Research article Special Issues

Going beyond the threshold: Blowup criteria with arbitrary large energy in trapped quantum gases

  • Received: 29 October 2021 Revised: 21 February 2022 Accepted: 08 March 2022 Published: 21 March 2022
  • MSC : 35A01, 35D99

  • The present paper considers the blowup properties in trapped dipolar quantum gases modelled by the Gross-Pitaevskii equation. More precisely, through analyzing the temporal evolution of $ J'(t) $ in the form of uncertain principle [1], we provide some invariant evolution flows. Based on that, we establish the global existence versus blowup dichotomy of solutions above the mass-energy threshold. Meanwhile, we can estimate the behaviour of solutions with arbitrary large energy.

    Citation: Lingfei Li, Yingying Xie, Yongsheng Yan, Xiaoqiang Ma. Going beyond the threshold: Blowup criteria with arbitrary large energy in trapped quantum gases[J]. AIMS Mathematics, 2022, 7(6): 9957-9975. doi: 10.3934/math.2022555

    Related Papers:

  • The present paper considers the blowup properties in trapped dipolar quantum gases modelled by the Gross-Pitaevskii equation. More precisely, through analyzing the temporal evolution of $ J'(t) $ in the form of uncertain principle [1], we provide some invariant evolution flows. Based on that, we establish the global existence versus blowup dichotomy of solutions above the mass-energy threshold. Meanwhile, we can estimate the behaviour of solutions with arbitrary large energy.



    加载中


    [1] P. M. Lushnikov, Collapse of Bose-Einstein condensate with dipole-dipole interactions, Phys. Rev. A., 66 (2002), 051601. https://doi.org/10.1103/PhysRevA.66.051601 doi: 10.1103/PhysRevA.66.051601
    [2] L. Pitaevskii, S. Stringari, Bose-Einstein Condensation, Oxford: Oxford University Press, 2003.
    [3] A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, T. Pfau, Bose-Einstein condensation of chromium, Phys. Rev. Lett., 94 (2005), 160401. https://doi.org/10.1103/PhysRevLett.94.160401 doi: 10.1103/PhysRevLett.94.160401
    [4] K. Góral, L. Santos, Ground state and elementary excitations of single and binary Bose-Eeinstein condensates of trapped dipolar gases, Phys. Rev. A., 66 (2002), 023613. https://doi.org/10.1103/PhysRevA.66.023613 doi: 10.1103/PhysRevA.66.023613
    [5] Y. G. Oh, Cauchy problem and Ehrenfests law of nonlinear Schrödinger equations with potentials, J. Differ. Equ., 81 (1989), 255–274. https://doi.org/10.1016/0022-0396(89)90123-x doi: 10.1016/0022-0396(89)90123-x
    [6] Y. Y. Cai, M. Rosenkranz, Z. Lei, W. Z. Bao, Mean-field regime of trapped dipolar Bose-Einstein condensates in one and two dimensions, Phys. Rev. A., 82 (2010), 043623. https://doi.org/10.1103/physreva.82.043623 doi: 10.1103/physreva.82.043623
    [7] R. Carles, P. A. Markowich, C. Sparber, On the Gross-Pitaevskii equation for trapped dipolar quantum gases, Nonlinearty, 21 (2008), 2569–2590. https://doi.org/10.1088/0951-7715/21/11/006 doi: 10.1088/0951-7715/21/11/006
    [8] Y. Y. Xie, L. Q. Mei, S. H. Zhu, L. F. Li, Sufficient conditions of collapse for dipolar Bose-Einstein condensate, ZAMM, 99 (2019), e201700370. https://doi.org/10.1002/zamm.201700370 doi: 10.1002/zamm.201700370
    [9] Y. Y. Xie, L. F. Li, S. H. Zhu, Dynamical behaviors of blowup solutions in trapped quantum gases: Concentration phenomenon, J. Math. Anal. Appl., 468 (2018) 169–181. https://doi.org/10.1016/j.jmaa.2018.08.011 doi: 10.1016/j.jmaa.2018.08.011
    [10] Y. Y. Xie, J. Su, L. Q. Mei, Blowup results and concentration in focusing Schrödinger-Hartree equation, DCDS, 40 (2020), 5001–5017. https://doi.org/10.3934/dcds.2020209 doi: 10.3934/dcds.2020209
    [11] J. J. Pan, J. Zhang, Mass concentration for nonlinear Schrödinger equation with partial confinement, J. Math. Anal. Appl., 481 (2020), 123484. https://doi.org/10.1016/j.jmaa.2019.123484 doi: 10.1016/j.jmaa.2019.123484
    [12] H. L. Guo, H. S. Zhou, A constrained variational problem arising in attractive Bose-Einstein condensate with ellipse-shaped potential, Appl. Math. Lett., 87 (2019), 35–41. https://doi.org/10.1016/j.aml.2018.07.023 doi: 10.1016/j.aml.2018.07.023
    [13] T. Chen, N. Pavlovic, N. Tzirakis, Energy conservation and blowup of solutions for focusing Gross-Pitaevskii hierarchies, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 1271–1290. https://doi.org/10.1016/j.anihpc.2010.06.003 doi: 10.1016/j.anihpc.2010.06.003
    [14] K. Wang, D. Zhao, B. H. Feng, Optimal bilinear control of the coupled nonlinear Schrödinger system, Nonlinear Anal.-Real., 47 (2019), 142–167. https://doi.org/10.1016/j.nonrwa.2018.10.010 doi: 10.1016/j.nonrwa.2018.10.010
    [15] B. H. Feng, D. Zhao, On the Cauchy problem for the XFEL Schrödinger equation, DCDS-B, 23 (2018), 4171–4186. https://doi.org/10.3934/dcdsb.2018131 doi: 10.3934/dcdsb.2018131
    [16] B. H. Feng, J. J. Ren, K. Wang, Blow-up in several points for the Davey-Stewartson system in $R^2$. J. Math. Anal. Appl., 466 (2018), 1317–1326. https://doi.org/10.1016/j.jmaa.2018.06.060 doi: 10.1016/j.jmaa.2018.06.060
    [17] J. Zheng, B. H. Feng, P. H. Zhao, A remark on the two-phase obstacle-type problem for the p-Laplacian, Adv. Calc. Var., 11 (2018), 325–334. https://doi.org/10.1515/acv-2015-0049 doi: 10.1515/acv-2015-0049
    [18] K. Wang, D. Zhao, B. H. Feng, Optimal nonlinearity control of Schrödinger equation. EECT, 7 (2018), 317–334. https://doi.org/10.3934/eect.2018016 doi: 10.3934/eect.2018016
    [19] B. H. Feng, On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. CPAA, 17 (2018), 1785–1804. https://doi.org/10.3934/cpaa.2018085 doi: 10.3934/cpaa.2018085
    [20] B. H. Feng, H. H. Zhang, Stability of standing waves for the fractional Schrödinger-Choquard equation. Comput. Math. Appl., 75 (2018), 2499–2507. https://doi.org/10.1016/j.camwa.2017.12.025 doi: 10.1016/j.camwa.2017.12.025
    [21] J. Huang, J. Zhang, Exact value of cross-constrain problem and strong instability of standing waves in trapped dipolar quantum gases, Appl. Math. Lett., 70 (2017), 32–38. https://doi.org/10.1016/j.aml.2017.03.002 doi: 10.1016/j.aml.2017.03.002
    [22] Q. H. Cao, C. Q. Dai, Symmetric and anti-symmetric solitons of the fractional second- and third-order nonlinear Schrödinger equation, Chinese Phys. Lett., 38 (2021), 090501. https://doi.org/10.1088/0256-307X/38/9/090501 doi: 10.1088/0256-307X/38/9/090501
    [23] B. H. Wang, Y. Y. Wang, C. Q. Dai, Y. X. Chen, Dynamical characteristic of analytical fractional solitons for the space-time fractional Fokas-Lenells equation, Alex. Eng. J., 59 (2020), 4699–4707. https://doi.org/10.1016/j.aej.2020.08.027 doi: 10.1016/j.aej.2020.08.027
    [24] C. Q. Dai, Y. Y. Wang, J. F. Zhang, Managements of scalar and vector rogue waves in a partially nonlocal nonlinear medium with linear and harmonic potentials, Nonlinear Dyn., 102 (2020), 379–391. https://doi.org/10.1007/s11071-020-05949-0 doi: 10.1007/s11071-020-05949-0
    [25] L. J. Yu, G. Z. Wu, Y. Y. Wang, Y. X. Chen, Traveling wave solutions constructed by Mittag-effler function of a (2+1)-dimensional space-time fractional NLS equation, Results Phys., 17 (2020), 103156. https://doi.org/10.1016/j.rinp.2020.103156 doi: 10.1016/j.rinp.2020.103156
    [26] X. Y. Liu, Q. Zhou, A. Biswas, A. K. Alzahrani, W. J. Liu, The similarities and differences of different plane solitons controlled by (3+1)-Dimensional coupled variable coefficient system, J. Adv. Res., 24 (2020), 167–173. https://doi.org/10.1016/j.jare.2020.04.003 doi: 10.1016/j.jare.2020.04.003
    [27] P. J. Raghuramana, S. B. Shreeb, M. S. M. Rajan, Soliton control with inhomogeneous dispersion under the influence of tunable external harmonic potential, Wave. Random Complex, 31 (2021), 474–485. https://doi.org/10.1080/17455030.2019.1598602 doi: 10.1080/17455030.2019.1598602
    [28] Q. T. Ain, J. H. He, N. Anjum, M. Ali, The fractional complex transform: A novel approach to the time-fractional Schrödinger equation, Fractals, 28 (2020), 2050141. https://doi.org/10.1142/S0218348X20501418 doi: 10.1142/S0218348X20501418
    [29] T. Duyckaerts, S. Roudenko, Threshold solutions for the focusing 3D cubic Schrödinger equation, Rev. Mat. Iberoam., 26 (2010), 1–56. https://doi.org/10.4171/RMI/592 doi: 10.4171/RMI/592
    [30] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., 87 (1983), 567–576. https://doi.org/10.1007/BF01208265 doi: 10.1007/BF01208265
    [31] C. E. Kenig, F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166 (2006), 645–675. https://doi.org/10.1007/s00222-006-0011-4 doi: 10.1007/s00222-006-0011-4
    [32] K. Nakanishi, W. Schlag, Global dynamics above the ground state energy for the focusing nonlinear Klein-Gordon equation, J. Differ. Equ., 250 (2011), 2299–2333. https://doi.org/10.1016/j.jde.2010.10.027 doi: 10.1016/j.jde.2010.10.027
    [33] T. Duykaerts, S. Roudenko, Going beyond the threshold: Scattering and blow-up in the focusing NLS equation, Commun. Math. Phys., 334 (2015), 1573–1615. https://doi.org/10.1007/s00220-014-2202-y doi: 10.1007/s00220-014-2202-y
    [34] L. Ma, J. Wang, Sharp threshold of the Gross-Pitaevskii equation with trapped dipolar quantum gases, Can. Math. Bull., 56 (2013), 378–387. https://doi.org/10.4153/CMB-2011-181-2 doi: 10.4153/CMB-2011-181-2
    [35] P. Antonelli, C. Sparber, Existence of solitary waves in dipolar quantum gases, Physica D, 240 (2011), 426–431. https://doi.org/10.1016/j.physd.2010.10.004 doi: 10.1016/j.physd.2010.10.004
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1370) PDF downloads(74) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog