Research article

Iterative oscillation criteria of third-order nonlinear damped neutral differential equations

  • Received: 07 May 2024 Revised: 09 July 2024 Accepted: 22 July 2024 Published: 29 July 2024
  • MSC : 34K11, 39A10, 39A99

  • Using comparison principles, we examine the asymptotic characteristics of a third-order nonlinear damped neutral differential equation. Our results substantially generalize numerous previously established results as well as drastically improving them. To illustrate the relevance and effectiveness of our results, we use numerical examples.

    Citation: Taher S. Hassan, Emad R. Attia, Bassant M. El-Matary. Iterative oscillation criteria of third-order nonlinear damped neutral differential equations[J]. AIMS Mathematics, 2024, 9(8): 23128-23141. doi: 10.3934/math.20241124

    Related Papers:

  • Using comparison principles, we examine the asymptotic characteristics of a third-order nonlinear damped neutral differential equation. Our results substantially generalize numerous previously established results as well as drastically improving them. To illustrate the relevance and effectiveness of our results, we use numerical examples.



    加载中


    [1] R. Agarwal, M. Bohner, T. Li, C. Zhang, Oscillation of third-order nonlinear delay differential equations, Taiwanese J. Math., 17 (2013), 545–558. http://dx.doi.org/10.11650/tjm.17.2013.2095 doi: 10.11650/tjm.17.2013.2095
    [2] R. Agarwal, S. Grace, D. O'Regan, Oscillation theory for difference and functional differential equations, Dordrecht: Springer, 2000. http://dx.doi.org/10.1007/978-94-015-9401-1
    [3] R. Agarwal, S. Grace, D. O'Regan, On the oscillation of certain functional differential equations via comparison methods, J. Math. Anal. Appl., 286 (2003), 577–600. http://dx.doi.org/10.1016/S0022-247X(03)00494-3 doi: 10.1016/S0022-247X(03)00494-3
    [4] R. Agarwal, S. Grace, D. O'Regan, The oscillation of certain higher order functional differential equations, Math. Comput. Model., 37 (2003), 705–728. http://dx.doi.org/10.1016/S0895-7177(03)00079-7 doi: 10.1016/S0895-7177(03)00079-7
    [5] B. Bacuíková, J. Džurina, Oscillation of third-order functional differential equations, Electron. J. Qual. Theo., 43 (2010), 1–10.
    [6] B. Bacuíková, J. Džurina, Oscillation of third-order nonlinear differential equations, Appl. Math. Lett., 24 (2011), 466–470. http://dx.doi.org/10.1016/j.aml.2010.10.043 doi: 10.1016/j.aml.2010.10.043
    [7] B. Bacuíková, E. Elabbasy, S. Saker, J. Džurina, Oscillation criteria for third-order nonlinear differential equations, Math. Slovaca, 58 (2008), 201–220. http://dx.doi.org/10.2478/s12175-008-0068-1 doi: 10.2478/s12175-008-0068-1
    [8] M. Bohner, S. Grace, I. Sağer, E. Tunç, Oscillation of third-order nonlinear damped delay differential equations, Appl. Math. Comput., 278 (2016), 21–32. http://dx.doi.org/10.1016/j.amc.2015.12.036 doi: 10.1016/j.amc.2015.12.036
    [9] G. Chatzarakis, J. Džurina, I. Jadlovska, Oscillatory and asymptotic properties of third-order quasilinear delay differential equations, J. Inequal. Appl., 2019 (2019), 23. http://dx.doi.org/10.1186/s13660-019-1967-0 doi: 10.1186/s13660-019-1967-0
    [10] G. Chatzarakis, S. Grace, I. Jadlovská, Oscillation criteria for third-order delay differential equations, Adv. Differ. Equ., 2017 (2017), 330. http://dx.doi.org/10.1186/s13662-017-1384-y doi: 10.1186/s13662-017-1384-y
    [11] E. Elabbasy, B. Qaraad, T. Abdeljawad, O. Moaaz, Oscillation criteria for a class of third-order damped neutral differential equations, Symmetry, 12 (2020), 1988. http://dx.doi.org/10.3390/sym12121988 doi: 10.3390/sym12121988
    [12] E. Elabbasy, T. Hassan, B. Elmatary, Oscillation criteria for third order delay nonlinear differential equations, Electron. J. Qual. Theo., 5 (2012), 1–11.
    [13] L. Erbe, T. Hassan, A. Peterson, Oscillation of third order nonlinear functional dynamic equations on time scales, Differ. Equ. Dyn. Syst., 18 (2010), 199–227. http://dx.doi.org/10.1007/s12591-010-0005-y doi: 10.1007/s12591-010-0005-y
    [14] L. Erbe, Q. Kong, B. Zhang, Oscillation theory for functional differential equations, New York: Routledge, 1995. http://dx.doi.org/10.1201/9780203744727
    [15] S. Grace, Oscillation criteria for third order nonlinear delay differential equations with damping, Opusc. Math., 35 (2015), 485–497. http://dx.doi.org/10.7494/OpMath.2015.35.4.485 doi: 10.7494/OpMath.2015.35.4.485
    [16] S. Grace, R. Agarwal, R. Pavani, E. Thandapani, On the oscilation certain third order nonlinear functional differential equations, Appl. Math. Comput., 202 (2008), 102–112. http://dx.doi.org/10.1016/j.amc.2008.01.025 doi: 10.1016/j.amc.2008.01.025
    [17] K. Gopalsamy, Stability and oscillation in delay differential equations of population dynamics, Dordrecht: Springer, 1992. http://dx.doi.org/10.1007/978-94-015-7920-9
    [18] I. Gyori, F. Hartung, Stability of a single neuron model with delay, J. Comput. Appl. Math., 157 (2003), 73–92. http://dx.doi.org/10.1016/S0377-0427(03)00376-5 doi: 10.1016/S0377-0427(03)00376-5
    [19] I. Gyori, G. Ladas, Oscillation theory of delay differential equations with applications, Oxford: Clarendon Press, 1991. http://dx.doi.org/10.1093/oso/9780198535829.001.0001
    [20] J. Hale, S. Verduyn Lunel, Introduction to functional differential equations, New York: Springer-Verlag, 1993. http://dx.doi.org/10.1007/978-1-4612-4342-7
    [21] T. Hassan, B. El-Matary, Asymptotic behavior and oscillation of third-order nonlinear neutral differential equations with mixed nonlinearities, Mathematics, 11 (2023), 424. http://dx.doi.org/10.3390/math11020424 doi: 10.3390/math11020424
    [22] T. Hassan, B. El-Matary, Oscillation criteria for third order nonlinear neutral differential equation, PLOMS Math., 1 (2021), 00001.
    [23] T. Hassan, L. Erbe, A. Peterson, Forced oscillation of second order functional differential equations with mixed nonlinearities, Acta Math. Sci., 31 (2011), 613–626. http://dx.doi.org/10.1016/S0252-9602(11)60261-0 doi: 10.1016/S0252-9602(11)60261-0
    [24] T. Hassan, Q. Kong, Interval criteria for forced oscillation of differential equations with p-Laplacian, damping, and mixed nonlinearities, Dynam. Syst. Appl., 20 (2011), 279–294.
    [25] I. Jadlovská, G. Chatzarakis, J. Džurina, S. Grace, On sharp oscillation criteria for general third-order delay differential equations, Mathematics, 9 (2021), 1675. http://dx.doi.org/10.3390/math9141675 doi: 10.3390/math9141675
    [26] Y. Kitamura, Oscillation of functional differential equations with general deviating arguments, Hiroshima Math. J., 15 (1985), 445–491.
    [27] R. Koplatadze, T. Chanturiya, Oscillating and monotone solutions of first-order differential equations with deviating argument, Differ. Uravn., 18 (1982), 1463–1465.
    [28] B. Karpuz, Ö. Öcalan, New oscillation tests and some refinements for first-order delay dynamic equations, Turk. J. Math., 40 (2016), 850–863. http://dx.doi.org/10.3906/mat-1507-98 doi: 10.3906/mat-1507-98
    [29] G. Ladas, Y. Sficas, I. Stavroulakis, Necessary and sufficient conditions for oscillations of higher order delay differential equations, Trans. Amer. Math. Soc., 285 (1984), 81–90. http://dx.doi.org/10.2307/1999473 doi: 10.2307/1999473
    [30] G. Ladas, V. Lakshmikantham, J. Papadakis, Oscillations of higher-order retarded differential equations generated by the retarded argument, In: Delay and functional differential equations and their applications, New York: Academic Press, 1972,219–231. http://dx.doi.org/10.1016/B978-0-12-627250-5.50013-7
    [31] G. Ladas, V. Lakshmikantham, Sharp conditions for oscillations caused by delays, Appl. Anal., 9 (1979), 93–98. http://dx.doi.org/10.1080/00036817908839256 doi: 10.1080/00036817908839256
    [32] T. Li, Y. Rogovchenko, On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations, Appl. Math. Lett., 105 (2020), 106293. http://dx.doi.org/10.1016/j.aml.2020.106293 doi: 10.1016/j.aml.2020.106293
    [33] T. Li, C. Zhang, G. Xing, Oscillation of third-order neutral delay differential equations, Abstr. Appl. Anal., 2012 (2012), 569201. http://dx.doi.org/10.1155/2012/569201 doi: 10.1155/2012/569201
    [34] O. Moaaz, I. Dassios, W. Muhsin, A. Muhib, Oscillation theory for non-linear neutral delay differential equations of third order, Appl. Sci., 10 (2020), 4855. http://dx.doi.org/10.3390/app10144855 doi: 10.3390/app10144855
    [35] O. Moaaz, E. Elabbasy, E. Shaaban, Oscillation criteria for a class of third order damped differential equations, Arab Journal of Mathematical Sciences, 24 (2018), 16–30. http://dx.doi.org/10.1016/j.ajmsc.2017.07.001 doi: 10.1016/j.ajmsc.2017.07.001
    [36] S. Padhi, S. Pati, Theory of third-order differential equations, New Delhi: Springer, 2014. http://dx.doi.org/10.1007/978-81-322-1614-8
    [37] Ch. Philos, On the existence of nonoscillatory solutions tending to zero at $\infty $ to differential equations with positive delays, Arch. Math., 36 (1981), 168–178. http://dx.doi.org/10.1007/BF01223686 doi: 10.1007/BF01223686
    [38] A. Tiryaki, M. Aktas, Oscillation criteria of a certain class of third order nonlinear delay differential equations with damping, J. Math. Anal. Appl., 325 (2007), 54–68. http://dx.doi.org/10.1016/j.jmaa.2006.01.001 doi: 10.1016/j.jmaa.2006.01.001
    [39] M. Wei, C. Jiang, T. Li, Oscillation of third-order neutral differential equations with damping and distributed delay, Adv. Differ. Equ., 2019 (2019), 426. http://dx.doi.org/10.1186/s13662-019-2363-2 doi: 10.1186/s13662-019-2363-2
    [40] L. Yang, Z. Xu, Oscillation of certain third-order quasilinear neutral differential equations, Math. Slovaca, 64 (2014), 85–100. http://dx.doi.org/10.2478/s12175-013-0189-z doi: 10.2478/s12175-013-0189-z
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(526) PDF downloads(59) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog