J]. AIMS Mathematics, 2021, 6(11): 12780-12794. doi: 10.3934/math.2021738

    Related Papers:

  • Let $ B^{a, b}: = \{B_t^{a, b}, t\geq0\} $ be a weighted fractional Brownian motion of parameters $ a > -1 $, $ |b| < 1 $, $ |b| < a+1 $. We consider a least square-type method to estimate the drift parameter $ \theta > 0 $ of the weighted fractional Ornstein-Uhlenbeck process $ X: = \{X_t, t\geq0\} $ defined by $ X_0 = 0; \ dX_t = \theta X_tdt+dB_t^{a, b} $. In this work, we provide least squares-type estimators for $ \theta $ based continuous-time and discrete-time observations of $ X $. The strong consistency and the asymptotic behavior in distribution of the estimators are studied for all $ (a, b) $ such that $ a > -1 $, $ |b| < 1 $, $ |b| < a+1 $. Here we extend the results of [1,2] (resp. [3]), where the strong consistency and the asymptotic distribution of the estimators are proved for $ -\frac12 < a < 0 $, $ -a < b < a+1 $ (resp. $ -1 < a < 0 $, $ -a < b < a+1 $). Simulations are performed to illustrate the theoretical results.



    加载中


    [1] G. Shen, X. Yin, L. Yan, Least squares estimation for Ornstein-Uhlenbeck processes driven by the weighted fractional brownian motion, Acta Math. Sci., 36B (2016), 394–408.
    [2] G. Shen, X. Yin, L. Yan, Erratum to: least squares estimation for Ornstein-Uhlenbeck processes driven by the weighted fractional brownian motion (Acta Mathematica Scientia 2016, 36B(2): 394-408), Acta Math. Sci., 37 (2017), 1173–1176. doi: 10.1016/S0252-9602(17)30065-6
    [3] P. Cheng, G. Shen, Q. Chen, Parameter estimation for nonergodic Ornstein-Uhlenbeck process driven by the weighted fractional Brownian motion, Adv. Differ. Equ., 366 (2017). Available from: https://doi.org/10.1186/s13662-017-1420-y.
    [4] I. V. Basawa, D. J. Scott, Asymptotic Optimal Inference for Non-Ergodic Models, New York: Springer 1983.
    [5] H. M. Dietz, Y. A. Kutoyants, Parameter estimation for some non-recurrent solutions of SDE, Stat. Decisions, 21 (2003), 29–46. doi: 10.1524/stnd.21.1.29.20321
    [6] J. Jacod, Parametric inference for discretely observed non-ergodic diffusions, Bernoulli, 12 (2006), 383–401.
    [7] Y. Shimizu, Notes on drift estimation for certain non-recurrent diffusion from sampled data, Stat. Probab. Lett., 79 (2009), 2200–2207. doi: 10.1016/j.spl.2009.07.015
    [8] T. Bojdecki, L. Gorostiza, A. Talarczyk, Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems, Electron. Commun. Probab., 12 (2007), 161–172.
    [9] M. Kleptsyna, A. Le Breton, Statistical analysis of the fractional Ornstein-Uhlenbeck type process, Stat. Inference Stoch. Process., 5 (2002), 229–241. doi: 10.1023/A:1021220818545
    [10] Y. Hu, D. Nualart, Parameter estimation for fractional Ornstein-Uhlenbeck processes, Statist. Probab. Lett., 80 (2010), 1030–1038. doi: 10.1016/j.spl.2010.02.018
    [11] B. El Onsy, K. Es-Sebaiy, F. Viens, Parameter Estimation for a partially observed Ornstein-Uhlenbeck process with long-memory noise, Stochastics, 89 (2017), 431–468. doi: 10.1080/17442508.2016.1248967
    [12] Y. Hu, D. Nualart, H. Zhou, Parameter estimation for fractional Ornstein-Uhlenbeck processes of general Hurst parameter, Stat. Inference Stoch. Process., 22 (2019), 111–142. doi: 10.1007/s11203-017-9168-2
    [13] K. Es-Sebaiy, F. Viens, Optimal rates for parameter estimation of stationary Gaussian processes, Stoch. Process. Appl., 129 (2019), 3018–3054. doi: 10.1016/j.spa.2018.08.010
    [14] S. Douissi, K. Es-Sebaiy, F. Viens, Berry-Esséen bounds for parameter estimation of general Gaussian processes, ALEA-Lat. Am. J. Probab. Math. Stat., 16 (2019), 633–664. doi: 10.30757/ALEA.v16-23
    [15] M. El Machkouri, K. Es-Sebaiy, Y. Ouknine, Least squares estimator for non-ergodic Ornstein-Uhlenbeck processes driven by Gaussian processes, J. Korean Stat. Soc., 45 (2016), 329–341. doi: 10.1016/j.jkss.2015.12.001
    [16] R. Belfadli, K. Es-Sebaiy, Y. Ouknine, Parameter Estimation for Fractional Ornstein-Uhlenbeck Processes: Non-Ergodic Case, Front. Sci. Eng., 1 (2011), 1–16.
    [17] K. Es-Sebaiy, F. Alazemi, M. Al-Foraih, Least squares type estimation for discretely observed non-ergodic Gaussian Ornstein-Uhlenbeck processes, Acta Math. Sci., 39 (2019), 989–1002. doi: 10.1007/s10473-019-0406-0
    [18] K. Es-Sebaiy, I. Nourdin, Parameter Estimation for $\alpha$-Fractional Bridges. In: F. Viens, J. Feng, Y. Hu, E. Nualart, Eds, Malliavin Calculus and Stochastic Analysis, Springer Proc. Math. Stat., 34 (2013), 385–412.
    [19] T. Pham-Gia, N. Turkkan, E. Marchand, Anosov flows with stable and unstable differentiable distributions, Commun. Stat. Theory Methods, 35 (2006), 1569–1591. doi: 10.1080/03610920600683689
    [20] G. Marsaglia, Ratios of normal variables and ratios of sums of uniform variables, J. Amer. Statist. Asso., 60 (1965), 193–204. doi: 10.1080/01621459.1965.10480783
    [21] L. C. Young, An inequality of the Hölder type connected with Stieltjes integration, Acta Math., 67 (1936), 251–282. doi: 10.1007/BF02401743
    [22] I. Nourdin, Selected aspects of fractional Brownian motion, Springer Series 4, Milan: Bocconi University Press, 2012.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2039) PDF downloads(77) Cited by(1)

Article outline

Figures and Tables

Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog