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1. Introduction

The successful implementation of dilute atomic Bose-Einstein condensates has generated
considerable attention in the properties of trapped dipolar quantum gases. In traditional experiments,
bosonic quantum gases with isotropic and short-range interactions have taken a dominant role and
been commendably described by the scattering length of s-wave [2]. However, dipolar interactions,
provided with an anisotropic and long-range component, are not negligible for those particles with
electric dipole moment or large permanent magnetic. In 2005, the first dipolar BEC of chromium
atoms was successfully generated by the combination of magnetic, optical and magneto-optical
trapping techniques [3]. In the approximate range of mean field, the dipolar quantum gases at zero
temperature have been described, and the nonlinear Schrödinger equation of its macroscopic wave
function was derived [4].

In this paper, we study the following Gross-Pitaevskii equation (GPE) for the trapped dipolar

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2022555


9958

quantum gases iϕt = −
1
2
4ϕ +

|x|2

2
ϕ + β1|ϕ|

2ϕ + β2(K ∗ |ϕ|2)ϕ,

ϕ(0, x) = ϕ0, t ∈ R+, x ∈ R3.

(1.1)

Here ϕ = ϕ(t, x) : R+ ×R3 → C is a given smooth function, i is the imaginary unit, 4 is the Laplace
operator on R3 and β1, β2 ∈ R satisfy certain constraints. Moreover, we define ∗ by the convolution for
x. The long-range anisotropic dipolar interaction kernel K(x) is highly singular denoted by

K(x) =
1 − 3 cos2 θ

|x|3
,

where θ = θ(x) represents the angle between the point x ∈ R3 and the fixed polarization axis n ∈ R3,
with |n| = 1, i.e.

cos θ =
x · n
|x|

.

These remarkable experimental breakthroughs of dipolar interactions have stimulated various
theoretical investigations. When β2 = 0, there is no dipolar interaction, and Eq (1.1) describes the
BEC with alkali atoms. Many results about the dynamical properties were developed [5]. When
β2 , 0, Eq (1.1) is hard to discuss due to the strong singularity of dipolar interactions. By reducing
three-dimensional GPE to one or two dimensions, polarized along an arbitrary polarization angle, the
researchers in [6] revealed how the dipolar interactions change the contact interactions of strongly
constrained atoms. Moreover, Carles, Markowich and Sparber [7] applied the decomposition of e−ix·ξ

into spherical functions to calculate the Fourier transform of kernel K(x) with n = (0, 0, 1).
Recently, Li [8] extended the known result of the existence of blowup solution for Eq (1.1) in

terms of mechanical analogy and a new estimate of the kinetic energy. Moreover, the profile
decomposition has been employed to explore the blowup dynamic of Eq (1.1) in [9]. The authors
constructed two refined Gagliardo-Nirenberg inequalities at first. Then, they proved that the blowup
solution would concentrate at one fixed amount with the help of a compactness lemma. This method
has also been applied to the focusing Schrödinger-Hartree equation to investigate blowup dynamic
in [10]. With the same method, Zhang [11] obtained the threshold of global existence and blowup for
the NLSE without dipolar interaction (β2 = 0 in Eq (1.1)) through the Hamilton conservation and the
variational characteristic of the classical nonlinear scalar field equation. Then, the limiting profile and
the mass concentration property of the blowup solution have been discussed. Zhou [12] has proved
that any minimizer of the minization problem blows up at one of the endpoints of the major axis for
the variational functional associates with the GPE, if the parameter relate to the attractive interaction
strength close to a critical value. Pavlovic [13] considered the solutions of the focusing quintic and
cubic GP hierarchies. The authors proved that all solutions at the L2-critical or L2-supercritical level
blow up in finite time if the energy per particle is negative in the initial condition. It is worth noting
that their results do not admit any factorization of the initial date. The readers can refer to other
blowup dynamical properties, the stability and instability of standing waves in [14–21]. As for
fractional NLSE, Dai [22] has derived symmetric and anti-symmetric solitons of the fractional second
and third order NLSE. Another example can be seen in [23], where the authors used two kinds of
fractional dual-function methods to solve the space-time fractional Fokas-Lenells equation. The
coupled NLSE that contains partially nonlocal nonlinearity has been investigated in [24]. Ma soliton,
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Akhmediev breather and rogue wave were derived via projecting expression along with Hirota’s
bilinear method and Darboux transformation. The fractional bi-function method and fractional
mapping equation method can be found in [25]. The readers can refer to [26–28] for other related
works.

From the point of mathematics, the collapse in a particular space reflects the limited behaviour
of solutions, and the occurrence of finite time blowup is closely connected with standing waves of
Eq (1.1), i.e., ϕ(t, x) = eiωtQ(x), ω > 0. It is obvious that Q is the unique solution of the following
elliptic equation

−
1
2
4Q + ωQ +

|x|2

2
Q + β1|Q|2Q + β2(K ∗ |Q|2)Q = 0, Q ∈ H1(R3), (1.2)

which will be the main key throughout this paper. Moreover, Eq (1.1) satisfies the conservation laws
of mass and energy, i.e.,

M[ϕ(t, x)] :=
∫
|ϕ|2dx = M[ϕ0], (1.3)

E[ϕ(t, x)] :=
1
2

∫
|∇ϕ|2dx +

1
2

∫
|x|2|ϕ|2dx +

β1

2

∫
|ϕ|4dx +

β2

2

∫
(K ∗ |ϕ|2)|ϕ|2dx = E[ϕ0]. (1.4)

A crucial question for Eq (1.1) is to find the sharp threshold conditions. Now, we recall some
helpful results of blowup dynamics for the nonlinear Schrödinger equation (NLSE):
i∂tu + 4u + |u|p−1u = 0, u(0, x) = u0, (t, x) ∈ R × RN , p > 1 + 4

N . One useful scaling quantity is called
mass-energy M[u]

1−S c
S c E[u] (S c = N

2 −
2

p−1 ), which can be normalized as

ME =
M[u]

1−S c
S c E[u]

M[W]
1−S c

S c E[W]
, 0 < S c ≤ 1,

where W is the unique H1 radial solution of

∆W − (1 − S c)W + |W |p−1W = 0.

When 0 < S c < 1, we regard ME = 1 as the mass-energy threshold. First of all, let us start
with recalling some well-known fact at the mass-energy threshold, i.e., ME = 1. Duyckaerts and
Roudenko [29] begin with exhibiting two radial solutions Q+ and Q−, with initial data Q±0 satisfies
Q±0 ∈

⋂
s∈R H s(R3), such that Q± exponentially approach the ground state solution Q in the positive

time direction and Q+ blows up in finite time as well as Q− scatters in the negative time direction.
Then, all the solutions can be characterized as: (i) If ||∇u0||2||u0|| < ||∇Q||2||Q||, then either u scatters or
u = Q− up to the symmetries, (ii) If ||∇u0||2||u0|| = ||∇Q||2||Q||, then u = eitQ up to the symmetries, (iii)
If ||∇u0||2||u0|| > ||∇Q||2||Q|| and u0 is radial or of finite variance, then either the interval of existence of
u is of finite length or u = Q+ up to the symmetries. As for the cases under the threshold, i.e.,ME < 1.
The focusing mass-critical NLSE(S c = 0) was first studied by Weinstein [30], who showed a sharp
splitting takes place: (i) If M[u] < M[Q], then the solution exists globally, (ii) if M[u] ≥ M[Q], then
the solution blows up in finite time, where Q is the solution of −Q + ∆Q + |Q|

4
d , Q = Q(r), r = |x|,

x ∈ Rd. The focusing energy-critical NLSE(S c = 1,N = 3, 4, 5) with Ḣ1
rad initial data was investigated

by Kenig and Merle [31]. They showed that there exists a sharp threshold, which split the behaviours
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of solutions into two cases under a priori condition E[u0] < E[W]: (i) If ||∇u0||L2 < ||∇W ||L2 , then the
solution exists globally and scatters, (ii) if ||∇u0||L2 > ||∇W ||L2 and u0 ∈ L2, then the solution may blows
up in finite time. Here, W(x) = W(x, t) = 1/(1 + |x|

N(N−2) )
N−2

2 in H1(RN) and solves ∆W + |W |
4

N−2 W = 0.
Briefly speaking, the global behaviour of solutions (0 <ME ≤ 1) is wholly investigated, which can be
summarized as

Let u0 ∈ H1(R3), 0 < S c < 1, u(t, x) be the solution of i∂tu +4u + |u|p−1u = 0 and the corresponding
initial datum u0 satisfy

0 <ME < 1.

Part 1 If M[u0]1−S c(
∫
|u0|

p+1dx)S c < M[W]1−S c(
∫
|W |p+1dx)S c , then the solution u(t, x) exists globally.

Part 2 If M[u0]1−S c(
∫
|u0|

p+1dx)S c > M[Q]1−S c(
∫
|W |p+1dx)S c , either the solution u(t, x) blows up in

finite time or there exists a sequence tn → +∞ such that limn→+∞||∇u(tn)||L2 = +∞.
When S c = 1 or p = 4

N−2 + 1,N ≥ 3, we regardME = 1 as the energy threshold and the dynamical
behavior of solutions is described as

Let u0 ∈ Ḣ1(RN), S c = 1, u(t, x) be the solution of i∂tu + 4u + |u|p−1u = 0 and the corresponding
initial datum u0 satisfy

0 <ME < 1.

Part 1 If
∫
|u0|

p+1dx <
∫
|W |p+1dx and u is radial with N = 3, 4, then the solution u(t, x) exists globally.

Part 2 If
∫
|u0|

p+1dx >
∫
|W |p+1dx and u0 is radial with u0 ∈ L2(RN), then the solution u(t, x) blows up

in finite time.

Remark 1. Both the above cases used a concentration compactness argument, proposed by Kenig and
Merle [31] in the energy critical case.

Remark 2. Motivated by “critical phenomena” in physics, Nakanish and Schlag [32] gave a complete
picture of the dynamical properties for the focusing nonlinear Klein-Gordon equation, as initial datum
energy slightly larger than that of ground state (still denoted by W):

Hε := {|x|u ∈ L2(R3)|E[u] < E[W] + ε2}.

Then, they extended this approach to the focusing cubic NLSE, which is slightly above the mass-
energy threshold (ME < 1 + ε), and above condition turns to

H̄ε := {|x|u ∈ L2(R3)|M[u]E[u] < M[W](E[W] + ε2)}.

As we can see, the mechanism of global existence and blowup for the focusing NLSE have already
been considered and fully studied below mass-energy threshold, or at the mass-energy threshold.
However, the case above the mass-energy threshold is mostly open. The purpose of our paper is to
derive sharp criteria for global existence and blowup of Cauchy problem (1.1), above the mass-energy
threshold, which are not necessarily “ε2-close” to it. Our main result is demonstrated in Theorem 1.
Briefly speaking, under the same manners of Duyckaerts and Roudenko [33], we study the global
existence and blowup for Eq (1.1) under the condition of

ME :=
M[ϕ0]E[ϕ0]

M[Q]
(
E[Q] −

∫
|x|2 |Q|2dx

2

) ≥ 1. (1.5)

AIMS Mathematics Volume 7, Issue 6, 9957–9975.



9961

As a result, we have derived the criterion for the global existence and blowup of solution for
Eq (1.1), above the mass-energy threshold and such criterion is sharp (Theorem 1). Based on
Theorem 1, we are able to predict the dynamical behavior of certain solution that possesses arbitrary
large energy. Moreover, we show the relation of two methods, one is the technique used in
Theorem 1, the other is given by establishing cross-constrained invariant sets in [34]. The structure of
this paper is as follows: In Section 2, we give some valuable preliminaries which will be used in the
following work. Section 3 constructs the invariant evolution flows generated by the Cauchy
problem (1.1). In Section 4, Theorem 1 and Corollary 1 have been proposed and proved for the
existence of blowup solutions with arbitrary initial energy. As for the proof, we give a new calculation
of J′(t) in the form of an uncertain principle. Then, we show by contradiction that Theorem 1 stands.
Furthermore, Corollary 1 implies we can deduce the behaviour of solutions with arbitrary large
energy. Concerning the complementary case of (1.5), Ma and Wang established it in [34], i.e.,

Let ϕ0 ∈ H1(R3), |x|ϕ0 ∈ L2(R3) and ϕ(t, x) be the solution of the Cauchy problem (1.1)
corresponding to the initial datum ϕ0 satisfying

M[ϕ0]E[ϕ0] < M[Q]

E[Q] −

∫
|x|2|Q|2dx

2

 .
Part 1 (Blowup) If

M[ϕ0]
(
−β1

∫
|ϕ0|

4dx − β2

∫
(K ∗ |ϕ0|

2)|ϕ0|
2dx

)
> M[Q]

(
−β1

∫
|Q|4dx − β2

∫
(K ∗ |Q|2)|Q|2dx

)
,

then the solution ϕ(t, x) blows up in finite time.
Part 2 (Global existence) If

M[ϕ0]
(
−β1

∫
|ϕ0|

4dx − β2

∫
(K ∗ |ϕ0|

2)|ϕ0|
2dx

)
< M[Q]

(
−β1

∫
|Q|4dx − β2

∫
(K ∗ |Q|2)|Q|2dx

)
,

then the solution ϕ(t, x) exists globally.

Remark 3. Actually, the sharp criterion by Ma and Wang [34], obtained by establishing
cross-constrained invariant sets, is equivalent to our method and we will show it in Section 2.

2. Preliminaries

We provide some useful preliminaries in this section. Throughout the paper, we denote Lp(R3),
H1(R3) and

∫
R3 ·dx as Lp, H1 and

∫
·dx, respectively. In general, we take n = (0, 0, 1), then K(x) can be

expressed as

K(x) =
x2

1 + x2
2 − 2x2

3

|x|5
.

Define the Fourier transform in R3 as

û(ξ) :=
∫

u(x)e−ix·ξdx, u ∈ S(R3),
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where S is the Schwartz space. The Fourier transform of K(x) is taken by

K̂(ξ) =
4π
3

(
2ξ2

3 − ξ
2
1 − ξ

2
2

|ξ|2

)
.

The calculation procedure of K̂(ξ) has been studied carefully in [7].
Moreover, we denote the energy space as

Σ :=
{

u ∈ H1|

∫
|x|2|u|2dx < +∞

}
with the corresponding norm ‖u‖2

Σ
=

∫
(|u|2 + |∇u|2 + |x|2|u|2)dx.

Next, we recall the local well-posedness of Eq (1.1), which is the main key of Carles, Markowich
and Sparber in [7].

Lemma 1. ( [7]) Let ϕ0 ∈ Σ, β1, β2 ∈ R. Then there exists a unique solution ϕ(t, x) of the Cauchy
problem (1.1) on the maximal time interval [0,T ∗) such that

ϕ ∈
{
ϕ ∈ C([0,T ∗]; Σ); ϕ,∇ϕ, xϕ ∈ C([0,T ∗]; L2) ∩ L

8
3 ([0,T ∗]; L4)

}
and either T ∗ = +∞(global existence), or else 0 < T ∗ < +∞ and lim

t→T ∗
‖∇ϕ(t, x)‖L2 = +∞ (blowup).

Lemma 2. ( [21, 35]) Let ϕ0 ∈ Σ and ϕ(t, x) be a solution of the Cauchy problem (1.1) on [0,T ∗). We
set up a variable

J(t) :=
∫
|x|2|ϕ|2dx.

Then the following identities stand:

J′(t) = 2Im
∫

xϕ · ∇ϕdx, (2.1)

J′′(t) = 2
∫
|∇ϕ|2dx − 2

∫
|x|2|ϕ|2dx + 3β1

∫
|ϕ|4dx + 3β2

∫
(K ∗ |ϕ|2)|ϕ|2dx. (2.2)

Combining Lemmas 1 and 2, a straightforward computation shows that

− β1

∫
|ϕ|4dx − β2

∫
(K ∗ |ϕ|2)|ϕ|2dx = 4E[ϕ0] − J′′(t) − 4

∫
|x|2|ϕ|2dx, (2.3)

and ∫
|∇ϕ|2dx = 6E[ϕ0] − J′′(t) − 5

∫
|x|2|ϕ|2dx. (2.4)

Next, we recall the refined Gagliardo-Nirenberg inequality constructed by Antonelli and Sparber
in [35].

Lemma 3. ( [21, 35]) Let β1, β2 ∈ R such that the following condition stands:

β1 <

4π
3 β2, if β2 > 0;
−8π

3 β2, if β2 < 0.
(2.5)
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Then, for any f ∈ H1, there exists a positive constant CQ such that

− β1

∫
| f |4dx − β2

∫
(K ∗ | f |2)| f |2dx ≤ CQ

(∫
| f |2dx

) 1
2
(∫
|∇ f |2dx

) 3
2

, (2.6)

where the optimal constant CQ = C∗ is given by

C∗ =
−β1

∫
|Q|4dx − β2

∫
(K ∗ |Q|2)|Q|2dx

(
∫
|Q|2dx)

1
2 (
∫
|∇Q|2dx)

3
2

(2.7)

with Q being the solution of the following nonlinear elliptic equation

−
1
2
4Q + ωQ + β1|Q|2Q + β2(K ∗ |Q|2)Q = 0, Q ∈ H1(R3). (2.8)

Multiplying (2.8) by x · ∇Q and Q respectively, we derive the following identities:

− β1

∫
|Q|4dx − β2

∫
(K ∗ |Q|2)|Q|2dx =

2
3

∫
|∇Q|2dx, (2.9)∫

|Q|2dx =
1

6ω

∫
|∇Q|2dx. (2.10)

Thus, we can rewrite CQ as

CQ =
2

3
3
2

(2E[Q] −
∫
|x|2|Q|2dx)−

1
2

(M[Q])
1
2

. (2.11)

Remark 4. It may be an mistake that causes the constraint condition of β1 and β2 to be wrong in [35].
Here, we put forward the correct one as shown by (2.5), which leads to

β1

∫
| f |4dx + β2

∫
(K ∗ | f |2)| f |2dx = (2π)−3

∫
(β1 + β2K̂)|̂ f |2

2
dξ < 0, f ∈ H1

with the assistance of Parseval formula.

Proposition 1. [33] Let f ∈ Σ. Then(
Im

∫
x f · ∇ f dx

)2

≤

∫
|x|2| f |2dx

∫ |∇ f |2dx −
(−β1

∫
| f |4dx − β2

∫
(K ∗ | f |2)| f |2dx)

2
3

(CQ)
2
3 (
∫
| f |2dx)

1
3

 . (2.12)

Proof. This proof keeps consistent with that in [33]. We prove it to preserve integrity. It is obvious to
check that eiδ|x|2 f ∈ Σ under the condition of f ∈ Σ, where δ ∈ R. Applying (2.6) to eiδ|x|2 f , we derive
that ∫ ∣∣∣∣∇eiδ|x|2 f

∣∣∣∣2 dx =

∫
|∇ f |2dx + 4δIm

∫
x f · ∇ f dx + 4δ2

∫
|x|2| f |2dx.

≥
(−β1

∫
| f |4dx − β2

∫
(K ∗ | f |2)| f |2dx)

2
3

(CQ)
2
3 (
∫
| f |2dx)

1
3

.

AIMS Mathematics Volume 7, Issue 6, 9957–9975.
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For each δ ∈ R, we have

(CQ)
2
3

(∫
| f |2dx

) 1
3
(∫
|∇ f |2dx + 4δIm

∫
x f · ∇ f dx + 4δ2

∫
|x|2| f |2dx

)
−

(
−β1

∫
| f |4dx − β2

∫
(K ∗ | f |2)| f |2dx

) 2
3

≥ 0,

where the left of above inequality is a quadratic polynomial of δ. The discriminant of this polynomial
is non-positive, which directly deduce the result of Proposition 1. �

Combining Lemma 2 with Proposition 1, we obtain

(J′(t))2 ≤ 4J(t)

∫ |∇ϕ|2dx −
(−β1

∫
|ϕ|4dx − β2

∫
(K ∗ |ϕ|2)|ϕ|2dx)

2
3

(CQ)
2
3 (
∫
|ϕ|2dx)

1
3

 .
Setting V(t) =

√
J(t), we have

V ′(t) =
J′(t)

2
√

J(t)
.

Consequently, we infer that

(V ′(t))2 ≤

∫
|∇ϕ|2dx −

(−β1

∫
|ϕ|4dx − β2

∫
(K ∗ |ϕ|2)|ϕ|2dx)

2
3

(CQ)
2
3 (
∫
|ϕ|2dx)

1
3

= 6E[ϕ0] − J′′(t) − 5
∫
|x|2|ϕ|2dx −

(4E[ϕ0] − J′′(t) − 4
∫
|x|2|ϕ|2dx)

2
3

(CQ)
2
3 (M(ϕ0))

1
3

< 6E[ϕ0] − J′′(t) − 4
∫
|x|2|ϕ|2dx −

(4E[ϕ0] − J′′(t) − 4
∫
|x|2|ϕ|2dx)

2
3

(CQ)
2
3 (M(ϕ0))

1
3

= F
(
J′′(t) + 4

∫
|x|2|ϕ|2dx

)
,

(2.13)

where
F(S ) := 6E[ϕ0] − S −

1

(CQ)
2
3 (M[ϕ0])

1
3

(4E[ϕ0] − S )
2
3 , S ∈ (−∞, 4E[ϕ0]].

It is obvious that F(S ) is decreasing on (−∞, S ∗), increasing on (S ∗, 4E[ϕ0]], where S ∗ is written as

S ∗ = 4E[ϕ0] −
(
2
3

)3 1
(CQ)2M[ϕ0]

. (2.14)

and
F(S ∗) =

S ∗

2
. (2.15)

Substituting (2.11) into (2.14), we obtain

S ∗ = 4E[ϕ0] −
(
2
3

)3 1
(CQ)2M[ϕ0]

= 4E[ϕ0] −
2M[Q](2E[Q] −

∫
|x|2|Q|2dx)

M[ϕ0]
.
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As a consequence, the following identity holds:

M[ϕ0]
(
2E[ϕ0] −

S ∗

2

)
= M[Q]

(
2E[Q] −

∫
|x|2|Q|2dx

)
. (2.16)

At the end of this section, we will show the equivalence relation of these two techniques mentioned
in Introduction. In [34], the researchers considered the following functionals and invariant sets on the
space Σ:

S [ϕ] =
ω

2

∫
|ϕ|2dx +

1
4

∫
|∇ϕ|2dx +

1
4

∫
|x|2|ϕ|2dx +

β1

4

∫
|ϕ|4dx +

β2

4

∫
(K ∗ |ϕ|2)|ϕ|2dx

=
ω

2
M[ϕ0] +

1
2

E[ϕ0],

R[ϕ] =
1
2

∫
|∇ϕ|2dx +

1
2

∫
|x|2|ϕ|2dx +

3
4
β1

∫
|ϕ|4dx +

3
4
β2

∫
(K ∗ |ϕ|2)|ϕ|2dx

= E[ϕ0] +
β1

4

∫
|ϕ|4dx +

β2

4

∫
(K ∗ |ϕ|2)|ϕ|2dx,

K+ = {ϕ ∈ Σ : S [ϕ] < m,R[ϕ] > 0},
K− = {ϕ ∈ Σ : S [ϕ] < m,R[ϕ] < 0}.

Remark 5. In [34], it failed to calculate the exact value of the upper bounded of mass and energy for
Eq (1.1). Delightedly, Huang and Zhang [21] derived that value represented by m equaled to 1

6‖∇Q‖22.

Proposition 2. (Equivalence of two descriptions) Let ϕ be in Σ. Then

(a)ϕ ∈ K+(K−)⇔

(b)


M[ϕ]E[ϕ] < M[Q]

E[Q] −

∫
|x|2|Q|2dx

2


M[ϕ]

(
−β1

∫
|ϕ|4dx − β2

∫
(K ∗ |ϕ|2)|ϕ|2dx

)
< (>)M[Q]

(
−β1

∫
|Q|4dx − β2

∫
(K ∗ |Q|2)|Q|2dx

)
.

Proof of Proposition 2: We only show the case ϕ ∈ K+, and similar argument is applicable to ϕ ∈ K−.
Assume ϕ ∈ K+, according to the Young’s inequality, we derive

1
6
‖∇Q‖22 >

ω

2
M[ϕ] +

1
2

E[ϕ] ≥ (ωM[ϕ])
1
2 (E[ϕ])

1
2 = (ωM[ϕ]E[ϕ])

1
2 .

Recalling the identities (2.9) and (2.10), we know

1
6
‖∇Q‖22 =

ωM[Q]

E[Q] −

∫
|x|2|Q|2dx

2


1
2

,

Thus, the first inequality in (b) is derived.
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Also by Young’ inequality, we have

1
6
‖∇Q‖22 =

1
2

(
ωM[Q]

(
−β1

∫
|Q|4dx − β2

∫
(K ∗ |Q|2)|Q|2dx

)) 1
2

>
ω

2
M[ϕ] +

1
2

E[ϕ]

>
ω

2
M[ϕ] −

β1

8

∫
|ϕ|4dx −

β2

8

∫
(K ∗ |ϕ|2)|ϕ|2dx

≥ (ωM[ϕ])
1
2

(
−
β1

4

∫
|ϕ|4dx −

β2

4

∫
(K ∗ |ϕ|2)|ϕ|2dx

) 1
2

,

Thus, the second inequality in (b) is derived.
Now, we turn to deduce (b)⇒ (a). Notice that (b) is maintained under the scaling

ϕν = νϕ(ν2t, νx),

and that M[ϕν] = ν−1M[ϕ], E[ϕν] = νE[ϕ]. By Young’ inequality,

ω

2
M[ϕν] +

1
2

E[ϕν] ≥ (ωM[ϕν]E[ϕν])
1
2 ,

where the inequality holds if and only if

ωM[ϕν0] = E[ϕν0] ⇔ ϕν0 =

(
ωM[ϕ]
E[ϕ]

) 1
2

.

Substituting ν0 into the equality, we derive

S [ϕ] = S [ϕν0] =
ω

2
M[ϕν0] +

1
2

E[ϕν0] = (ωM[ϕ]E[ϕ])
1
2 <

ωM[Q]

E[Q] −

∫
|x|2|Q|2dx

2


1
2

= m.

R[ϕ] > 0 is directly held by using the refined Gagliardo-Nirenberg inequality, which completes the
proof of the Proposition 2.

3. Invariant evolution flow

In this section, we provide two invariant evolution flows generated by the Cauchy problem (1.1).
As a matter of convenience, we define

G+ :=
{
ϕ ∈ Σ|J′′(t) + 4

∫
|x|2|ϕ|2dx < S ∗

}
,

G− :=
{
ϕ ∈ Σ|J′′(t) + 4

∫
|x|2|ϕ|2dx > S ∗

}
,

where S ∗ is given by (2.14). We have the following propositions.
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Proposition 3. Let V ′(0) ≤ −
√

F(S ∗). Then G+ is invariant evolution flows generated by the Cauchy
problem (1.1). More specifically, if ϕ0 ∈ G+, then for all t ∈ [0,T ∗) the solution ϕ(t, x) corresponding
to the initial datum ϕ0 still satisfies ϕ(t, x) ∈ G+.

Proof. Supposing ϕ0 ∈ G+ and ϕ(t, x) is the unique solution of the Eq (1.1) corresponding to the initial
datum ϕ0. According to the definition of V(t), we have

V ′′(t) =
1

V(t)

(
J′′(t)

2
− (V ′(t))2

)
. (3.1)

Consequently, the assumption V ′(0) ≤ −
√

F(S ∗) yields that

V ′′(0) =
1

V(0)

(
J′′(0)

2
− (V ′(0))2

)
≤

J′′(0) − S ∗

2V(0)
< −

2
∫
|x|2|ϕ0|

2dx

V(0)
< 0. (3.2)

Next, we will show by contradiction that

∀t ∈ [0,T ∗), V ′′(t) < 0. (3.3)

Assume that (3.3) does not hold, then there exists a time t0 ∈ (0,T ∗) such that V ′′(t0) ≥ 0(t0 , 0 for
V ′′(0) < 0). By continuity, we can find a time ta ∈ (0, t0) such that

∀t ∈ [0, ta), V ′′(t) < 0, V ′′(ta) = 0. (3.4)

By V ′(0) ≤ −
√

F(S ∗), we have

∀t ∈ (0, ta], V ′(t) < V ′(0) ≤ −
√

F(S ∗). (3.5)

Hence, (V ′(t))2 ≥ F(S ∗), which connected with (2.13), reveals

∀t ∈ (0, ta], F
(
J′′(t) + 4

∫
|x|2|ϕ|2dx

)
> F(S ∗). (3.6)

As a consequence, J′′(t) + 4
∫
|x|2|ϕ|2dx , S ∗ for all t ∈ [0, ta]. Due to ϕ0 ∈ G+ and by continuity,

∀t ∈ [0, ta], J′′(t) + 4
∫
|x|2|ϕ|2dx < S ∗. (3.7)

Thus, we derive that

V ′′(ta) =
1

V(ta)

(
J′′(ta)

2
− (V ′(ta))2

)
< −

2
∫
|x|2|ϕ(ta)|2dx

V(ta)
< 0. (3.8)

Hence, (3.3) holds and indicates that

∀t ∈ [0,T ∗), F
(
J′′(t) + 4

∫
|x|2|ϕ|2dx

)
> F(S ∗). (3.9)

According to the continuity and monotony of F(S ), we obtain

∀t ∈ [0,T ∗), J′′(t) + 4
∫
|x|2|ϕ|2dx < S ∗, (3.10)

which completes the proof of Proposition 3. �
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Proposition 4. Let ϕ0 ∈ G− and ϕ(t, x) be the solution of the Cauchy problem (1.1) corresponding to
the initial datum ϕ0. Suppose that there exist a time t0 ≥ 0 and a small enough parameter ε > 0 such
that

V ′(t0) ≥
√

F(S ∗) + 2ε, (3.11)

then we have
∀t ∈ [t0,T ∗), V ′(t) >

√
F(S ∗) + ε. (3.12)

Proof. We will prove it by contradiction. Suppose that (3.12) dose not stand, and set

tb = inf
{
t ∈ [t0,T ∗) : V ′(t) ≤

√
F(S ∗) + ε

}
. (3.13)

It is obvious (3.11) and (3.13) imply tb > t0. By continuity,

V ′(tb) =
√

F(S ∗) + ε (3.14)

and
∀t ∈ [t0, tb], V ′(t) ≥

√
F(S ∗) + ε. (3.15)

Combining (2.13) and (3.15), we have

∀t ∈ [t0, tb],
( √

F(S ∗) + ε
)2
≤ (V ′(t))2 ≤ F

(
J′′(t) + 4

∫
|x|2|ϕ|2dx

)
. (3.16)

As a consequence,

∀t ∈ [t0, tb], F(S ∗) < F
(
J′′(t) + 4

∫
|x|2|ϕ|2dx

)
.

Thus, we have S ∗ , J′′(t) + 4
∫
|x|2|ϕ|2dx. In virtue of ϕ0 ∈ G− and the continuity of F(S ),

∀t ∈ [t0, tb], J′′(t) + 4
∫
|x|2|ϕ|2dx > S ∗.

Next, we show that there exists a positive constant M satisfying

∀t ∈ [t0, tb], J′′(t) + 4
∫
|x|2|ϕ|2dx ≥ S ∗ +

√
ε

M
. (3.17)

As a matter of fact, by the Taylor’s expansion of F(S ) at S = S ∗, there exist δ > 0 and λ > 0 such that

|S − S ∗| ≤ δ ⇒ F(S ) ≤ F(S ∗) + λ(S − S ∗)2. (3.18)

If J′′(t) + 4
∫
|x|2|ϕ|2dx ≥ S ∗ + δ, then (3.17) holds as long as M is large enough. If S ∗ < J′′(t) +

4
∫
|x|2|ϕ|2dx ≤ S ∗ + δ, then by (3.16) and (3.18), we obtain

( √
F(S ∗) + ε

)2
≤ (V ′(t))2 ≤ F

(
J′′(t) + 4

∫
|x|2|ϕ|2dx

)
≤ F(S ∗) + λ(V ′(t) − S ∗)2,

thus we derive (3.17) with M =

√
λ
2 (F(S ∗))−

1
4 .
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However, by (3.1) and (3.14) we deduce

V ′′(tb) =
1

V(tb)

(
J′′(tb)

2
− (V ′(tb))2

)
≥

1
V(tb)

(
S ∗

2
+

√
ε

2M
− (

√
F(S ∗) + ε)2

)
≥

1
V(tb)

( √
ε

2M
− 2ε

√
F(S ∗) − ε2

)
> 0,

if ε is small enough, which contradicts to (3.14) and (3.15). Thus we complete the proof of
Proposition 4. �

4. Blowup criteria

In this section, we construct the blowup versus global existence dichotomy for the Cauchy
problem (1.1), which demonstrated by invariant evolution flows and propositions derived in Section 3.
Moreover, we can deduce the behaviour of solutions with arbitrary large energy.

Theorem 1. Let ϕ0 ∈ Σ and ϕ(t, x) be the solution of the Cauchy problem (1.1) corresponding to the
initial datum ϕ0. Assume

M[ϕ0]E[ϕ0] ≥ M[Q]

E[Q] −

∫
|x|2|Q|2dx

2

 , (4.1)

M[ϕ0]E[ϕ0]

M[Q]
(
E[Q] −

∫
|x|2 |Q|2dx

2

) (
1 −

(J′(0))2

8E[ϕ0]J(0)

)
≤ 1. (4.2)

Part 1 (Blowup) If

M[ϕ0]
(
−β1

∫
|ϕ0|

4dx − β2

∫
(K ∗ |ϕ0|

2)|ϕ0|
2dx

)
> M[Q]

(
−β1

∫
|Q|4dx − β2

∫
(K ∗ |Q|2)|Q|2dx

)
(4.3)

and
J′(0) ≤ 0, (4.4)

then the solution ϕ(t, x) blows up in finite time, T ∗ < +∞.
Part 2 (Global existence) If

M[ϕ0]
(
−β1

∫
|ϕ0|

4dx − β2

∫
(K ∗ |ϕ0|

2)|ϕ0|
2dx

)
< M[Q]

(
−β1

∫
|Q|4dx − β2

∫
(K ∗ |Q|2)|Q|2dx

)
(4.5)

and
J′(0) ≥ 0, (4.6)

then the solution ϕ(t, x) exists globally. Moreover,

lim sup
t→T ∗

M[ϕ]
(
−β1

∫
|ϕ|4dx − β2

∫
(K ∗ |ϕ|2)|ϕ|2dx

)
< M[Q]

(
−β1

∫
|Q|4dx − β2

∫
(K ∗ |Q|2)|Q|2dx

)
.

(4.7)
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Proof. In view of (2.16), it is obvious to check that (4.1) is equivalent to

S ∗ ≥ 0 (4.8)

and (4.2) is equivalent to

(V ′(0))2 ≥
S ∗

2
= F(S ∗). (4.9)

Part 1. Notice that (4.4) means exactly V ′(0) ≤ 0, combining with (4.9), we have

V ′(0) ≤ −
√

F(S ∗). (4.10)

In view of (2.3) and (2.9), the assumption (4.3) is equivalent to

M[ϕ0]
(
4E[ϕ0] − J′′(0) − 4

∫
|x|2|ϕ0|

2dx
)
> M[Q]

(
4E[Q] − 2

∫
|x|2|ϕ|2dx

)
,

that is, by (2.16),

J′′(0) + 4
∫
|x|2|ϕ0|

2dx < S ∗. (4.11)

From the proof of the Proposition 3, we derive that

∀t ∈ [0,T ∗), V ′′(t) < 0. (4.12)

Assuming that T ∗ = +∞. It follows that for all t ≥ 0, there exists a constant m such that

V ′′(t) ≤ m < 0.

Thus, we derive

V(t) = V(0) + V ′(0)t +

∫ t

0
V ′′(τ)(t − τ)dτ

≤ V(0) + V ′(0)t +
m
2

t2.

As a consequence, we have limt→+∞ V(t) < 0 which contradicts to the fact that V(t) is positive. then
the solution ϕ(t, x) blows up in finite time, T ∗ < +∞.

Part 2. A short calculation revealed that these assumptions in Part 2 could be replaced by the
following inequalities

V ′(0) ≥ 0, (4.13)

J′′(0) + 4
∫
|x|2|ϕ0|

2dx > S ∗. (4.14)

Notice that there exists t0 ≥ 0 such that

V ′(t0) >
√

F(S ∗). (4.15)

In fact, according to (4.9) and (4.13), we have V ′(0) ≥
√

F(S ∗). If the inequality holds strictly, then
we let t0 = 0. If not, then by (3.1) and (4.14), we have V ′′(0) > 0 and (4.15) follows for small t0 > 0.
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Similar methods to Proposition 4 can prove that the inequality (3.17) holds for all t ∈ [t0,T ∗). Hence,
using (2.3), (2.9) and the characterization (2.16) of S ∗, we deduce

M[ϕ]
(
−β1

∫
|ϕ|4dx − β2

∫
(K ∗ |ϕ|2)|ϕ|2dx

)
= M[ϕ]

(
4E[ϕ] − J′′(t) − 4

∫
|x|2|ϕ|2dx

)
≤ M[ϕ]

(
4E[ϕ] − S ∗ −

√
ε

M

)
< M[ϕ](4E[ϕ] − S ∗)

= 2M[Q]
(
2E[Q] −

∫
|x|2|Q|2dx

)
= M[Q]

(
−β1

∫
|Q|4dx − β2

∫
(K ∗ |Q|2)|Q|2dx

)
,

which implies (4.5). This completes the proof of Theorem 1. �

Remark 6. We claim that the assumption (4.3) in Theorem 1 can be replaced by M[ϕ0]‖∇ϕ0‖
2
2 <

M[Q]‖∇Q‖22 under the condition of M[ϕ0]E[ϕ0] ≤ M[Q]
(
E[Q] −

∫
|x|2 |Q|2dx

2

)
.

As a result of Theorem 1, we are able to predict the dynamical behavior of certain solutions that are
composed by multiplying a finite variance solution by eiµ|x|2(µ ∈ R).

Corollary 1. Let µ ∈ R \ {0}, u0 ∈ Σ with finite variance such that

M[u0]E[u0] ≤ M[Q]
(
E[Q] −

∫
|x|2 |Q|2dx

2

)
and ϕ be the solution of Eq (1.1) with the initial data

ϕ0 = eiµ|x|2u0.

If u0 satisfies the assumption (4.3) for all µ < 0, then ϕ(x, t) blows up in finite time. If u0 satisfies the
assumption (4.5) for all µ > 0, then ϕ(x, t) exists globally and (4.7) holds.

Proof. We assume

M[ϕ0]E[ϕ0] ≥ M[Q]

E[Q] −

∫
|x|2|Q|2dx

2

 . (4.16)

Some direct calculation shows that
M[ϕ0] = M[u0], (4.17)

E[ϕ0] = E[u0] + 4µ2
∫
|x|2|u0|

2dx + 4µIm
∫

x · ∇u0ū0dx, (4.18)

and
Im

∫
x · ∇ϕ0ϕ̄0dx = Im

∫
x · ∇u0ū0dx + 2µ

∫
|x|2|u0|

2dx. (4.19)

Moreover, in connection with (4.18) and (4.19), we deduce that

E[ϕ0] −
(Im

∫
x · ∇ϕ0ϕ̄0dx)2∫
|x|2|ϕ0|

2dx
= E[u0] −

(Im
∫

x · ∇u0ϕ̄0dx)2∫
|x|2|u0|

2dx
. (4.20)
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We will only deal with the case when

µ > 0, M[u0]
(
−β1

∫
|u0|

4dx − β2

∫
(K ∗ |u0|

2)|u0|
2dx

)
< M[Q]

(
−β1

∫
|Q|4dx − β2

∫
(K ∗ |Q|2)|Q|2dx

)
,

the proof of the other case is similar. Obviously,

M[ϕ0]
(
−β1

∫
|ϕ0|

4dx − β2

∫
(K ∗ |ϕ0|

2)|ϕ0|
2dx

)
= M[u0]

(
−β1

∫
|u0|

4dx − β2

∫
(K ∗ |u0|

2)|u0|
2dx

)
< M[Q]

(
−β1

∫
|Q|4dx − β2

∫
(K ∗ |Q|2)|Q|2dx

)
,

which implies that (4.5) is satisfied. Due to µ > 0, we know by (4.18) that (4.16) reveals that µ ≥ µ+
0 ,

where µ+
0 is the unique positive solution of

M[u0]
(
E[u0] + 4µ+

0

∫
|x|2|u0|

2dx + 4(µ+
0 )2Im

∫
x · ∇u0ū0dx

)
= M[Q]

E[Q] −

∫
|x|2|Q|2dx

2

 .
Due to M[u0]E[u0] ≤ M[Q]

(
E[Q] −

∫
|x|2 |Q|2dx

2

)
, the above inequality shows∫

|x|2|u0|
2dx + µ+

0 Im
∫

x · ∇u0ū0dx ≥ 0.

By the aid of µ ≥ µ+
0 , we derive

Im
∫

x · ∇ϕ0ϕ̄0dx = Im
∫

x · ∇u0ū0dx + 2µ
∫
|x|2|u0|

2dx ≥ µ
∫
|x|2|u0|

2dx > 0.

As a consequence, the condition (4.6) in Theorem 1 stands. This completes the proof of corollary 1. �

Remark 7. The above Corollary reveals that we can deduce the dynamical behaviour of certain
solutions with arbitrary large energy. In fact, if u0 satisfies these assumptions in Corollary 1 and
µ > 0 is sufficiently large, then E[ϕ0]→ +∞ as µ→ ±∞.

5. Conclusions

Physically, the significance of the following questions is obvious. Under what circumstances will
the solutions of GPE in trapped quantum gases become unstable, turn to blow up? Moreover, under
what conditions will these solutions exist globally? Regarding the sharp threshold for the existence
of blowup solutions, most of them are illustrated by establishing cross-constrained invariant sets for
bounded M[ϕ0] and E[ϕ0]. In this paper, estimating the temporal evolution of V ′(t) =

J′(t)
2
√

J(t)
by refined

Gagliardo-Nirenberg inequality, we establish the relationship between initial mass-energy and that of
the ground state. Then, some invariant evolution flows generated by the Cauchy problem (1.1) are
constructed according to the continuity of derivable functions V(t) and F(S ). Based on these analyses
and discussion, we consider the global existence versus blowup dichotomy of solutions above the mass-
energy threshold, which can be extended to the dynamical behaviour of certain solutions with arbitrary
large energy. Furthermore, it is a natural and critical issue to prove that the global solutions scatter, we
intend to study this question in the future.
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4. K. Góral, L. Santos, Ground state and elementary excitations of single and binary
Bose-Eeinstein condensates of trapped dipolar gases, Phys. Rev. A., 66 (2002), 023613.
https://doi.org/10.1103/PhysRevA.66.023613

5. Y. G. Oh, Cauchy problem and Ehrenfests law of nonlinear Schrödinger equations with potentials,
J. Differ. Equ., 81 (1989), 255–274. https://doi.org/10.1016/0022-0396(89)90123-x

6. Y. Y. Cai, M. Rosenkranz, Z. Lei, W. Z. Bao, Mean-field regime of trapped dipolar
Bose-Einstein condensates in one and two dimensions, Phys. Rev. A., 82 (2010), 043623.
https://doi.org/10.1103/physreva.82.043623

7. R. Carles, P. A. Markowich, C. Sparber, On the Gross-Pitaevskii equation for trapped dipolar
quantum gases, Nonlinearty, 21 (2008), 2569–2590. https://doi.org/10.1088/0951-7715/21/11/006

8. Y. Y. Xie, L. Q. Mei, S. H. Zhu, L. F. Li, Sufficient conditions of collapse for dipolar Bose-Einstein
condensate, ZAMM, 99 (2019), e201700370. https://doi.org/10.1002/zamm.201700370

9. Y. Y. Xie, L. F. Li, S. H. Zhu, Dynamical behaviors of blowup solutions in trapped
quantum gases: Concentration phenomenon, J. Math. Anal. Appl., 468 (2018) 169–181.
https://doi.org/10.1016/j.jmaa.2018.08.011

10. Y. Y. Xie, J. Su, L. Q. Mei, Blowup results and concentration in focusing Schrödinger-Hartree
equation, DCDS, 40 (2020), 5001–5017. https://doi.org/10.3934/dcds.2020209

11. J. J. Pan, J. Zhang, Mass concentration for nonlinear Schrödinger equation
with partial confinement, J. Math. Anal. Appl., 481 (2020), 123484.
https://doi.org/10.1016/j.jmaa.2019.123484

12. H. L. Guo, H. S. Zhou, A constrained variational problem arising in attractive Bose-
Einstein condensate with ellipse-shaped potential, Appl. Math. Lett., 87 (2019), 35–41.
https://doi.org/10.1016/j.aml.2018.07.023

13. T. Chen, N. Pavlovic, N. Tzirakis, Energy conservation and blowup of solutions for focusing
Gross-Pitaevskii hierarchies, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 1271–1290.
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