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Abstract: Let Ba,b := {Ba,b
t , t ≥ 0} be a weighted fractional Brownian motion of parameters a > −1,

|b| < 1, |b| < a + 1. We consider a least square-type method to estimate the drift parameter θ > 0
of the weighted fractional Ornstein-Uhlenbeck process X := {Xt, t ≥ 0} defined by X0 = 0; dXt =

θXtdt + dBa,b
t . In this work, we provide least squares-type estimators for θ based continuous-time and

discrete-time observations of X. The strong consistency and the asymptotic behavior in distribution of
the estimators are studied for all (a, b) such that a > −1, |b| < 1, |b| < a + 1. Here we extend the results
of [1, 2] (resp. [3]), where the strong consistency and the asymptotic distribution of the estimators are
proved for −1

2 < a < 0, −a < b < a + 1 (resp. −1 < a < 0, −a < b < a + 1). Simulations are performed
to illustrate the theoretical results.
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1. Introduction

Parameter estimation for non-ergodic type diffusion processes has been developed in several papers.
For motivation and further references, we refer the reader to Basawa and Scott [4], Dietz and Kutoyants
[5], Jacod [6] and Shimizu [7]. However, the statistical analysis for equations driven by fractional
Brownian motion (fBm) is obviously more recent. The development of stochastic calculus with respect
to the fBm allowed to study such models. In recent years, several researchers have been interested in
studying statistical estimation problems for Gaussian Ornstein-Uhlenbeck processes. Estimation of
the drift parameters in fractional-noise-driven Ornstein-Uhlenbeck processes is a problem that is both
well-motivated by practical needs and theoretically challenging.

In this paper, we consider the weighted fractional Brownian motion (wfBm) Ba,b := {Ba,b
t , t ≥ 0}

with parameters (a, b) such that a > −1, |b| < 1 and |b| < a + 1, defined as a centered Gaussian process
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starting from zero with covariance

Ra,b(t, s) = E
(
Ba,b

t Ba,b
s

)
=

∫ s∧t

0
ua

[
(t − u)b + (s − u)b

]
du, s, t ≥ 0. (1.1)

For a = 0, −1 < b < 1, the wfBm is a fBm. The process Ba,b was introduced by [8] as an extension of
fBm. Moreover, it shares several properties with fBm, such as self-similarity, path continuity, behavior
of increments, long-range dependence, non-semimartingale, and others. But, unlike fBm, the wfBm
does not have stationary increments for a , 0. For more details about the subject, we refer the reader
to [8].

In this work we consider the non-ergodic Ornstein-Uhlenbeck process X := {Xt, t ≥ 0} driven by a
wfBm Ba,b, that is the unique solution of the following linear stochastic differential equation

X0 = 0; dXt = θXtdt + dBa,b
t , (1.2)

where θ > 0 is an unknown parameter.
An example of interesting problem related to (1.2) is the statistical estimation of θ when one ob-

serves X. In recent years, several researchers have been interested in studying statistical estimation
problems for Gaussian Ornstein-Uhlenbeck processes. Let us mention some works in this direction
in this case of Ornstein-Uhlenbeck process driven by a fractional Brownian motion B0,b, that is, the
solution of (1.2), where a = 0. Using the maximum likelihood approach (see [9]), the techniques used
to construct maximum likelihood estimators for the drift parameter are based on Girsanov transforms
for fractional Brownian motion and depend on the properties of the deterministic fractional operators
(determined by the Hurst parameter) related to the fBm. In general, the MLE is not easily computable.
On the other hand, using leat squares method, in the ergodic case corresponding to θ < 0, the statistical
estimation for the parameter θ has been studied by several papers, for instance [10–14] and the refer-
ences therein. Further, in the non-ergodic case corresponding to θ > 0, the estimation of θ has been
considered by using least squares method, for example in [15–18] and the references therein.

Here our aim is to estimate the the drift parameter θ based on continuous-time and discrete-time
observations of X, by using least squares-type estimators (LSEs) for θ.
First we will consider the following LSE

θ̃t =
X2

t

2
∫ t

0
X2

s ds
, t ≥ 0, (1.3)

as statistic to estimate θ based on the continuous-time observations {Xs, s ∈ [0, t]} of (1.2), as t → ∞.
We will prove the strong consistency and the asymptotic behavior in distribution of the estimator θ̃t

for all parameters a > −1, |b| < 1 and |b| < a + 1. Our results extend those proved in [1, 2], where
−1

2 < a < 0, −a < b < a + 1 only.
Further, from a practical point of view, in parametric inference, it is more realistic and interesting

to consider asymptotic estimation for (1.2) based on discrete observations. So, we will assume that the
process X given in (1.2) is observed equidistantly in time with the step size ∆n: ti = i∆n, i = 0, . . . , n,
and Tn = n∆n denotes the length of the“observation window”. Then we will consider the following
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estimators

θ̂n =

n∑
i=1

Xti−1(Xti − Xti−1)

∆n

n∑
i=1

X2
ti−1

(1.4)

and

θ̌n =
X2

Tn

2∆n

n∑
i=1

X2
ti−1

(1.5)

as statistics to estimate θ based on the sampling data Xti , i = 0, . . . , n, as ∆n −→ 0 and n −→ ∞. We will
study the asymptotic behavior and the rate consistency of the estimators θ̂n and θ̌n for all parameters
a > −1, |b| < 1 and |b| < a + 1. In this case, our results extend those proved in [3], where −1 < a < 0,
−a < b < a + 1 only.

The rest of the paper is organized as follows. In Section 2, we present auxiliary results that are used
in the calculations of the paper. In Section 3, we prove the consistency and the asymptotic distribution
of the estimator θ̃t given in (1.3), based on the continuous-time observations of X. In Section 3, we
study the asymptotic behavior and the rate consistency of the estimators θ̂n and θ̌n defined in (1.4) and
(1.5), respectively, based on the discrete-time observations of X. Our theoretical study is completed
with simulations. We end the paper with a short review on some results from [15, 17] needed for the
proofs of our results.

2. Auxiliary results

This section is devoted to prove some technical ingredients, which will be needed throughout this
paper.
In the following lemma we provide a useful decomposition of the covariance function Ra,b(t, s) of Ba,b.

Lemma 2.1. Suppose that a > −1, |b| < 1 and |b| < a+1. Then we can rewrite the covariance Ra,b(t, s)
of Ba,b, given in (2.1) as

Ra,b(t, s) = β (a + 1, b + 1)
[
ta+b+1 + sa+b+1

]
− m(t, s), (2.1)

where β(c, d) =
∫ 1

0
xc−1(1 − x)d−1 denotes the usual beta function, and the function m(t, s) is defined by

m(t, s) :=
∫ s∨t

s∧t
ua(t ∨ s − u)bdu. (2.2)

Proof. We have for every s, t ≥ 0,

Ra,b(t, s) (2.3)
= E

(
Ba,b

t Ba,b
s

)
AIMS Mathematics Volume 6, Issue 11, 12780–12794.
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=

∫ s∧t

0
ua

[
(t − u)b + (s − u)b

]
du

=

∫ s∧t

0
ua

[
(t ∨ s − u)b + (t ∧ s − u)b

]
du

=

∫ s∧t

0
ua(t ∨ s − u)bdu +

∫ s∧t

0
ua(t ∧ s − u)bdu

=

∫ s∨t

0
ua(t ∨ s − u)bdu −

∫ s∨t

s∧t
ua(t ∨ s − u)bdu +

∫ s∧t

0
ua(t ∧ s − u)bdu. (2.4)

Further, making change of variables x = u/t, we have for every t ≥ 0,∫ t

0
ua(t − u)bdu = tb

∫ t

0
ua

(
1 −

u
t

)b
du

= ta+b+1
∫ 1

0
xa (1 − x)b du

= ta+b+1β (a + 1, b + 1) . (2.5)

Therefore, combining (2.4) and (2.5), we deduce that

Ra,b(t, s) = β (a + 1, b + 1)
[
(t ∨ s)a+b+1 + (t ∧ s)a+b+1

]
−

∫ s∨t

s∧t
ua(t ∨ s − u)bdu

= β (a + 1, b + 1)
[
ta+b+1 + sa+b+1

]
−

∫ s∨t

s∧t
ua(t ∨ s − u)bdu, (2.6)

which proves (2.1). �

We will also need the following technical lemma.

Lemma 2.2. We have as t −→ ∞,

It := t−ae−θt
∫ t

0
eθsm(t, s)ds −→

Γ(b + 1)
θb+2 , (2.7)

Jt := t−ae−2θt
∫ t

0

∫ t

0
eθseθrm(s, r)drds −→

Γ(b + 1)
θb+3 , (2.8)

where Γ(.) is the standard gamma function, whereas the function m(t, s) is defined in (2.2).

Proof. We first prove (2.7). We have,

t−ae−θt
∫ t

0
eθsm(t, s)ds = t−ae−θt

∫ t

0
eθs

∫ t

s
ua(t − u)bduds

= t−ae−θt
∫ t

0
duua(t − u)b

∫ u

0
dseθs

= t−ae−θt
∫ t

0
duua(t − u)b (eθu − 1)

θ

AIMS Mathematics Volume 6, Issue 11, 12780–12794.
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=
t−ae−θt

θ

∫ t

0
ua(t − u)beθudu −

t−ae−θt

θ

∫ t

0
ua(t − u)bdu.

On the other hand, by the change of variables x = t − u, we get

t−ae−θt

θ

∫ t

0
ua(t − u)beθudu =

t−a

θ

∫ t

0
(t − x)axbe−θxdx

=
1
θ

∫ t

0

(
1 −

x
t

)a
xbe−θxdx

−→
1
θ

∫ ∞

0
xbe−θxdx =

Γ(b + 1)
θb+2

as t −→ ∞. Moreover, by the change of variables x = u/t,

t−ae−θt

θ

∫ t

0
ua(t − u)bdu =

e−θt

θ
tb

∫ t

0
(u/t)a(1 −

u
t
)bdx

=
e−θt

θ
tb+1

∫ t

0
xa(1 − x)bdx

=
e−θt

θ
tb+1β(a + 1, b + 1)

−→ 0

as t −→ ∞. Thus the proof of the convergence (2.7) is done.
For (2.8), using L’Hôpital’s rule, we obtain

lim
t→∞

t−ae−2θt
∫ t

0

∫ t

0
eθseθrm(s, r)drds = lim

t→∞

2
∫ t

0

∫ s

0
eθseθrm(s, r)drds

tae2θt

= lim
t→∞

2
∫ t

0
eθteθrm(t, r)dr

tae2θt
(
2θ + a

t

)
= lim

t→∞

2(
2θ + a

t

) t−ae−θt
∫ t

0
eθrm(t, r)dr

=
Γ(b + 1)
θb+3 ,

where the latter equality comes from (2.7). Therefore the convergence (2.8) is proved. �

3. LSE based on continuous-time observation

In this section we will establish the consistency and the asymptotic distribution of the least square-
type estimator θ̃t given in (1.3), based on the continuous-time observation {Xs, s ∈ [0, t]} given by
(1.2), as t → ∞.

Recall that if X ∼ N(m1, σ1) and Y ∼ N(m2, σ2) are two independent random variables, then X/Y
follows a Cauchy-type distribution. For a motivation and further references, we refer the reader to [19],
as well as [20]. Notice also that if N ∼ N(0, 1) is independent of Ba,b, then N is independent of Z∞,
since Z∞ :=

∫ ∞
0

e−θsBa,b
s ds is a functional of Ba,b.

AIMS Mathematics Volume 6, Issue 11, 12780–12794.
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Theorem 3.1. Assume that a > −1, |b| < 1, |b| < a + 1, and let θ̃t be the estimator given in (1.3). Then,
as t −→ ∞,

θ̃t −→ θ almost surely.

Moreover, as t → ∞,

t−a/2eθt
(̃
θt − θ

) law
−→

2σBa,b√
E

(
Z2
∞

)C(1),

where σBa,b =
Γ(b+1)
θb+1 , Z∞ :=

∫ ∞
0

e−θsBa,b
s ds, whereas C(1) is the standard Cauchy distribution with the

probability density function 1
π(1+x2) ; x ∈ R.

Proof. In order to prove this Theorem 3.1, using Theorem 6.1, it suffices to check that the assumptions
(H1), (H2), (H3), (H4) hold.
Using (2.1) and the change of variables x = (t − u)/(t − s), we get, for every 0 < s ≤ t,

E
(
Ba,b

t − Ba,b
s

)2
= 2

∫ t

s
ua(t − u)bdu

= 2(t − s)b+1
∫ 1

0
[t(1 − x) + sx]a xbdx

= 2ta(t − s)b+1
∫ 1

0

[
(1 − x) +

s
t

x
]a

xbdx

=: Ia,b.

Further, using the fact that x→ (1 − x) + (s/t)x is continuous and doesn’t vanish on [0, 1], there exists
constant Ca depending only on a such that

Ia,b ≤ 2Cata(t − s)b+1
∫ 1

0
xbdx

= 2Cata(t − s)b+1 1
b + 1

.

This implies

E
(
Ba,b

t − Ba,b
s

)2
≤

2Ca

b + 1
ta(t − s)b+1.

Furthermore, if −1 < a < 0, we have ta(t − s)b+1 ≤ (t − s)a+b+1 = |t − s|(a+b+1)∧(b+1), and if a ≥ 0, we
have ta(t − s)b+1 ≤ T a(t − s)b+1 = T a|t − s|(a+b+1)∧(b+1).
Consequently,for any fixed T , there exists a constant Ca,b(T ) depending only on a, b,T such that, for
every 0 < s ≤ t ≤ T ,

E
(
Ba,b

t − Ba,b
s

)2
≤ Ca,b(T )|t − s|(a+b+1)∧(b+1),

Therefore, using the fact that Ba,b is Gaussian, and Kolmogorov’s continuity criterion, we deduce that
Ba,b has a version with ((a + b + 1) ∧ (b + 1) − ε)-Hölder continuous paths for every ε ∈ (0, (a + b +

AIMS Mathematics Volume 6, Issue 11, 12780–12794.
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1) ∧ (b + 1)). Thus (H1) holds for any δ in (0, (a + b + 1) ∧ (b + 1)).
On the other hand, according to (2.1) we have for every t ≥ 0,

E
(
Ba,b

t

)2
= 2β(1 + a, 1 + b)ta+b+1,

which proves that (H2) holds for γ = (a + b + 1)/2.
Now it remains to check that the assumptions (H3) and (H4) hold for ν = −a/2 and σBa,b =

Γ(b+1)
θb+1 . Let

us first compute the limiting variance of t−a/2e−θt
∫ t

0
eθsdBa,b

s as t → ∞. By (2.1) we obtain

E
(t−a/2e−θt

∫ t

0
eθsdBa,b

s

)2 = E
(t−a/2e−θt

(
eθtBa,b

t − θ

∫ t

0
eθsBa,b

s ds
))2

= t−a

(
Ra,b(t, t) − 2θe−θt

∫ t

0
eθsRa,b(t, s)ds + θ2e−2θt

∫ t

0

∫ t

0
eθseθrRa,b(s, r)dsdr

)
= t−a∆gBa,b (t) + 2θIt − θ

2Jt, (3.1)

where It, Jt and ∆gBa,b (t) are defined in (2.7), (2.8) and Lemma 6.1, respectively, whereas gBa,b(s, r) =

β(a + 1, b + 1)
(
sa+b+1 + ra+b+1

)
.

On the other hand, since ∂gBa,b

∂s (s, 0) = β(a + 1, b + 1)(a + b + 1)sa+b, and ∂2gBa,b

∂s∂r (s, r) = 0, it follows from
(6.2) that

t−a∆gBa,b (t) = 2β(a + 1, b + 1)(a + b + 1)t−ae−2θt
∫ t

0
sa+beθsds

≤ 2β(a + 1, b + 1)e−θtta+b+1

−→ 0 as t → ∞. (3.2)

Combining (3.1), (3.2), (2.7) and (2.8), we get

E
(t−a/2e−θt

∫ t

0
eθsdBa,b

s

)2 −→ Γ(b + 1)
θb+1 as t → ∞,

which implies that (H3) holds.
Hence, to finish the proof it remains to check that (H4) holds, that is, for all fixed s ≥ 0

lim
t→∞

E
(
Ba,b

s t−a/2e−θt
∫ t

0
eθrdBa,b

r

)
= 0.

Let us consider s < t. According to (6.4), we can write

E
(
Ba,b

s t−a/2e−θt
∫ t

0
eθrdBa,b

r

)
= t−a/2

(
Ra,b(s, t) − θe−θt

∫ t

0
eθrRa,b(s, r)dr

)
= t−a/2

(
Ra,b(s, t) − θe−θt

∫ t

s
eθrRa,b(s, r)dr − θe−θt

∫ s

0
eθrRa,b(s, r)dr

)
AIMS Mathematics Volume 6, Issue 11, 12780–12794.
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= t−a/2
(
e−θ(t−s)Ra,b(s, s) + e−θt

∫ t

s
eθr
∂Ra,b

∂r
(s, r)dr − θe−θt

∫ s

0
eθrRa,b(s, r)dr

)
.

It is clear that t−a/2
(
e−θ(t−s)Ra,b(s, s) − θe−θt

∫ s

0
eθrRa,b(s, r)dr

)
−→ 0 as t → ∞. Let us now prove that

t−a/2e−θt
∫ t

s
eθr
∂Ra,b

∂r
(s, r)dr −→ 0

as t → ∞. Using (1.1) we have for s < r

∂Ra,b

∂r
(s, r) = b

∫ s

0
ua(r − u)b−1du

Applying L’Hôspital’s rule we obtain

lim
t→∞

t−a/2e−θt
∫ t

s
eθr
∂Ra,b

∂r
(s, r)dr = lim

t→∞

bt−a/2

θ + a
2t

∫ s

0
ua(t − u)b−1du

= lim
t→∞

btb−1− a
2

θ + a
2t

∫ s

0
ua(1 − u/t)b−1du

−→ 0 as t → ∞,

due to b − 1 − a
2 < 0. In fact, if −1 < a < 0, we use b < a + 1, then b < a + 1 < a

2 + 1. Otherwise, if
a > 0, we use b < 1, then b − 1 − a

2 < b − 1− < 0. Therefore the proof of Theorem 3.1 is complete.
�

4. LSEs based on discrete-time observations

In this section, our purpose is to study the asymptotic behavior and the rate consistency of the
estimators θ̂n and θ̌n based on the sampling data Xti , i = 0, . . . , n of (1.2), where ti = i∆n, i = 0, . . . , n,
and Tn = n∆n denotes the length of the “observation window”.

Definition 4.1. Let {Zn} be a sequence of random variables defined on a probability space (Ω,F , P).
We say {Zn} is tight (or bounded in probability), if for every ε > 0, there exists Mε > 0 such that,

P (|Zn| > Mε) < ε, for all n.

4.1. The asymptotic behavior and the rate consistency of LSEs

Theorem 4.1. Assume that a > −1, |b| < 1, |b| < a + 1. Let θ̂n and θ̌n be the estimators given in (1.4)
and (1.5), respectively. Suppose that ∆n → 0 and n∆1+α

n → ∞ for some α > 0. Then, as n→ ∞,

θ̂n −→ θ, θ̌n −→ θ almost surely,

and for any q ≥ 0,

∆q
neθTn(θ̂n − θ) and ∆q

neθTn(θ̌n − θ) are not tight.

In addition, if we assume that n∆3
n → 0 as n → ∞, the estimators θ̂n and θ̌n are

√
Tn − consistent in

the sense that the sequences √
Tn(θ̂n − θ) and

√
Tn(θ̌n − θ) are tight.

AIMS Mathematics Volume 6, Issue 11, 12780–12794.
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Proof. In order to prove this Theorem 4.1, using Theorem 6.2, it suffices to check that the assumptions
(H1), (H2), (H5) hold.

From the proof of Theorem 3.1, the assumptions (H1), (H2) hold. Now it remains to check that
(H5) holds. In this case, the process ζ is defined as

ζt :=
∫ t

0
e−θsdBa,b

s , t ≥ 0,

whereas the integral is interpreted in the Young sense (see Appendix).
Using the formula (6.4) and (6.3), we can write

E
[(
ζti − ζti−1

)2
]

= E
(∫ ti

ti−1

e−θsdBa,b
s

)2
= E

(e−θti Ba,b
ti − e−θti−1 Ba,b

ti−1
+ θ

∫ ti

ti−1

e−θsBa,b
s ds

)2
= λgBa,b (ti, ti−1) − λm(ti, ti−1)

=

∫ ti

ti−1

∫ ti

ti−1

e−θ(r+u)∂
2gBa,b

∂r∂u
(r, u)drdu − λm(ti, ti−1)

= −λm(ti, ti−1),

where λ.(ti, ti−1) is defined in Lemma 6.2, gBa,b(s, r) = β(a+1, b+1)
(
sa+b+1 + ra+b+1

)
and ∂2gBa,b

∂s∂r (s, r) = 0,
whereas the term λm(ti, ti−1) is equal to

λm(ti, ti−1) = −2m(ti, ti−1)e−2θ(ti−1+ti) + 2θe−θti
∫ ti

ti−1

m(r, ti)e−θrdr

−2θe−θti−1

∫ ti

ti−1

m(r, ti−1)e−θrdr + θ2
∫ ti

ti−1

∫ ti

ti−1

m(r, u)e−θ(r+u)drdu.

Combining this with the fact for every ti−1 ≤ u ≤ r ≤ ti, i ≥ 2,

|m(r, u)| =

∣∣∣∣∣∫ r

u
xa(r − x)bdx

∣∣∣∣∣
≤


∣∣∣ra

∫ r

u
(r − x)bdx

∣∣∣ if − 1 < a < 0∣∣∣ua
∫ r

u
(r − x)bdx

∣∣∣ if a > 0

≤


∆a+b+1

n
b+1 if − 1 < a ≤ 0

(n∆n)a∆b+1
n

b+1 if a > 0

together with ∆n −→ 0, we deduce that there is a positive constant C such that

E
[(
ζti − ζti−1

)2
]
≤ C


∆a+b+1

n
b+1 if − 1 < a ≤ 0

(n∆n)a∆b+1
n

b+1 if a > 0,

which proves that the assumption (H5) holds. Therefore the desired result is obtained. �
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4.2. Numerical results

For sample size n = 2500, we simulate 100 sample paths of the process X, given by (1.2), using
software R. The Tables 1–8 below report the mean average values, the median values and the standard
deviation values of the proposed estimators θ̂n and θ̌n defined, respectively, by (1.4) and (1.5) of the
true value of the parameter θ. The results of the tables below show that the drift estimators θ̂n and θ̌n

perform well for different arbitrary values of a and b and they are strongly consistent, namely their
values are close to the true values of the drift parameter θ.

Table 1. The means, median and deviation values for θ̃n, with a = 0.5 and b = 0.9.

θ = 0.5 θ = 0.9 θ = 2.5 θ = 7 θ = 10
Mean 1.838178 2.039271 3.019508 7.027331 10.01776

Median 1.744118 1.906163 3.07125 7.02379 10.02108
Std. dev. 1.211776 1.007366 0.821718 0.1717033 0.0257764

Table 2. The means, median and deviation values for θ̃n, with a = 0.1 and b = 0.4.

θ = 0.5 θ = 0.9 θ = 2.5 θ = 7 θ = 10
Mean 1.259471 1.481005 2.39942 7.01006 10.02068

Median 1.170947 1.437582 2.552394 7.014911 10.01972
Std. dev. 0.9584086 0.8501618 1.004956 0.08241352 0.01018074

Table 3. The means, median and deviation values for θ̂n, with a = 0.5 and b = 0.9.

θ = 0.5 θ = 0.9 θ = 2.5 θ = 7 θ = 10
Mean 1.829429 2.03153 3.014143 7.01739 9.997761

Median 1.74294 1.896568 3.069177 7.013946 10.00107
Std. dev. 1.200806 1.008749 0.8246725 0.1711237 0.02569278

Table 4. The means, median and deviation values for θ̂n, with a = 0.1 and b = 0.4.

θ = 0.5 θ = 0.9 θ = 2.5 θ = 7 θ = 10
Mean 1.098053 1.388654 2.326678 6.998938 10.00066

Median 1.144919 1.402191 2.53695 7.005075 9.999712
Std. dev. 0.9961072 0.8888663 1.077326 0.08785867 0.01012159

Table 5. The means, median and deviation values for θ̃n, with a = 10 and b = 0.7.

θ = 0.5 θ = 0.9 θ = 2.5 θ = 7 θ = 10
Mean 6.284526 5.944562 7.676024 7.855939 9.586733

Median 5.620266 5.235174 6.698286 8.074982 9.919933
Std. dev. 4.851366 4.358735 6.545987 4.19334 2.664122
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Table 6. The means, median and deviation values for θ̃n, with a = 5 and b = 0.9.

θ = 0.5 θ = 0.9 θ = 2.5 θ = 7 θ = 10
Mean 4.363369 3.81052 4.457953 6.959573 9.817441

Median 3.456968 3.650188 4.350376 7.172276 10.02188
Std. dev. 3.492142 2.865577 2.699623 1.759205 1.191188

Table 7. The means, median and deviation values for θ̂n, with a = 10 and b = 0.7.

θ = 0.5 θ = 0.9 θ = 2.5 θ = 7 θ = 10
Mean 5.882283 5.609962 7.379757 7.729786 9.526597

Median 5.337299 5.041629 6.502311 8.05469 9.900039
Std. dev. 4.882747 4.38566 6.319027 4.253017 2.698502

Table 8. The means, median and deviation values for θ̂n, with a = 5 and b = 0.9.

θ = 0.5 θ = 0.9 θ = 2.5 θ = 7 θ = 10
Mean 4.328267 3.782118 4.440072 6.946132 9.797283

Median 3.451499 3.590002 4.344927 7.161959 10.00186
Std. dev. 3.46757 2.86794 2.688184 1.758228 1.190694

5. Conclusions

To conclude, in this paper we provide least squares-type estimators for the drift parameter θ of the
weighted fractional Ornstein-Uhlenbeck process X, given by (1.2), based continuous-time and discrete-
time observations of X. The novelty of our approach is that it allows, comparing with the literature on
statistical inference for X discussed in [1–3], to consider the general case a > −1, |b| < 1 and |b| < a+1.
More precisely,

• We estimate the drift parameter θ of (1.2) based on the continuous-time observations {Xs, s ∈
[0, t]}, as t → ∞. We prove the strong consistency and the asymptotic behavior in distribution of
the estimator θ̃t for all parameters a > −1, |b| < 1 and |b| < a + 1. Our results extend those proved
in [1, 2], where −1

2 < a < 0, −a < b < a + 1 only.
• Suppose that the process X given in (1.2) is observed equidistantly in time with the step size

∆n: ti = i∆n, i = 0, . . . , n. We estimate the drift parameter θ of (1.2) on the sampling data
Xti , i = 0, . . . , n, as ∆n −→ 0 and n −→ ∞. We study the asymptotic behavior and the rate
consistency of the estimators θ̂n and θ̌n for all parameters a > −1, |b| < 1 and |b| < a + 1. In this
case, our results extend those proved in [3], where −1 < a < 0, −a < b < a + 1 only.

The proofs of the asymptotic behavior of the estimators are based on a new decomposition of the
covariance function Ra,b(t, s) of the wfBm Ba,b (see Lemma 2.1), and slight extensions of results [15]
and [17] (see Theorem 6.1 and Theorem 6.2 in Appendix).
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6. Appendix

Here we present some ingredients needed in the paper.
Let G = (Gt, t ≥ 0) be a continuous centered Gaussian process defined on some probability space

(Ω,F , P) (Here, and throughout the text, we assume that F is the sigma-field generated by G). In this
section we consider the non-ergodic case of Gaussian Ornstein-Uhlenbeck processes X = {Xt, t ≥ 0}
given by the following linear stochastic differential equation

X0 = 0; dXt = θXtdt + dGt, t ≥ 0, (6.1)

where θ > 0 is an unknown parameter. It is clear that the linear equation (6.1) has the following explicit
solution

Xt = eθtζt, t ≥ 0,

where

ζt :=
∫ t

0
e−θsdGs, t ≥ 0,

whereas this latter integral is interpreted in the Young sense.

Let us introduce the following required assumptions.

(H1) The process G has Hölder continuous paths of some order δ ∈ (0, 1].
(H2) For every t ≥ 0, E

(
G2

t

)
≤ ct2γ for some positive constants c and γ.

(H3) There is constant ν in R such that the limiting variance of tνe−θt
∫ t

0
eθsdGs exists as t → ∞, that is,

there exists a constant σG > 0 such that

lim
t→∞

E
(tνe−θt ∫ t

0
eθsdGs

)2 = σ2
G.

(H4) For ν given in (H3), we have all fixed s ≥ 0

lim
t→∞

E
(
Gstνe−θt

∫ t

0
eθrdGr

)
= 0.

(H5) There exist positive constants ρ,C and a real constant µ such that

E
[(
ζti − ζti−1

)2
]
≤ C(n∆n)µ∆ρ

ne−2θti for every i = 1, . . . , n, n ≥ 1.

The following theorem is a slight extension of the main result in [15], and it can be established
following the same arguments as in [15].

Theorem 6.1. Assume that (H1) and (H2) hold and let θ̃t be the estimator of the form (1.3). Then, as
t −→ ∞,

θ̃t −→ θ almost surely.
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Moreover, if (H1)–(H4) hold, then, as t → ∞,

tνeθt
(̃
θt − θ

) law
−→

2σG√
E

(
Z2
∞

)C(1),

where Z∞ :=
∫ ∞

0
e−θsGsds, whereas C(1) is the standard Cauchy distribution with the probability

density function 1
π(1+x2) ; x ∈ R.

The following theorem is also a slight extension of the main result in [17], and it can be proved
following line by line the proofs given in [17].

Theorem 6.2. Assume that (H1), (H2) and (H5) hold. Let θ̂n and θ̌n be the estimators of the forms
(1.4) and (1.5), respectively. Suppose that ∆n → 0 and n∆1+α

n → ∞ for some α > 0. Then, as n→ ∞,

θ̂n −→ θ, θ̌n −→ θ almost surely,

and for any q ≥ 0,

∆q
neθTn(θ̂n − θ) and ∆q

neθTn(θ̌n − θ) are not tight.

In addition, if we assume that n∆3
n → 0 as n → ∞, the estimators θ̂n and θ̌n are

√
Tn − consistent in

the sense that the sequences √
Tn(θ̂n − θ) and

√
Tn(θ̌n − θ) are tight.

Lemma 6.1 ( [15]). Let g : [0,∞) × [0,∞) −→ R be a symmetric function such that ∂g
∂s (s, r) and

∂2g
∂s∂r (s, r) integrable on (0,∞) × [0,∞). Then, for every t ≥ 0,

∆g(t) := g(t, t) − 2θe−θt
∫ t

0
g(s, t)eθsds + θ2e−2θt

∫ t

0

∫ t

0
g(s, r)eθ(s+r)drds

= 2e−2θt
∫ t

0
eθs∂g
∂s

(s, 0)ds + 2e−2θt
∫ t

0
dseθs

∫ s

0
dr

∂2g
∂s∂r

(s, r)eθr. (6.2)

Lemma 6.2 ( [17]). Let g : [0,∞) × [0,∞) −→ R be a symmetric function such that ∂g
∂s (s, r) and

∂2g
∂s∂r (s, r) integrable on (0,∞) × [0,∞). Then, for every t ≥ s ≥ 0,

λg(t, s) := g(t, t)e−2θt + g(s, s)e−2θs − 2g(s, t)e−2θ(s+t) + 2θe−θt
∫ t

s
g(r, t)e−θrdr

−2θe−θs
∫ t

s
g(r, s)e−θrdr + θ2

∫ t

s

∫ t

s
g(r, u)e−θ(r+u)drdu

=

∫ t

s

∫ t

s
e−θ(r+u) ∂

2g
∂r∂u

(r, u)drdu. (6.3)

Let us now recall the Young integral introduced in [21]. For any α ∈ (0, 1], we denote byHα([0,T ])
the set of α-Hölder continuous functions, that is, the set of functions f : [0,T ]→ R such that

| f |α := sup
0≤s<t≤T

| f (t) − f (s)|
(t − s)α

< ∞.
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We also set | f |∞ = supt∈[0,T ] | f (t)|, and we equipHα([0,T ]) with the norm ‖ f ‖α := | f |α + | f |∞.
Let f ∈ Hα([0,T ]), and consider the operator T f : C1([0,T ])→ C0([0,T ]) defined as

T f (g)(t) =

∫ t

0
f (u)g′(u)du, t ∈ [0,T ].

It can be shown (see, e.g., [22, Section 3.1]) that, for any β ∈ (1−α, 1), there exists a constant Cα,β,T > 0
depending only on α, β and T such that, for any g ∈ Hβ([0,T ]),∥∥∥∥∥∫ ·

0
f (u)g′(u)du

∥∥∥∥∥
β

≤ Cα,β,T ‖ f ‖α‖g‖β.

We deduce that, for any α ∈ (0, 1), any f ∈ Hα([0,T ]) and any β ∈ (1 − α, 1), the linear operator
T f : C1([0,T ]) ⊂ Hβ([0,T ]) → Hβ([0,T ]), defined as T f (g) =

∫ ·
0

f (u)g′(u)du, is continuous with
respect to the norm ‖ · ‖β. By density, it extends (in an unique way) to an operator defined on Hβ. As
consequence, if f ∈ Hα([0,T ]), if g ∈ Hβ([0,T ]) and if α + β > 1, then the (so-called) Young integral∫ ·

0
f (u)dg(u) is well-defined as being T f (g) (see [21]).
The Young integral obeys the following formula. Let f ∈ Hα([0,T ]) with α ∈ (0, 1) and g ∈

Hβ([0,T ]) with β ∈ (0, 1) such that α + β > 1. Then
∫ .

0
gud fu and

∫ .

0
fudgu are well-defined as the

Young integrals. Moreover, for all t ∈ [0,T ],

ftgt = f0g0 +

∫ t

0
gud fu +

∫ t

0
fudgu. (6.4)
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