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1. Introduction

A neutral delay differential equation contains the highest-order derivative of the unknown function
both with and without delays. Because of this, the theory of neutral delay differential equations is more
difficult to understand than the theory of non-neutral equations. There has been an increase in interest
in the theory of neutral differential equations in recent years. Studying these equations is essential
for both theory and applications, as neutral equations are used to explain a wide range of real-world
phenomena, including the motion of radiating electrons, population growth, the spread of epidemics,
networks incorporating lossless transmission lines, etc., see [2,17,19,20]. Researchers have focused a
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great deal of attention on the oscillation problem of functional differential equations in the recent few
decades; see, for example, [1–40]. For third-order delay equations, see [1–7,12,25,26,29]. For neutral
equations, see [21,22,32–34] and [8,15,24,35,39] for the equations with damping. Using a generalized
Riccati transformation and an integral averaging technique the authors [38] obtained certain necessary
conditions for oscillation for the third-order nonlinear differential equation

[m2(s){m1(s)x′(s)}′]′ + p(s)x′(s) + q(s) f (x(ρ(s))) = 0,

where ρ′(s) > 0 and f (u)
u ≥ k > 0, for all u , 0. Also, [11] improves and unifies the results of [38],

reducing the third-order equations to the first and second ones. In this work, we focus our attention on
the oscillation of the third-order nonlinear neutral differential equation with the form{

m2(s)ϕη2

([
m1(s)ϕη1

(
z′(s)

)]′)}′
+ m3(s)ϕη2

([
m1(s)ϕη1

(
z′(s)

)]′)
+ q(s) f (x(ρ(s))) = 0, (1.1)

where s ≥ s0 ≥ 0, z(s) := x(s) + p(s)x(µ(s)), ϕβ(u) := |u|β−1 u, β > 0; η1, η2 > 0, and mi, p, q, ρ, µ ∈
C([s0,∞) ,R), i = 1, 2, 3. It should be noted that the oscillation of many special cases of Eq (1.1) has
been studied by many authors; see, for examples, [9–12, 15, 16].

In this paper, we suppose that

(i) 0 ≤ p(s) < p < 1, q(s) ≥ 0, mi(s) > 0, i = 1, 2 and m3(s) ≥ 0;
(ii) f ∈ C(R,R) such that x f (x) > 0 and f (x)

ϕη(x) ≥ k > 0, for all x , 0, η := η1η2;
(iii) ρ(s) ≤ s, µ(s) ≤ s, and lim

s→∞
ρ(s) = lim

s→∞
µ(s) = ∞;

(iv)
∫ ∞
S

(
1

m1(t)

)1/η1

dt = ∞ and
∫ ∞
S

(
1

M (t)

)1/η2

dt = ∞,

where M (s) := m2 (s) exp
(∫ s

S

m3(r)
m2(r)

dr
)
, S ∈ [s0,∞).

A function x (s) is a solution of (1.1) if it satisfies Eq (1.1) for all s ∈ [sx,∞) and satisfying sup{|x(s)| :
s ≥ S} > 0 for anyS ≥ sx with x(s),m1(s)ϕη1 (z′(s)) , and m2(s)ϕη2

([
m1(s)ϕη1 (z′(s))

]′)
are continuously

differentiable for all s ∈ [sx,∞). The solution on [sx,∞) with arbitrary large zeros is said to be an
oscillatory solution. In this paper, we investigate the oscillatory and asymptotic behavior of Eq (1.1)
by a reduction in order and comparison with the oscillation of first-order delay differential equations.

2. Main results

Throughout this paper, we define

L1(z(s)) := ϕη1

(
z′(s)

)
, L2(z(s)) := ϕη2

(
(m1(s)L1(z(s)))′

)
.

Also, the sequences {Pn(s)}∞n=1 and {Qn(s, t)}∞n=1 are defined as follows:

Pn(s) =

∫ s

S

 1
m1(u)

∫ u

S

(
1

M (t)
exp

(∫ u

t
q(w)Pη

n−1(ρ(w)) dw
))1/η2

dt
1/η1

du, (2.1)

for S ∈ [s0,∞) and s ∈ [S,∞), with

P0(s) = 0 and q(s) := kq(s) (1 − p (ρ (s)))η exp
(∫ s

S

m3(r)
m2(r)

dr
)
,
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and

Qn(s, t) :=
∫ s

t

 1
m1(v)

∫ s

v

(
1

M (u)
exp

(∫ s

u
q̄∗(w)Qη

n−1(w, ρ(w)) dw
))1/η2

du
1/η1

dv,

for s ∈ [t,∞) ⊆ [S,∞) , with

Q0(s, t) = 0 and q̄∗(s) := kNηq(s) exp
(∫ s

S

m3(r)
m2(r)

dr
)
,

for some N > 0 and S ∈ [s0,∞).
The subsequent lemmas will be introduced and utilized in the main result.

Lemma 2.1. Assume that x is an eventually positive solution of Eq (1.1). Then there exists S ≥ s0 such
that either

(I) L1(z(s)) > 0, L2(z(s)) > 0,

or

(II) L1(z(s)) < 0, L2(z(s)) > 0,

for all s ≥ S.

Proof. Since x is a positive solution of Eq (1.1) on [s1,∞), s1 ≥ s0 such that x(ρ(s)) > 0 and x(µ(s)) > 0
for s ≥ s1. From Eq (1.1), we have for all s ≥ s1,

(m2 (s)L2(z(s)))′ + m3(s)L2(z(s)) ≤ 0,

which implies that
(M (s)L2(z(s)))′ ≤ 0,

where M (s) = m2 (s) exp
(∫ s

s1

m3(r)
m2(r)

dr
)
. That demonstrates that L1(z(s)) and L2(z(s)) are of one sign

eventually. We claim that
L2 (z (s)) > 0 eventually.

If not, consider the following two cases:
Case 1. There exists s2 ≥ s1, sufficiently large, such that

L1 (z (s)) > 0 and L2 (z (s)) < 0 for s ≥ s2.

Since (M (s)L2(z(s)))′ ≤ 0, then there exists a negative constantM such that

M (s)ϕη2

(
(m1(s)L1(z(s)))′

)
≤ M for s ≥ s2.

It follows that

(m1(s)L1(z(s)))′ ≤ ϕ−1
η2

(M)1/η2

(
1

M (s)

)1/η2

for s ≥ s2.

Integrating from s2 to s, we obtain

m1(s)L1 (z (s)) ≤ m1(s2)L1 (z (s2)) + ϕ−1
η2

(M)1/η2

∫ s

s2

(
1

M (t)

)1/η2

dt.
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Letting s→ ∞ and using (iv), then L1 (z (s))→ −∞, which contradicts that L1 (z (s)) > 0.
Case 2. There exists s2 ≥ s1, sufficiently large, such that

L1 (z (s)) < 0 and L2 (z (s)) < 0 for s ≥ s2,

which implies that (m1(s)L1(z(s)))′ < 0 and therefore,

m1(s)L1(z(s)) ≤ m1(s2)L1(z(s2)) = k̄ < 0.

Dividing by m1(s) and integrating from s2 to s, we obtain

z(s) ≤ z(s2) + ϕ−1
η1

(k̄)
∫ s

s2

(
1

m1(t)

)1/η1

dt.

Letting s → ∞, then (iv) yields z(s) → −∞, which contradicts the fact that z(s) > 0. This completes
the proof. �

Lemma 2.2. Assume that x is a positive solution of Eq (1.1) and the corresponding function z satisfies
(I) of Lemma 2.1. Then

(M (s)L2(z(s)))′ + q(s)zη(ρ(s)) ≤ 0. (2.2)

Proof. Since x is a positive solution of Eq (1.1) on [s1,∞), then there exists s2 ≥ s1 such that the
corresponding function z satisfies (I) of Lemma 2.1 on [s1,∞). It is easy to see that Eq (1.1) can be
written in the form

(m2 (s)L2(z(s)))′ + m3(s)L2(z(s)) + q(s) f (x(ρ(s))) = 0,

for all s ≥ s1. Then

(M (s)L2(z(s)))′ + q(s) exp
(∫ s

s1

m3(r)
m2(r)

dr
)

f (x(ρ(s))) = 0.

Therefore,

(M (s)L2(z(s)))′ + kq(s) exp
(∫ s

s1

m3(r)
m2(r)

dr
)

xη (ρ (s)) ≤ 0. (2.3)

Also, we have
x(s) = z(s) − p(s)x(µ(s)) ≥ z(s) − p(s)z(µ(s)).

Since z′ > 0, we get
x(s) ≥ (1 − p(s))z(s). (2.4)

Substituting (2.4) into (2.3), we have

(M (s)L2(z(s)))′ + q (t) zη(ρ(s)) ≤ 0.

This completes the proof. �

Lemma 2.3. If x is an eventually positive solution of Eq (1.1) and the corresponding function z satisfies
Case (I) of Lemma 2.1, then for n ∈ N,

z(s) ≥ Pn(s) (M (s)L2(z(s)))1/η . (2.5)
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Proof. Since x is a positive solution of Eq (1.1) on [s1,∞), then there exists s2 ≥ s1 such that the
corresponding function z satisfies (I) of Lemma 2.1 on [s1,∞). Then

m1 (s)L1(z(s)) =

∫ s

s1

(m1 (t)L1(z(t)))′ dt + m1 (s1)L1(z(s1))

≥

∫ s

s1

(
1

M (t)

)1/η2

(M (t)L2(z(t)))1/η2 dt (2.6)

≥ (M (s)L2(z(s)))1/η2

∫ s

s1

(
1

M (t)

)1/η2

dt.

Then,

z′(s) ≥ (M (s)L2(z(s)))1/η

 1
m1(s)

∫ s

s1

(
1

M (t)

)1/η2

dt
1/η1

.

Integrating the above inequality from s1 to s ∈ [s1,∞), we obtain

z(s) ≥
∫ s

s1

(M (u)L2(z(u)))1/η

 1
m1(u)

∫ u

s1

(
1

M (t)

)1/η2

dt
1/η1

 du

≥ (M (s)L2(z(s)))1/η
∫ s

s1


 1
m1(u)

∫ u

s1

(
1

M (t)

)1/η2

dt
1/η1

 du

= (M (s)L2(z(s)))1/η P1(s).

This shows that (2.5) holds for n = 1. Consequently,

z(ρ(s)) ≥ (M (ρ(s))L2(z(ρ(s))))1/η P1(ρ(s)). (2.7)

From (2.2) and (2.7), we obtain

(M (s)L2(z(s)))′ + q(s)Pη
1(ρ(s))M (ρ(s))L2(z(ρ(s))) ≤ 0.

Using the nonicreasing nature of M (s)L2(z(s)) and ρ(s) ≤ s, we obtain

(M (s)L2(z(s)))′ + q(s)Pη
1(ρ(s))M (s)L2(z(s)) ≤ 0.

Integrating the above inequality from t to s ∈ [t,∞) implies that

M (t)L2(z(t)) ≥ M (s)L2(z(s)) exp
(∫ s

t
q(w)Pη

1 (ρ(w)) dw
)
. (2.8)

Using (2.8) in (2.6), we obtain

m1 (s)L1(z(s)) ≥ (M (s)L2(z(s)))1/η2

∫ s

s1

(
1

M (t)
exp

(∫ s

t
q(w)Pη

1 (ρ(w)) dw
))1/η2

dt.

It follows that

z′(s) ≥ (M (s)L2(z(s)))1/η

 1
m1(s)

∫ s

s1

(
1

M (t)
exp

(∫ s

t
q(w)Pη

1 (ρ(w)) dw
))1/η2

dt
1/η1

.
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Again, integrating from s1 to s, we obtain

z(s) ≥
∫ s

s1

(M (u)L2(z(u)))1/η

 1
m1(u)

∫ u

s1

(
1

M (t)
exp

(∫ u

t
q(w)Pη

1 (ρ(w)) dw
))1/η2

dt
1/η1

du

≥ (M (s)L2(z(s)))1/η
∫ s

s1

 1
m1(u)

∫ u

s1

(
1

M (t)
exp

(∫ u

t
q(w)Pη

1 (ρ(w)) dw
))1/η2

dt
1/η1

du

= (M (s)L2(z(s)))1/η P2(s).

This shows that (2.5) holds for n = 2. If this process is repeated n times, we obtain (2.5). �

The asymptotic behavior of all solutions to Eq (1.1) is discussed in the results that follow.

Theorem 2.1. Let n ∈ N. Assume that the first-order delay differential equation

w′ (s) + q (s) Pη
n (ρ(s)) w (ρ (s)) = 0 (2.9)

is oscillatory. If x(s) is a solution of Eq (1.1), then x(s) is either oscillatory or bounded.

Proof. Assume that x(s) is a nonoscillatory solution of Eq (1.1). Without loss of generality, let x(s) > 0,
x(ρ(s)) > 0, and x(µ(s)) > 0 on [s1,∞), s1 ≥ s0. It follows from Lemma 2.1 that there exists s2 ≥ s1

such that either (I) or (II) holds on [s2,∞). Assume (I) is valid. From (2.5), we have

z(ρ(s)) ≥ (M (ρ(s))L2(z(ρ(s))))1/η Pn(ρ(s)). (2.10)

Combining (2.2) and (2.10), we obtain

w′(s) + q(s)Pη
n(ρ(s))w (ρ (s)) ≤ 0,

where w(s) := M (s)L2(z(s)). Due to [37, Theorem 1], the associated delay differential equation also
has a positive solution. This is a contradiction. Now, to complete the proof, we consider (II) valid.
Since z(s) > 0, and z′(s) < 0 then z(s) is bounded, and therefore x (s) is bounded. The proof is
complete. �

Theorem 2.2. Let n ∈ N. Assume that the first-order delay differential equation (2.9) is oscillatory
and ∫ ∞

 1
m1(v)

∫ ∞

v

(
1

m2(u)

∫ ∞

u
q(t) exp

(∫ t

u

m3(r)
m2(r)

dr
)

dt
)1/η2

du

1/η1

dv = ∞. (2.11)

If x(s) is a solution of Eq (1.1), then x(s) is either oscillatory or tends to zero eventually.

Proof. Assume that x(s) is a nonoscillatory solution of Eq (1.1). Without loss of generality, let x(s) > 0,
x(ρ(s)) > 0, and x(µ(s)) > 0 on [s1,∞), s1 ≥ s0. It follows from Lemma 2.1 that there exists s2 ≥ s1

such that either (I) or (II) holds on [s2,∞). The proof of Case (I) is identical to the proof of Theorem 2.1,
Case (I), and so it has been omitted. Assume (II) is valid. It is obvious that Eq (1.1) can be written as

(M (s)L2(z(s)))′ + kq(s) exp
(∫ s

s1

m3(r)
m2(r)

dr
)

xη (ρ (s)) ≤ 0. (2.12)

AIMS Mathematics Volume 9, Issue 8, 23128–23141.



23134

Since z(s) > 0 and z′(s) < 0, there exists a constant l ≥ 0 such that limt→∞ z(s) = l. We claim l = 0. If
not, then for sufficiently small ε > 0, there exists s3 ≥ s2 such that l − p(l + ε) > 0 and l < z(s) < l + ε

for all s > s3. Then

x(s) = z(s) − p(s)x(µ(s)) ≥ z(s) − pz(µ(s)) ≥ l − p(l + ε) ≥ N (l + ε) > N z(s), (2.13)

N := l−p(l+ε)
l+ε > 0. From (2.12) and (2.13), we obtain

(M (s)L2(z(s)))′ + kNηq(s) exp
(∫ s

s1

m3(r)
m2(r)

dr
)

zη (ρ (s)) ≤ 0. (2.14)

Then

(M (s)L2(z(s)))′ + Kq(s) exp
(∫ s

s1

m3(r)
m2(r)

dr
)
≤ 0,

where K := kNηlη > 0. Integrating the above inequality from s ∈ [s3,∞) to∞, we obtain

M (s)L2(z(s)) ≥ K
∫ ∞

s
q(t) exp

(∫ t

s1

m3(r)
m2(r)

dr
)

dt

= K exp
(∫ s

s1

m3(r)
m2(r)

dr
) ∫ ∞

s
q(t) exp

(∫ t

s

m3(r)
m2(r)

dr
)

dt.

It follows that

(m1 (s)L1(z(s)))′ ≥ K1/η2

(
1

m2(s)

∫ ∞

s
q(t) exp

(∫ t

s

m3(r)
m2(r)

dr
)

dt
)1/η2

,

Integrating the above inequality from s to∞, we obtain

−z′(s) ≥ K1/η

 1
m1(s)

∫ ∞

s

(
1

m2(u)

∫ ∞

u
q(t) exp

(∫ t

u

m3(r)
m2(r)

dr
)

dt
)1/η2

du

1/η1

.

Again, integrating the above inequality from s2 to∞, we obtain

z(s2) ≥ K1/η
∫ ∞

s2

 1
m1(v)

∫ ∞

v

(
1

m2(u)

∫ ∞

u
q(t) exp

(∫ t

u

m3(r)
m2(r)

dr
)

dt
)1/η2

du

1/η1

dv,

which is a contradiction to (2.11), then lim
s→∞

z(s) = 0. Since 0 < x(s) ≤ z(s), then lim
s→∞

x(s) = 0. The
proof is complete. �

Lemma 2.4. If x is an eventually positive solution of Eq (1.1) and the corresponding function z satisfies
Case (II) of Lemma 2.1, then for n ∈ N and s ∈ [t,∞) ,

z(t) ≥ (M (s)L2(z(s)))1/η Qn(s, t). (2.15)

Proof. Let x be a positive solution of Eq (1.1) such that the Case (II) of Lemma 2.1 is satisfied on
[s1,∞), for some s1 ≥ s0. Then, for s ≥ v ≥ s1,

−m1 (v)L1(z(v)) =

∫ s

v
(m1 (u)L1(z(u)))′ du − m1 (s)L1(z(s))

AIMS Mathematics Volume 9, Issue 8, 23128–23141.
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≥

∫ s

v

(
1

M (u)

)1/η2

(M (u)L2(z(u)))1/η2 du (2.16)

≥ (M (s)L2(z(s)))1/η2

∫ s

v

(
1

M (u)

)1/η2

du.

Then

−z′(v) ≥ (M (s)L2(z(s)))1/η

 1
m1(v)

∫ s

v

(
1

M (u)

)1/η2

du
1/η1

.

Integrating the above inequality from t to s ∈ [t,∞) with respect to v, we obtain

z(t) ≥ (M (s)L2(z(s)))1/η
∫ s

t

 1
m1(v)

∫ s

v

(
1

M (u)

)1/η2

du
1/η1

dv

≥ (M (s)L2(z(s)))1/η Q1(s, t).

This shows that (2.15) holds for n = 1. Consequently,

z(ρ(s)) ≥ (M (s)L2(z(s)))1/η Q1(s, ρ(s)). (2.17)

From (2.14) and (2.17), we obtain

(M (s)L2(z(s)))′ + q∗(s)Qη
1(s, ρ(s))M (s)L2(z(s)) ≤ 0, (2.18)

where q∗(s) = kNηq(s) exp
(∫ s

s1

m3(r)
m2(r) dr

)
. Integrating the latter inequality from u to s ∈ [u,∞) gives

M (u)L2(z(u) ≥ M (s)L2(z(s)) exp
(∫ s

u
q̄∗(w)Qη

1(w, ρ(w)) dw
)
. (2.19)

From (2.16) and (2.19), we obtain

−m1(v)L1(z(v)) ≥
∫ s

v

(
1

M (u)

)1/η2

(M (u)L2(z(u)))1/η2 du

≥ (M (s)L2(z(s)))1/η2

∫ s

v

(
1

M (u)
exp

(∫ s

u
q̄∗(w)Qη

1(w, ρ(w)) dw
))1/η2

du.

It follows that

−z′(v) ≥ (M (s)L2(z(s)))1/η

 1
m1(v)

∫ s

v

(
1

M (u)
exp

(∫ s

u
q̄∗(w)Qη

1(w, ρ(w)) dw
))1/η2

du
1/η1

.

Therefore,

z(s) ≥ (M (s)L2(z(s)))1/η
∫ s

t

 1
m1(v)

∫ s

v

(
1

M (u)
exp

(∫ s

u
q̄∗(w)Qη

1(w, ρ(w)) dw
))1/η2

du
1/η1

dv.

Then,
z(s) ≥ (M (s)L2(z(s)))1/η Q2(s, t).

This shows that (2.15) holds for n = 2. To obtain (2.15) for arbitrary n ∈ N, this procedure can be done
n times. �
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Theorem 2.3. Let ρ(s) be nondecreasing on [s0,∞). Suppose there exists n ∈ N such that one of the
following first-order delay differential equations (2.9) is oscillatory and

lim sup
s→∞

∫ s

ρ(s)
q̄∗(t)Qη

n(ρ(s), ρ(t)) dt > 1. (2.20)

Then Eq (1.1) is oscillatory.

Proof. Assume that x(s) is a nonoscillatory solution of Eq (1.1). Without loss of generality, let x(s) > 0,
x(ρ(s)) > 0, and x(µ(s)) > 0 on [s1,∞), s1 ≥s0. It follows from Lemma 2.1 that there exists s2 ≥ s1

such that either (I) or (II) holds on [s1,∞). The proof of Case (I) is identical to the proof of Theorem 2.1,
Case (I), and so it has been omitted. Assume (II) is valid. As in the proof of Theorem 2.2, Case (II),
we have

− (M (s)L2(z(s)))′ ≥ kNηq(s) exp
(∫ s

s1

m3(r)
m2(r)

dr
)

zη (ρ (s)) = q̄∗(s)zη (ρ (s)) .

Integrating the above inequality from ρ(s) to s, we obtain

M (ρ(s))L2(z(ρ(s))) ≥
∫ s

ρ(s)
q̄∗(t)zη(ρ(t)) dt.

In view of the nondecreasing nature of ρ and (2.15), we obtain

M (ρ(s))L2(z(ρ(s))) ≥ M (ρ(s))L2(z(ρ(s)))
∫ s

ρ(s)
q̄∗(t)Qη

n(ρ(s), ρ(t)) dt.

This is a contradiction with (2.20). The proof is complete. �

Applying the results of [27, 28, 30, 31] in Theorems 2.1–2.3, we get the asymptotic behavior of the
solutions to Eq (1.1).

Corollary 2.1. Let ρ(s) be nondecreasing on [s0,∞). Suppose there exists n ∈ N such that one of the
following conditions is satisfied:

(a) lim inf s→∞

∫ s

ρ(s)
q(t)Pη

n(ρ(t)) dt >
1
e

;

(b) lim sups→∞

∫ s

ρ(s)
q(t)Pη

n(ρ(t)) dt > 1;

(c) lim inf s→∞

∫ s

ρ(s)
q(t)Pη

n(ρ(t)) dt > α and lim sups→∞

∫ s

ρ(s)
q(t)Pη

n(ρ(t)) dt > 1 −
(
1 −
√

1 − α
)2
.

If x(s) is a solution of Eq (1.1), then

(I) x(s) is either oscillatory or bounded;
(II) x(s) is either oscillatory or tends to zero eventually if (2.11) holds;

(III) x(s) is oscillatory if (2.20) holds.

Remark 2.1. We note that Theorems 2.2 and 2.3 are reduced to [10, Theorems 1 and 2] when η1 =

η2 = 1, m3(s) = 0, k = 1, and p(s) = 0.
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3. Numerical examples

Examples are provided to demonstrate the significance of our results.

Example 3.1. Consider the third-order nonlinear neutral differential equation with a damping term of
the form{

1
s
ϕ1

([
(s − 1)ϕ3

((
x(s) +

1
2

x
( s
2

))′)]′)}′
+

1
s2ϕ1

([
(s − 1)ϕ3

((
x(s) +

1
2

x
( s
2

))′)]′)
+ 6sx3(s − 1)

= 0, s ≥ 1, (3.1)

where m1(s) = s − 1, m2(s) = 1
s , m3(s) = 1

s2 , q(s) = 6s, µ(s) = s
2 , ρ(s) = s − 1, p(s) = 1

2 , η1 = 3, and
η2 = 1. Using Maple software, we see that condition (iv) holds and q(s) = 3

4 s2.

∫ ∞

s2

 1
m1(v)

∫ ∞

v

(
1

m2(u)

∫ ∞

u
q(t) exp

(∫ t

u

m3(r)
m2(r)

dr
)

dt
)1/η2

du

1/η1

dv

=

∫ ∞

1

[
1

v − 1

∫ ∞

v

(
u
∫ ∞

u
16t exp

(∫ t

u

1
r

dr
)

dt
)

du
] 1

3

dv = ∞.

Also, we have, for n = 1

lim inf
s→∞

∫ s

ρ(s)
q̄(t)Pη

n(ρ(t)) dt

= lim inf
s→∞

∫ s

s−1
q̄(t)P3

1(t − 1) dt

= lim inf
s→∞

((1/8)s6 − (1/8)(s − 1)6 − (9/10)s5 + (9/10)(s − 1)5 + (9/4)s4 − (9/4)(s − 1)4

− 2s3 + 2(s − 1)3) >
1
e
.

Then, according to Corollary 2.1, every solution to Eq (3.1) is either oscillatory or tends to zero as
s→ ∞.

Example 3.2. Consider the third-order nonlinear neutral differential equation with a damping term of
the form {

1
s2ϕ1

([
1

9s2ϕ1

(
(x(s) +

1
3

x(s − 1))′
)]′)}′

+
2
s3ϕ1

([
1

9s2ϕ1

(
(x(s) +

1
3

x(s − 1)′
)]′)

+
14
s7 x(

s
2

)

= 0, t ≥ 1, (3.2)

where m1(s) = 1
9s2 , m2(s) = 1

s2 , m3(s) = 2
s3 , q(s) = 42

s7 , µ(s) = s − 1, ρ(s) = s
2 , p(s) = 1

3 , η1 = η2 = 1,
k = 1

3 , and N = 1
2 . Using Maple software, we see that condition (iv) holds and q(s) = 28

3s5 , q∗(s) = 7
s5 .

Also, we have, for n = 1,

lim inf
s→∞

∫ s

ρ(s)
q(t)Pη

n(ρ(t)) dt
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23138

= lim inf
s→∞

∫ s

s
2

q(t)P1(
t
2

) dt

= lim inf
s→∞

((21/16) ln(2) − 7/(2s) + 105/(4s4)

= 0.90976 >
1
e
,

lim sup
s→∞

∫ s

ρ(s)
q∗(t)Qη

n(ρ(s), ρ(t)) dt

= lim sup
s→∞

∫ s

s
2

q∗(t)Q1(
s
2
,

t
2

) dt

= lim sup
s→∞

∫ s

s
2

q∗(t)
∫ s/2

t/2

∫ s/2

v
(M (u))−1 du

m1 (v)
dvdt

= lim sup
s→∞

∫ s

s
2

7
t5

(
3 s2 + 6 st + 9 t2

)
(s − t)2

64
dt = 0.60029 < 1,

and

lim sup
s→∞

∫ s

ρ(s)
q∗(t)Qη

n(ρ(s), ρ(t)) dt

= lim sup
s→∞

∫ s

s
2

q∗(t)Q2(
s
2
,

t
2

) dt

= lim sup
s→∞

∫ s

s
2

q∗(t)
∫ s/2

t/2

1
m1 (v)

∫ s/2

v

e
∫ s/2

u q∗(w)Q1(w,w/2) dw

M (u)
du dv ds

= 1.111 > 1.

Thus, (a) is satisfied for n = 1, and (2.20) is satisfied for n = 2. Then, according to Corollary 2.1,
every solution to Eq (3.2) is oscillatory.
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