Research article Special Issues

Estimation method of mixture distribution and modeling of COVID-19 pandemic

  • Received: 21 August 2021 Revised: 18 December 2021 Accepted: 17 January 2022 Published: 21 March 2022
  • MSC : 62E10, 62E15, 62F10

  • The mathematical characteristics of the mixture of Lindley model with 2-component (2-CMLM) are discussed. In this paper, we investigate both the practical and theoretical aspects of the 2-CMLM. We investigate several statistical features of the mixed model like probability generating function, cumulants, characteristic function, factorial moment generating function, mean time to failure, Mills Ratio, mean residual life. The density, hazard rate functions, mean, coefficient of variation, skewness, and kurtosis are all shown graphically. Furthermore, we use appropriate approaches such as maximum likelihood, least square and weighted least square methods to estimate the pertinent parameters of the mixture model. We use a simulation study to assess the performance of suggested methods. Eventually, modelling COVID-19 patient data demonstrates the effectiveness and utility of the 2-CMLM. The proposed model outperformed the two component mixture of exponential model as well as two component mixture of Weibull model in practical applications, indicating that it is a good candidate distribution for modelling COVID-19 and other related data sets.

    Citation: Tabassum Naz Sindhu, Zawar Hussain, Naif Alotaibi, Taseer Muhammad. Estimation method of mixture distribution and modeling of COVID-19 pandemic[J]. AIMS Mathematics, 2022, 7(6): 9926-9956. doi: 10.3934/math.2022554

    Related Papers:

  • The mathematical characteristics of the mixture of Lindley model with 2-component (2-CMLM) are discussed. In this paper, we investigate both the practical and theoretical aspects of the 2-CMLM. We investigate several statistical features of the mixed model like probability generating function, cumulants, characteristic function, factorial moment generating function, mean time to failure, Mills Ratio, mean residual life. The density, hazard rate functions, mean, coefficient of variation, skewness, and kurtosis are all shown graphically. Furthermore, we use appropriate approaches such as maximum likelihood, least square and weighted least square methods to estimate the pertinent parameters of the mixture model. We use a simulation study to assess the performance of suggested methods. Eventually, modelling COVID-19 patient data demonstrates the effectiveness and utility of the 2-CMLM. The proposed model outperformed the two component mixture of exponential model as well as two component mixture of Weibull model in practical applications, indicating that it is a good candidate distribution for modelling COVID-19 and other related data sets.



    加载中


    [1] B. S. Everitt, A finite mixture model for the clustering of mixed-mode data, Stat. Probabil. Lett., 6 (1988), 305-309. https://doi.org/10.1016/0167-7152(88)90004-1 doi: 10.1016/0167-7152(88)90004-1
    [2] B. G. Lindsay, Mixture models: Theory, geometry and applications. In: NSF-CBMS regional conference series in probability and statistics (pp. i-163), Institute of Mathematical Statistics and the American Statistical Association, 1995, January. https://doi.org/10.1214/cbms/1462106013
    [3] G. J. McLachlan, K. E. Basford, Mixture models: Inference and applications to clustering, New York: M. Dekker, 38 (1988). https://doi.org/10.2307/2348072
    [4] G. McLachlan, D. Peel, Finite Mixture Models, John Wiley & Sons: New York, 2000. https://doi.org/10.1002/0471721182
    [5] J. Q. Shi, R. Murray-Smith, D. M. Titterington, Bayesian regression and classification using mixtures of Gaussian processes, Int. J. Adapt. Control., 17 (2003), 149-161. https://doi.org/10.1002/acs.744 doi: 10.1002/acs.744
    [6] D. Mohammad, A. Muhammad, On the Mixture of BurrXⅡ and Weibull Distribution, J. Sta. Appl. Pro, 3 (2014), 251-267. https://doi.org/10.12785/jsap/030215 doi: 10.12785/jsap/030215
    [7] K. S. Sultan, M. A. Ismail, A. S. Al-Moisheer, Mixture of two inverse Weibull distributions: Properties and estimation, Comput. Stat. Data An., 51 (2007), 5377-5387. https://doi.org/10.1016/j.csda.2006.09.016 doi: 10.1016/j.csda.2006.09.016
    [8] R. Jiang, D. N. P. Murthy, P. Ji, Models involving two inverse Weibull distributions, Reliab. Eng. Syst. Safe., 73 (2001), 73-81. https://doi.org/10.1016/S0951-8320(01)00030-8 doi: 10.1016/S0951-8320(01)00030-8
    [9] A. Mohammadi, A. M. R. Salehi-Rad, E. C. Wit, Using mixture of Gamma distributions for Bayesian analysis in an M/G/1 queue with optional second service, Computation. Stat., 28 (2013), 683-700. https://doi.org/10.1007/s00180-012-0323-3 doi: 10.1007/s00180-012-0323-3
    [10] S. F. Ateya, Maximum likelihood estimation under a finite mixture of generalized exponential distributions based on censored data, Stat. Pap., 55 (2014), 311-325. https://doi.org/10.1007/s00362-012-0480-z doi: 10.1007/s00362-012-0480-z
    [11] M. M. Mohamed, E. Saleh, S. M. Helmy, Bayesian prediction under a finite mixture of generalized exponential lifetime model, Pak. J. Stat. Oper. Res., (2014), 417-433. https://doi.org/10.18187/pjsor.v10i4.620 doi: 10.18187/pjsor.v10i4.620
    [12] T. N. Sindhu, M. Aslam, Preference of prior for Bayesian analysis of the mixed Burr type X distribution under type Ⅰ censored samples, Pak. J. Stat. Oper. Res., (2014), 17-39. https://doi.org/10.18187/pjsor.v10i1.649 doi: 10.18187/pjsor.v10i1.649
    [13] H. Zhang, Y. Huang, Finite mixture models and their applications: A review, Austin Biom. Biostat., 2 (2015), 1-6.
    [14] T. N. Sindhu, M. Riaz, M. Aslam, Z. Ahmed, Bayes estimation of Gumbel mixture models with industrial applications, T. I. Meas. Control, 38 (2016), 201-214. https://doi.org/10.1177/0142331215578690 doi: 10.1177/0142331215578690
    [15] T. N. Sindhu, M. Aslam, Z. Hussain, A simulation study of parameters for the censored shifted Gompertz mixture distribution: A Bayesian approach, J. Stat. Manag. Syst., 19 (2016), 423-450. https://doi.org/10.1080/09720510.2015.1103462 doi: 10.1080/09720510.2015.1103462
    [16] T. N. Sindhu, N. Feroze, M. Aslam, A. Shafiq, Bayesian inference of mixture of two Rayleigh distributions: A new look, Punjab Univ. J. Math., 48 (2020).
    [17] T. N. Sindhu, H. M. Khan, Z. Hussain, B. Al-Zahrani, Bayesian inference from the mixture of half-normal distributions under censoring, J. Natl. Sci. Found. Sri., 46 (2018), 587-600. https://doi.org/10.4038/jnsfsr.v46i4.8633 doi: 10.4038/jnsfsr.v46i4.8633
    [18] T. N. Sindhu, Z. Hussain, M. Aslam, Parameter and reliability estimation of inverted Maxwell mixture model, J. Stat. Manag. Syst., 22 (2019), 459-493. https://doi.org/10.1080/09720510.2018.1552412 doi: 10.1080/09720510.2018.1552412
    [19] S. Ali, Mixture of the inverse Rayleigh distribution: Properties and estimation in a Bayesian framework, Appl. Math. Modell., 39 (2015), 515-530. https://doi.org/10.1016/j.apm.2014.05.039 doi: 10.1016/j.apm.2014.05.039
    [20] H. Zakerzadeh, A. Dolati, Generalized Lindley distribution, J. Math. Ext., 3 (2009), 1-17.
    [21] B. O. Oluyede, T. Yang, A new class of generalized Lindley distributions with applications, J. Stat. Comput. Sim., 85 (2015), 2072-2100. https://doi.org/10.1080/00949655.2014.917308 doi: 10.1080/00949655.2014.917308
    [22] S. Nadarajah, H. S. Bakouch, R. Tahmasbi, A generalized Lindley distribution, Sankhya B, 73 (2011), 331-359. https://doi.org/10.1007/s13571-011-0025-9 doi: 10.1007/s13571-011-0025-9
    [23] D. V. Lindley, Bayesian statistics: A review, Society for industrial and applied mathematics, New York, United States, 1972. https://doi.org/10.1137/1.9781611970654.ch1
    [24] M. E. Ghitany, B. Atieh, S. Nadarajah, Lindley distribution and its application, Math. Comput. Simulat., 78 (2008), 493-506. https://doi.org/10.1016/j.matcom.2007.06.007 doi: 10.1016/j.matcom.2007.06.007
    [25] R. Shanker, F. Hagos, S. Sujatha, On modeling of Lifetimes data using exponential and Lindley distributions, Biometrics Biostatistics Int. J., 2 (2015), 1-9. https://doi.org/10.15406/bbij.2015.02.00042 doi: 10.15406/bbij.2015.02.00042
    [26] J. Mazucheli, J. A. Achcar, The Lindley distribution applied to competing risks lifetime data, Comput. Meth. Prog. Bio., 104 (2011), 188-192. https://doi.org/10.1016/j.cmpb.2011.03.006 doi: 10.1016/j.cmpb.2011.03.006
    [27] D. K. Al-Mutairi, M. E. Ghitany, D. Kundu, Inferences on stress-strength reliability from Lindley distributions, Commun. Stat.-Theory M., 42 (2013), 1443-1463. https://doi.org/10.1080/03610926.2011.563011 doi: 10.1080/03610926.2011.563011
    [28] M. A. E. Damsesy, M. M. El Genidy, A. M. El Gazar, Reliability and failure rate of the electronic system by using mixture Lindley distribution, J. Appl. Sci., 15 (2015), 524-530. https://doi.org/10.3923/jas.2015.524.530 doi: 10.3923/jas.2015.524.530
    [29] A. H. Khan, T. R. Jan, Estimation of stress-strength reliability model using finite mixture of two parameter Lindley distributions, J. Stat. Appl. Probab., 4 (2015), 147-159.
    [30] A. S. Al-Moisheer, A. F. Daghestani, K. S. Sultan, Mixture of two one-parameter Lindley distributions: properties and estimation, J. Stat. Theory Pract., 15 (2021), 1-21. https://doi.org/10.1007/s42519-020-00133-4 doi: 10.1007/s42519-020-00133-4
    [31] S. Dey, D. Kumar, P. L. Ramos, F. Louzada, Exponentiated Chen distribution: properties and estimation, Comm. Stat. Simul. C., 46 (2017), 8118-8139. https://doi.org/10.1080/03610918.2016.1267752 doi: 10.1080/03610918.2016.1267752
    [32] S. Dey, A. Alzaatreh, C. Zhang, D. Kumar, A new extension of generalized exponential distribution with application to ozone data, Ozone Sci. Eng., 39 (2017), 273-285. https://doi.org/10.1080/01919512.2017.1308817 doi: 10.1080/01919512.2017.1308817
    [33] G. C. Rodrigues, F. Louzada, P. L. Ramos, Poisson exponential distribution: different methods of estimation, J. Appl. Stat., 45 (2018), 128-144. https://doi.org/10.1080/02664763.2016.1268571 doi: 10.1080/02664763.2016.1268571
    [34] S. Dey, F. A. Moala, D. Kumar, Statistical properties and different methods of estimation of Gompertz distribution with application. J. Stat. Manag. Syst., 21 (2018), 839-876. https://doi.org/10.1080/09720510.2018.1450197 doi: 10.1080/09720510.2018.1450197
    [35] S. Dey, M. J. Josmar, S. Nadarajah, Kumaraswamy distribution: different methods of estimation, Comput. Appl. Math., 37 (2018), 2094-2111. https://doi.org/10.1007/s40314-017-0441-1 doi: 10.1007/s40314-017-0441-1
    [36] J. J. Swain, S. Venkatraman, J. R. Wilson, Least-squares estimation of distribution functions in Johnson's translation system, J. Stat. Comput. Sim., 29 (1988), 271-297. https://doi.org/10.1080/00949658808811068 doi: 10.1080/00949658808811068
    [37] R. D. Gupta, D. Kundu, Generalized exponential distribution: different method of estimations, J. Stat. Comput. Sim., 69 (2001), 315-337. https://doi.org/10.1080/00949650108812098 doi: 10.1080/00949650108812098
    [38] T. N. Sindhu, A. Shafiq, Q. M. Al-Mdallal, On the analysis of number of deaths due to Covid- 19 outbreak data using a new class of distributions, Results Phys., 21 (2021), 103747. https://doi.org/10.1016/j.rinp.2020.103747 doi: 10.1016/j.rinp.2020.103747
    [39] T. N. Sindhu, A. Shafiq, Q. M. Al-Mdallal, Exponentiated transformation of Gumbel Type-Ⅱ distribution for modeling COVID-19 data, Alex. Eng. J., 60 (2021), 671-689. https://doi.org/10.1016/j.aej.2020.09.060 doi: 10.1016/j.aej.2020.09.060
    [40] A. Shafiq, S. A. Lone, T. N. Sindhu, Q. M. Al-Mdallal, T. Muhammad, A New Modified Kies Fréchet Distribution: Applications of Mortality Rate of Covid-19, Results Phys., (2021), 104638. https://doi.org/10.1016/j.rinp.2021.104638 doi: 10.1016/j.rinp.2021.104638
    [41] S. A. Lone, T. N. Sindhu, F. Jarad, Additive Trinomial Fréchet distribution with practical application, Results Phys., (2021), 105087. https://doi.org/10.1016/j.rinp.2021.105087 doi: 10.1016/j.rinp.2021.105087
    [42] S. A. Lone, T. N. Sindhu, A. Shafiq, F. Jarad, A novel extended Gumbel Type Ⅱ model with statistical inference and Covid-19 applications, Results Phys., 35 (2022), 105377. https://doi.org/10.1016/j.rinp.2022.105377 doi: 10.1016/j.rinp.2022.105377
    [43] A. Shafiq, T. N. Sindhu, N. Alotaibi, A novel extended model with versatile shaped failure rate: Statistical inference with Covid-19 applications, Results Phys., 2022. https://doi.org/10.1016/j.rinp.2022.105398 https://doi.org/10.1016/j.rinp.2022.105398 doi: 10.1016/j.rinp.2022.105398DOI:10.1016/j.rinp.2022.105398
    [44] X. Liu, Z. Ahmad, A. M. Gemeay, A. T. Abdulrahman, E. H. Hafez, N. Khalil, Modeling the survival times of the COVID-19 patients with a new statistical model: A case study from China, Plos one, 16 (2021), e0254999. https://doi.org/10.1371/journal.pone.0254999 doi: 10.1371/journal.pone.0254999
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1890) PDF downloads(127) Cited by(16)

Article outline

Figures and Tables

Figures(18)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog