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the 2-CMLM. We investigate several statistical features of the mixed model like probability 

generating function, cumulants, characteristic function, factorial moment generating function, mean 

time to failure, Mills Ratio, mean residual life. The density, hazard rate functions, mean, coefficient 

of variation, skewness, and kurtosis are all shown graphically. Furthermore, we use appropriate 

approaches such as maximum likelihood, least square and weighted least square methods to estimate 

the pertinent parameters of the mixture model. We use a simulation study to assess the performance 

of suggested methods. Eventually, modelling COVID-19 patient data demonstrates the effectiveness 

and utility of the 2-CMLM. The proposed model outperformed the two component mixture of 

exponential model as well as two component mixture of Weibull model in practical applications, 

indicating that it is a good candidate distribution for modelling COVID-19 and other related data 

sets. 
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Symbols 

( )f t   PDF ( )F t   CDF 

( )R t   RF ( )h t   HRF 

( )H t   CHRF ( ; )Q q   QF 

( ) t   Mills Ratio ( ) R t   RF 

( )tM   MGF ( )t   CF 

( )tP   PGF ( )tF   FMGF 

( )K   CGF ( ) h t   RHRF 

( ) M t   MTTF ( ) RM t   MRL 

Abbreviations 

PDF Probability Density Function TTF Time-To-Failure 

CDF Cumulative Distribution Function QF Quantile Function 

PGF Probability Generating Function MTTF Mean Time to Failure 

MLE Maximum Likelihood Estimator HRF Hazard Rate Function 

FMGF Factorial Moment Generating Function MSE Mean Square Error 

MGF Moment Generating Function CF Characteristic Function 

RHRF Reversed Hazard Rate Function LSE Least Square Estimator 

WLSE Weighted Least Square Estimator MRL Mean Residual Life 

CGF Cumulant Generating Function MGF Moment Generating Function 

CHRF Cumulative Hazard Rate Function RF Reliability Function 
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1. Introduction 

In the early days of statistics, mixture models, specifically finite mixture models, were 

employed to simulate a variety of events, and their use has grown through time. In many scenarios, 

available data can be seen as a mixture of two or more distributions. We can merge statistical 

distributions using this notion to create a new one. Finite mixture models are useful in a variety of 

domains, including biology, engineering, genetics, healthcare, business, marketing, real life, and 

social sciences. The basic concept behind mixture models is to combine two or more models by 

adjusting proportions to produce a novel model with new attributes. As a result, it's crucial to 

investigate the statistical features of the proposed mixture model and use appropriate methods to 

estimate its unknown parameters. Finite mixture densities can be used to model data from 

populations known or suspected to contain a number of separate subpopulations. Most commonly 

used are mixture densities with Gaussian components, but mixtures with other types of component 

are also increasingly used to model, for example, survival times. Mixing distributions have been 

studied by several writers, including [1–5]. The classical features of the mixture of Burr XII and 

Weibull distribution were investigated by Muhammad and Muhammad [6]. Sultan et al. [7] 

suggested a 2-Component Mixture of Inverse Weibull models (2-CMIWD) and investigated some of 

its features using density and hazard function graphs. To examine the hybrid of two inverse Weibull 

distributions, Jiang et al. [8] focused at the forms of the PDF and hrfs as well as graphical approaches. 

The following are several authors who deal with mixture modeling in different practical problems: 

Mohammadi et al. [9], Ateya [10], Mohamed et al. [11], and Sindhu et al. [12]. Some other relevant 

studies are [13–19]. 

Because of its practical application, the Lindley model, which belongs to the family of 

exponential models, is important. Lindley model is useful for modelling many types of life time and 

reliability data. The Lindley distribution has captivated the curiosity of scholars in recent years. The 

generalized Lindley (GL), model was introduced by Zakerzadah and Dolati [20], who studied its 

statistical content and capabilities. A new class of GL models was suggested by Oluyede and Yang [21] 

and Nadarajah et al. [22]. The researchers [23] developed the Lindley model to illustrate the 

distinction between Fiducial and subsequent models in the perspective of Fiducial and Bayesian 

statistics. Furthermore, [24] discusses the statistical features of Lindley models, demonstrating that 

this model is a superior model for particular application than other models like the exponential model. 

When modelling various lifetime data sets, Shanker, et al. [25] used the Lindley model. Mazucheli 

and Achcar [26] demonstrated that the Lindley model may be used to describe strength data 

effectively, and they recommended it as a suitable alternative to the exponential and Weibull 

distributions. Furthermore, by adding another shape parameter to the model and naming it a power 

Lindley model, [27] developed a new extension of the Lindley model. [28,29] investigated a mixture 

of Lindley models from different perspectives. 

Al-Moisheer et al. [30] examined mixture of Lindley models and used ML and the generalized 

method of moments to evaluate the unknown parameters of the mixture model. Besides that, it is 

interesting to compare the MLE method to other estimation techniques such as least-squares 

estimation (LSE), weighted least-squares estimation (WLSE), and other methods of estimation. In 

the literature, there are various estimating methods for parametric distributions, some of which have 

been widely investigated from a theoretical perspective. It is worth mentioning, too, that in the case 

of small n  the maximum likelihood method frequently fails. As a consequence, new estimation 
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techniques have recently been suggested. The usefulness of estimating methods varies depending on 

the user and the application area. For example, even though the moment estimator does not have a 

closed form expression, it may be preferable to utilize it. The goal of this paper is to provide 

framework for selecting the optimum estimation technique for the 2-Component Mixture of Lindley 

Model (2-CMLM) distribution that would be useful to professional statisticians. In this study, we use 

least square estimation (LSE) and weighted least square estimation (WLSE), in addition to MLE, to 

estimate the 2-Component Mixture of Lindley Model (2-CMLM). In the literature, analyses of 

estimation methods for other distributions have been examined, for example, [31–35]. 

This study has two key objectives: The first is to demonstrate how various frequentist estimators 

of the proposed distribution perform for different sample sizes and different parametric values. The 

second step is to investigate some additional model attributes and demonstrate that the distribution 

outperforms its competitor mixed model with two real data sets. 

2. The 2-component mixture of Lindley model (2-CMLM) 

A random variable T  is said to have a finite mixture of Lindley model with 2-component 

(2-CMLM) if it’s PDF and CDF can be composed as: 

( ) ( ) ( )1 1 2 2   , 1f t f t f t      = + = −       (1) 

( ) ( ) ( ) ( ) ( )
2 2

1 2
1 2

1 2

 1 exp 1 exp ,
1 1

f t t t t t
 

   
 

 = + − + + −
+ +

   (2) 

and 

( ) ( ) ( )1 1 2 2   ,F t F t F t    = +
        (3) 

( ) ( ) ( )1 1 2 2
1 2

1 2

1 1
 1 exp 1 exp ,

1 1

t t
F t t t

   
   

 

   + + + +
 = − − + − −   

+ +      (4) 

where ( )1 2, ,   =  are the positive scale parameters, while   is positive mixing parameter. 

Figure 1 shows several graphs of ( )f t   and both density for various parameter values. The 

PDF demonstrates how the parametric vector ( )  alters the density of 2-CMLM ( ) . We may point 

out that the values for parameters were chosen randomly until a variety of shapes could be captured. 

The 2-CMLM ( )  can be right skewed as shown in Figure 1. 
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Figure 1. Variations of first component density ( )1 ,f t  second component density ( )2f t  

and density of 2-CMLM ( )mf t  . 

2.1. Mode 

The mode of the 2-CMLM ( )  is obtained by solving the following nonlinear equation with 

respect to t : 

( ) ( ) ( )  ( ) ( ) ( ) 
2 2

1 2
1 1 1 2 2 2

1 2

exp 1 exp exp 1 exp 0.
1 1

t t t t t t
 

       
 

− − + − + − − + − =
+ +

 (5) 

2.2. Median 

The median of 2-CMEM ( )  is presented here. Suppose that ( )F t   be the CDF of 2-CMLM 

( )  Model at 0.5th quantile 0.5Q . Then by solving the following non-linear equation for ,t  one may 

get the median ( )t . 

( ) ( )1 1 2 2
1 2

1 2

1 1
1 exp 1 exp 0.5

1 1

t t
t t

   
   

 

   + + + +
− − + − − =   

+ +   
   (6) 
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( ) ( )1 1 2 2
1 2

1 2

1 1
exp exp 0.5

1 1

t t
t t

   
   

 

   + + + +
− + − =   

+ +   
   (7) 

For the determination of t  (median) from Eq (7) computational algorithms like 

Newton-Raphson techniques can be used. 

Various graphs of ( )h t   for various parameter values are shown in Figure 2. The density of 

2-CMLM ( )  is influenced by the parametric vector ( ) , as shown in the Figure 2. It's worth noting 

that parameter values were chosen at random until a range of shapes could be captured. The HRF of 

each component distribution shows growing activity, while the HRF of 2-CMLM ( )  shows 

obvious increasing and decreasing behavior, as shown in the figure. 

Graphs of the mean of 2-CMLM ( ) for various parameter values may be found in Figure 3. It is 

worth noting that parameter values were chosen at random until a wide range of shapes could be 

captured. The mean of each component distribution, as well as 2-CMLM ( ) , shows a decreasing 

and constant pattern. Also the 3D Variations of Mean of 2-CMLM ( )  is observed in Figure 4 and 

mean decrease as 
2  increases, as illustrated in this graph. 

 

 

 

Figure 2. Variations of ( )h t  of 2-CMLM ( ) . 
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Figure 3. Variations of Mean of 2-CMLM ( ) . 

 

Figure 4. 3D Variations of Mean of 2-CMLM ( ) . 

2.3. mth moments about origin 

For a random variable ,T  the thm  moments about the origin of a 2-CMLM ( )  are as 

follows:  

( ) ( ) ( ) ( ) ( ) ( )
2 2

1 2
1 2

1 20 0

 1 exp 1 exp ,
1 1

m m m

m E T t f t dt t t t t t dt
 

    
 

   
= =  = + − + + − 

+ + 
    (8) 
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( )
( )

( )

( )

( )
1 2

1 1 2 2

! 1 ! 1
, 1,2....

1 1

m

m m

m m m m
E T m

 
 

   

+ + + +
= + =

+ +
    (9) 

The mean of the PDF of the 2-CMLM ( )  is: 

( )

( )

( )

( )
1 2

1

1 1 2 2

2 2
,

1 1

 
   

   

+ +
= + =

+ +
        (10) 

while the variance is given by 

( )
( )

( )
( )

2 2

1 1 2 2

2 22 2

1 1 2 2

4 2 4 2
.

1 1

   
  

   

+ + + +
= +

+ +
     (11) 

In particular first four moments about origin 

( )

( )

( )

( )
1 2

1

1 1 2 2

2 2
,

1 1

 
  

   

+ +
= +

+ +
       (12) 

( )

( )

( )

( )
1 2

2 2 2

1 1 2 2

2 3 2 3
,

1 1

 
  

   

+ +
= +

+ +
       (13) 

( )

( )

( )

( )
1 2

3 3 3

1 1 2 2

6 4 6 4
,

1 1

 
  

   

+ +
= +

+ +
       (14) 

( )

( )

( )

( )
1 2

4 4 4

1 1 2 2

24 5 24 5
,

1 1

 
  

   

+ +
= +

+ +
       (15) 

and the central moments of the 2-CMLM ( )  are: 

( )
( )

( )
( )

2 2

1 1 2 2

2 2 22 2

1 1 2 2

4 2 4 2
,

1 1

   
  

   

+ + + +
= +

+ +
      (16) 

( )
( )

( )
( )

3 2 3 2

1 1 1 2 2 2

3 3 33 3

1 1 2 2

2 6 6 2 2 6 6 2
,

1 1

     
  

   

+ + + + + +
= +

+ +
    (17) 

( )
( )

( )
( )

4 3 2 4 3 2

1 1 1 1 2 2 2 2

4 4 44 4

1 1 2 2

3 3 24 44 32 8 3 3 24 44 32 8
.

1 1

       
  

   

+ + + + + + + +
= +

+ +
 (18) 

The Coefficient of Variation ( )CV , Skewness ( )Sk  and the Kurtosis ( )K  of the 2-CMLM ( )  

are: 
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( )
( )

( )
( )

2 2

1 1 2 2

1 2

4 2 4 2

2 2
CV

   
  

 

+ + + +
= +

+ +
     (19) 

( )

( )

( )

( )

3 2 3 2

1 1 1 2 2 2

3/ 2 3/ 2
2 2

1 1 2 2

2 6 6 2 2 6 6 2
,

4 2 4 2
Sk

     
 

   

+ + + + + +
 = +

+ + + +
   (20) 

and  

( )

( )

( )

( )

4 3 2 4 3 2

1 1 1 1 2 2 2 2

2 2
2 2

1 1 2 2

3 3 24 44 32 8 3 3 24 44 32 8
.

4 2 4 2
K

       
  

   

+ + + + + + + +
= +

+ + + +
(21) 

The graphs of Coefficient of Variation of 2-CMLM ( )  for various parameter values are shown 

in Figure 5. It's interesting to note that parameter values were randomly chosen until a range of 

shapes could be captured. The Coefficient of Variation of each component distribution increases and 

remains constant as the Coefficient of Variation of 2-CMLM ( )  increases. 

Figure 6 depicts the graphs of the Coefficient of Skewness 2-CMLM ( )  for various 

parameter values. As seen in Figure 6, the Skewness Coefficient of each component distribution and 

2-CMLM ( )  grows and remains constant. Figure 7 shows the increasing and constant behavior of 

the Coefficient of Kurtosis of each component distribution, as well as the decreasing and increasing 

behavior of 2-CMLM ( ) . 

 

 

Figure 5. Variations of Coefficient of Variation ( )CV  of 2-CMLM ( ) . 
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Figure 6. Variations of Coefficient of Skewness ( )Sk  of 2-CMLM ( ) . 

 

 

Figure 7. Variations of Coefficient of Kurtosis ( )K  of 2-CMLM ( )   
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2.4. Moment Generating Function (MGF) 

The MGF of 2-CMLM ( )  is specified as: 

( ) ( ) ( ) ( ) ( ) ( )
2 2

1 2
1 2

1 20

1 exp 1 exp ,
1 1

t t

tM E e e t t t t dt   
    

 

  
= = + − + + − 

+ + 
   (22) 

( )
( )

( )( )

( )

( )( )

2 2

1 1 2 2

2 2

1 1 2 2

1 1
.

1 1
tM

     
  

     

− + − +
= +

+ − + −
    (23) 

2.5. Cumulants 

The characteristic function (CF), ( ) ( )expE i t  =     of 2-CMLM ( )  is obtained by 

substituting   with ‘ i ’ in Eq (22), the CF can be determined as 

( )
( )

( )( )

( )

( )( )

2 2

1 1 2 2

2 2

1 1 2 2

1 1
,

1 1

i i

i i

     
   

     

− + − +
= +

+ − + −
     (24) 

where 1i = −  is the complex unit. 

2.6. Cumulant Generating Function (CGF) 

The cumulant generating function (CGF) is log ( )( )   

( )
1 1 2 2

log 1 2log 1 log 1 2log 1
1 1

i i i i
K

   
  

   

             
= − − − + − − −          

+ +             
 (25) 

2.7. Probability Generating Function (PGF) 

In Eq (22), we can get the PGF by substituting   with ( )ln   as follows: 

( ) ( ) ( )
( )

( )( )

( )

( )( )

2 2

1 1 2 2ln

2 2

1 1 2 2

ln( ) 1 ln( ) 1
.

1 ln( ) 1 ln( )

t t

tP E E e       
   

     

− + − +
= = = +

+ − + −
 (26) 

2.8. Factorial Moment Generating Function (FMGF) 

By substituting   with ‘ ( )ln 1 + ’ in Eq (22), the FMGF can be determined as 

( ) ( )( )
( )( )

( ) ( )( )

( )( )

( ) ( )( )

2 2

1 1 2 2ln 1

2 2

1 1 2 2

ln 1 1 ln 1 1
.

1 ln 1 1 ln 1

t

tF E e


     
  

     

+
− + + − + +

= = +
+ − + + − +

 (27) 
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3. Reliability measures 

The reliability function /survival function and failure rate /hazard rate function are used to 

classify lifespan models in reliability theory. A ratio of the lifespan model to the reliability function 

is the hazard rate function. If the dependability function's value is lower, it indicates that the item or 

component has a shorter lifespan, then the hazard rate will be larger, which means the likelihood of 

failure will be higher. On the other hand, a higher reliability function value means a lower hazard 

rate, which means a lesser risk of failure. The reliability properties of 2-CMLM ( )  are now being 

investigated. 

3.1. Reliability function 

The reliability function /survival function ( ) R t   of 2-CMLM ( )  is. 

( ) ( ) ( )1 1 2 2
1 2

1 2

1 1
 exp exp

1 1

t t
R t t t

   
   

 

+ + + +
 = − + −

+ +
   (28) 

3.2. Hazard function 

The following is the description of the failure rate function ( )h t   (also known as the hazard 

rate function) of 2-CMLM ( )  

( )
( ) ( ) ( ) ( )

( ) ( )

2 2
1 2

1 2

1 1 2 2

1 2

1 21 1

1 1

1 21 1

1 exp 1 exp
.

exp exp
t t

t t t t
h t

t t

 

 

   

 

   

   

+ +

+ + + +

+ +

+ − + + −
 =

− + −
    (29) 

3.3. Mills Ratio 

Mills Ratio is a unique technique to describing reliability because of its connection to failure rate. 

( )
( )
( )

( ) ( )

( ) ( )

1 1 2 2

1 2

2 2
1 2

1 2

1 1

1 21 1

1 21 1

 exp exp
 .

 (1 )exp (1 )exp

t tR t t t
t

f t t t t t

   

 

 

 

   

   

+ + + +

+ +

+ +

 − + −
  = =

 + − + + −
  (30) 

3.4. Cumulative hazard rate function 

The cumulative hazard rate function of 2-CMLM ( )  is 

( ) ( ) ( )
0

  log  .
t

H t h y dy R t  =  = − 
       (31) 

It is a measure of risk: the higher the ( ) H t   value, the higher the risk of failure by t-time. It 

is noted that  
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( ) ( ) ( ) ( ) ( )  
  and   .

H t H t
R t e f t h t e

−  − 
 =  =      (32) 

Therefore,  

( ) ( ) ( )1 1 2 2
1 2

1 2

1 1
log exp exp .

1 1

t t
H t t t

   
   

 

 + + + +
 = − − + − 

+ + 
 (33) 

3.5. Reversed hazard rate function 

The ratio between the life likelihood function and its distribution function is defined as the 

reversed hazard rate of a random life. 

( )
( )
( )

( ) ( ) ( ) ( )

( )  ( ) 

2 2
1 2

1 2

1 1 2 2

1 2

1 21 1

1 1

1 21 1

 1 exp 1 exp
.

 1 exp exp
t t

f t t t t t
h t

F t t t

 

 

   

 

   

   

+ +

+ + + +

+ +

 + − + + −
 = =

 − − − −
 (34) 

3.6. Mean Time to Failure (MTTF) 

The expected (or average) time for which the device functions satisfactorily is given by the 

mean time to failure (MTTF). If 2-CMLM ( )  then reliability function is used to express MTTF, 

which is as follows: 

( ) ( )
0

,M t R t dt

+

 =           (35) 

where ( )R t  is given in Eq (28). Hence  

( )
( )

( )

( )

( )
1 2

1 1 2 2

2 2
.

1 1
M t

 
 
   

+ +
 = +

+ +
      (36) 

3.7. Mean Residual Life (MRL) 

Reliabilists, statisticians, survival analysts, and others have investigated the mean residual 

lifetime (MRL). It has given many of valuable results. The remaining lifetime after t  for a 

component or system of age t  is random. The mean residual life or mean remaining life is the 

expected value of this random residual lifetime and is denoted by ( )RM t  . 

( )
( )
1

(  ) ,R

t

M t R x dx
R t

+

 = 

       (37) 
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( )
( ) ( )

( )
( ) ( )

( ) 
( ) ( )

1 1 1 2 2 2

1 1 2 2

1 1 2 2

1 2

2 exp 2 exp

1 1

1 1

1 21 1

.
exp exp

t t t t

R t t
M t

t t

       

   

   

    

+ + − + + −

+ +

+ + + +

+ +

+
 =

− + −
    (38) 

where ( )R t   is given in Eq (28). 

4. Estimation inference via simulation 

Several statistical characteristics of the 2-CMLM ( )  are contributed to this section, 

considering that parametric vector   is unknown. The assessment of parametric vector   is 

carried out by the three well known estimation methods such as maximum likelihood estimation, 

Least square Estimation (LSE) and Weighted Least square Estimation (WLSE). From now, 
1 2, ,..., nt t t  

represent n  observed values from T  and their ascending ordering values 
( ) ( ) ( )1 2

... .
n

t t t     

4.1. Maximum likelihood estimation (MLE) 

The most widely known approach of parameter estimate is the maximum likelihood method. 

The method's popularity is due to its numerous desired qualities, such as consistency, normality and 

asymptotic efficiency. Let 
1 2, ,..., nt t t  be n  observed values from the Eq (2) and   be the vector of 

unknown parameters. The assessments of MLEs of   can be provided by optimizing the likelihood 

function with respect to 1,  
2 ,  and   given by ( ) ( )

1

;
n

i

i

L f t
=

 = t  or likewise the 

log-likelihood function for   given by 

( ) ( )
1

ln ;
n

i

i

l f t
=

 = t         (39) 

( ) ( ) ( ) ( ) ( )
2 2

1 2
1 2

1
1 2

ln 1 exp 1 exp .
1 1

n

i i i i
i

l t t t t
 

   
 =

 
 =  + − + + − 

+ + 
t   (40) 

So, by partially differentiating ( )l t  with regard to each of the parameters ( )1 2, ,    and setting 

the findings to zero, the MLEs of the respective parameters are obtained, the likelihood equations are  

( ) ( ) ( )
( )

( )
( )

( )

( ) 
( ) ( ) ( ) ( ) 

2 2
1 1 1 1 1 1

2
1 1 1

2 2
1 2

1 2

2 exp exp exp

1 1 1

1
1 1 21 1

1

,
1 exp 1 exp

i i i it t t t

n i

i
i i i i

tl

t t t t

     

  

 

 



    

− − −

+ + +

=
+ +

+ − − 
= 

 + − + + −

t
   (41) 

( ) ( ) ( )
( )

( )
( )

( )

( ) 
( ) ( ) ( ) ( ) 

2 2
2 2 2 2 2 2

2
2 2 2

2 2
1 2

1 2

2 exp exp exp

1 1 1

1
2 1 21 1

1

,
1 exp 1 exp

i i i it t t t

n i

i
i i i i

tl

t t t t

     

  

 

 



    

− − −

+ + +

=
+ +

+ − − 
= 

 + − + + −

t
   (42) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 

2 2
1 2

1 2

2 2
1 2

1 2

1 21 1

1
1 21 1

1 exp 1 exp
.

1 exp 1 exp

n
i i i i

i
i i i i

l t t t t

t t t t

 

 

 

 

 

    

+ +

=
+ +

  + − − + −
= 

 + − + + −

t
   (43) 
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As a result, solving this nonlinear system of equations gives the MLE. Although these equations 

cannot be analytically solved, we use statistical software through iterative approach like Newton 

method or fixed point iteration methods can be used to solve them. 

4.2. Least square estimators (LSE) 

For estimating unknown parameters, the ordinary least square approach is well-known [36]. The 

least square estimators of 
1 2,   and   denoted by 1 2,

LSE LSE
   and 

LSE , can be obtained by 

minimizing the function 

( )
2

( )
1

( ) ,
1

n

i
i

i
LS F t

n=

 
 =   − + 

        (44) 

with respect to 
1 2,   and   where ( )F  is given by Eq (4). They can be derived in the same way 

by solving the following nonlinear equations: 

( ) ( )( ) 1 ( ) 1
1

1

( )
0,

1

n

i i
i

LS i
F t t

n


 =

   
=   −  =  + 

     (45) 

( ) ( )( ) 2 ( ) 2
1

2

( )
0,

1

n

i i
i

LS i
F t t

n


 =

   
=   −  =  + 

     (46) 

and 

( ) ( )( ) 3 ( )
1

( )
0,

1

n

i i
i

LS i
F t t

n


 =

   
=   −  =  + 

     (47) 

where 

( )
( )( )

( )

( ) 1 1 ( ) ( ) 1 ( ) 1

1 ( ) 1 2

1

exp 2
,

1

i i i i

i

t t t t
t

   
 



− + + +
 =

+
    (48) 

( )
( )( )

( )

( ) 2 2 ( ) ( ) 2 ( ) 2

2 ( ) 2 2

2

exp 2
,

1

i i i i

i

t t t t
t

   
 



− + + +
 =

+
    (49) 

( )
( )( )

( )

( )( )
( )

2 ( ) 2 2 ( ) 1 ( ) 1 ( ) 1

3 ( )

2 1

exp 1 exp 1
.

1 1

i i i i

i

t t t t
t

     


 

− + + − + +
 = −

+ +
   (50) 

4.3. Weighted Least Squares Estimators (WLSE) 

Consider the weighted function below (see [37]) 
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( ) ( )

( )

2
1 2

.
1

i

n n

i n i


+ +
=

− +
         (51) 

The WLSEs 1 2,
WLSE WLSE

   and 
WLSE  can be obtained by minimizing the function 

( )
( ) ( )

( )
( )

2 2

( )
1

1 2
,

1 1

n

i
i

n n i
WLS F t

i n i n=

+ +  
 =   − − + + 

    (52) 

One can also get these estimators by solving: 

( ) ( )

( )
( ) ( )

2

( ) 1 ( ) 1
1

1

1 2( )
0,

1 1

n

i i
i

n nWLS i
F t t

i n i n


 =

+ +   
=   −  =  − + + 

  (53) 

( ) ( )

( )
( )

2

( ) 2 ( ) 2
1

2

1 2( )
( ) 0,

1 1

n

i i
i

n nWLS i
F t t

i n i n


 =

+ +   
=   −  =  − + + 

  (54) 

and 

( ) ( )

( )
( ) ( )

2

( ) 3 ( )
1

1 2( )
0,

1 1

n

i i
i

n nWLS i
F t t

i n i n


 =

+ +   
=   −  =  − + + 

   (55) 

where ( )1 ( ) 1 ,it   ( )2 ( ) 2it   and ( )3 ( )it   are given in Eqs (48–50). 

5. Simulation study 

We use the simulation to analyze various estimating strategies that were discussed in subsection 

4.1–4.3. As a result, we execute some Monte Carlo simulations with various mixing proportions   

and model parameters. Three simulation experiments are used in order to assess the performance of 

MLE, performance, LSEs and WLSEs of the 2-CMLM ( )  parameters. The bias and MSE 

measures are used to discuss the precision of the MLEs, LSEs and WLSEs. The efficiency of each 

parameter estimation approach for the 2-CMLM ( )  model in terms of n  is considered. The steps 

of the simulation algorithm are as follows:  

1. By varying the mixing proportion   and the model parameters 

( ) ( ) ( )1 2, , 0.4,0.65,0.6 , 0.6,0.25,0.27   =  and ( )0.9,0.12,0.15 , generate random samples of sizes 

10,13,...,300  from the 2-CMLM ( ).  The simulation's random samples are generated as described in 

the next stage. 

2. Using the R uniform generator (runif), create one variate u from the uniform distribution (0,1).U  

3. If ,u   we use the ( rlindley ) function to generate a random variate from the first component, 

which is a Lindley distribution ( )1 . If u  , the second component, a Lindley distribution ( )2 , is 

used to generate a random variate. 

4. Begin to (2) until the required sample of size n  is obtained. 

5. Using 1000 replications, repeat steps 1–4 again. Compute the MLEs, LSEs and WLSEs for the 
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1000 samples; say j  for 1,2,...,1000,j =  using the optima function and the Nelder-Mead 

technique in R to calculate the estimator values. The simulated densities for three parametric sets are 

shown in Figure 8. 

6. Calculate biases and MSEs. These objectives are obtained with the help of the following formulas: 

( ) ( )
1000

1

1
,

1000
j

j

Bias n  
=

= −        (56) 

( ) ( )
1000

2

1

1
,

1000
j

j

MSE n  
=

= −        (57) 

where ( )1 2, , .   =  

 

 

Figure 8. The simulated densities for three parameter vectors. 

The results of simulation study of this subsection are indicated in Figures 9–14. These empirical 

findings show that the proposed estimate methods do a good job of estimating the 2-CMLM ( )  

parameters. Because the bias tends to zero as n  increases, we can deduce that the estimators exhibit 

the attribute of asymptotic unbiasedness. The mean squared error behavior, on the other hand, 

indicates consistency because the errors tend to zero as n  increases. From Figures 9–14, the 

following observations can be extracted. 
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Figure 9. Fluctuations of bias of 1 2, ,    under different methods of estimation for parametric set I. 
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Figure 10. Fluctuations of MSE of 1 2, ,   under different methods of estimation for parametric set I. 

 

 

 

 

 

 

 



9945 

AIMS Mathematics  Volume 7, Issue 6, 9926–9956. 

 

 

 

Figure 11. Fluctuations of bias of 1 2, ,    under different methods of estimation for parametric set II. 
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Figure 12. Fluctuations of MSE of 1 2, ,    under different methods of estimation for parametric set II. 

 

 

 



9947 

AIMS Mathematics  Volume 7, Issue 6, 9926–9956. 

 

 

 

Figure 13. Fluctuations of bias of 1 2, ,    under different methods of estimation for parametric set III. 
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Figure 14. Fluctuations of MSE of 1 2, ,   under different methods of estimation for parametric set III. 

• The estimated bias of parameters 1 2, ,   , decreases as n  increases under all estimation approaches. 

• From Figure 9 for parametric Set-I, we can see that the estimated bias of parameters 1  and   

is over-estimated in all three estimation methods while 2  is under estimated in MLE. 

• From Figure 13 for parametric Set-III, we can see that the estimated bias of parameters 1  and 

  is under-estimated in LSE estimation method and 1  over-estimated in WLSE estimation 

method while 2  is over-estimated in all three estimation methods. 

• The estimated bias of parameters 1 2, ,    is over-estimated in both estimation methods for 

parametric Set-II (see Figure 11). 
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• In terms of bias, generally the performances of the MLE, is the good (see Figures 9, 11and 13). 

• Furthermore, Figures 10, 12 and 14 show that the MSE for MLE, LSE and WLSE estimate 

methods reduces as n  increases, satisfying the consistency criterion. 

• Under all estimation procedures, the difference between estimates and assumed parameters 

decreases to zero as sample size increases. 

• When the sample size approaches infinity, MLE estimation is often stronger in terms of bias and 

MSE when compared to alternative estimation techniques for all stated parameter values (see 

Figures 9–14). 

The basic conclusion from the previous figures is that as the sample size grows the estimated 

bias and MSE graphs for parameters 
1 2,   and   eventually approach zero for all estimation 

methods. This validates the accuracy of these estimation approaches, as well as the numerical 

computations for the 2-CMLM ( )  parameters. 

6. Applications to COVID-19 data 

The major purpose of the 2-CMLM ( )  distribution's derivation is to employ it in data 

analysis purposes, which makes it valuable in a variety of domains, notably those dealing with 

lifetime analysis. This section demonstrates how the 2-CMLM ( )  works by applying the 

suggested model to real-world data. This aspect is demonstrated here by comparing two sets of data 

from COVID-19 pandemic outbreaks. [38–43] also studied the COVID-19 datasets to fit the new 

distribution. The given data sets are used to compare the fit of the 2-CMLM ( )  to a competing 

model that is a two component mixture of exponential models (2-CMEM ( ))  and two component 

mixture of Weibull models (2-CMWM ( ))  by using R function maxLik (.). We demonstrate that 

the 2-CMLM ( )  provides great fit to the COVID-19 pandemic lifespan data. The concept “best fit” 

refers to the proposed model having lower values for the measure chosen for 

comparison.-Log-likelihood ( )LL−  the AIC (Akaike information criterion), the BIC (Bayesian 

information criterion), and the CAIC (Corrected Akaike information criterion) are some of the 

discriminatory measures/goodness-of-fit (GoF) incorporated in these criteria. The best model for the 

real data set might be the one with the lowest values of the above-mentioned measures. 

DataSet-1: The data represents a COVID-19 data belong to Italy of 59 days that is recorded from 27 

February to 27 April 2020. This data formed of rough mortality rate. This data set can be accessed at 

https://covid19.who.int/. 

DataSet-2: We investigate the survival times of people in China who have been infected with the 

COVID-19 virus. The data set under consideration represents patient survival times from the moment 

they were admitted to the hospital until they deceased. https://www.worldometers.info/coronavirus/ 

can be used to access the data set. This data is used in [44]. 

The MLEs of the 2-CMLM ( )  and Goodness-of-Fit measures are provided in Tables 1and 2. 

The outcomes of these Tables clearly show that the 2-CMLM ( )  is the best of 2-CMLM ( )  as it 

has the smaller values of the -LL, AIC, BIC, and CAIC. In comparison 2-CMLM ( )  the 2-CMLM

( )  provides a very good fit for these data, as seen in the Tables. According to dataset one, 
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2-CMWM has the smallest -LL, as well as the smallest AIC, the BIC, and the CAIC. But if we 

consider the mixture of two parsimonious models 2-CMLM perform well. The best distribution for 

fitting the dataset II is 2-CMLM, as seen in Table 2 because the 2-CMLM model has the smallest 

AIC, the BIC, and the CAIC even though -LL is little bit high as compare to 2-CMWM but most 

Goodness-of-Fit measures are in favor of 2-CMLM model. So, the best distribution for fitting the 

dataset II is 2-CMLM, as seen in Figure 15. 

Figures 15 and 16 depict probability-probability (P-P) plots for 2-CMLM ( )  and 2-CMEM ( )  

and for 2-CMWM ( )  respectively, which support the findings of Tables 1 and 2. Figures 17 and 18 

show the profiles of the log-likelihood function (PLLF) based on data sets. 

Table 1. MLEs and Goodness-of-Fit statistics for the Dataset I. 

Distributions  MLEs -LL AIC BIC CAIC 

2-CMLM 
 1   

0.22286 −173.2998 352.5996 358.8322 353.036 

 
 2   

0.22290     

     0.38676     

2-CMEM 
 1   

0.12253 −182.8277 371.6554 377.888 372.0918 

 
 2   

0.12261     

     0.23042     

2-CMWM 
 1   

4.47462 −167.701 331.4109 341.7987 332.5431 

 
 2   

3.95049     

 
 3   

3.15885     

 
 4   

11.8225     

     0.34695     
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Table 2. MLEs and Goodness-of-Fit statistics for the Dataset II. 

Distributions  MLEs  -LL  AIC BIC CAIC 

2-CMLM 
 1   

2.19355 −131.585 269.170 273.9206 269.6598 

 
 2   

0.25458     

     0.35147     

2-CMEM 
 1   

0.16157 −131.8065 269.613 274.3636 270.1028 

 
 2   

1.87025     

     0.75191     

2-CMWM 
 1   

2.7244 −130.874 271.7481 281.5995 273.0246 

 
 2   

0.6754     

 
 3   

0.8915     

 
 4   

5.5149     

     0.1912     

 

Figure 15. The PP plots for Datasets I and II. 
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Figure 16. The PP plots of 2-CMWM for Datasets I and II. 

 

Figure 17. The profile of the log-likelihood function for Dataset I. 

 

Figure 18. The profile of the log-likelihood function for Dataset II. 
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7. Conclusions 

We studied two component mixture of Lindley models in this study using three estimate 

techniques: MLE, LSE, and WLSE. Further, some additional statistical and reliability properties of 

the two Lindley mixture model were obtained, like central moments, Cumulants, Cumulant 

Generating Function, Probability Generating Function, Factorial Moment Generating Function, 

Coefficient of variation, skewness and kurtosis, Mills Ratio, Reversed Hazard Rate Function, Mean 

Time to Failure, and Mean Residual Life. A simulation study was conducted using 1000 replications 

to explore and compare the performance of the estimation techniques. As a consequence, we found 

that the ML technique outperformed the others in terms of accuracy and consistency when estimating 

model unknown parameters. Moreover, to demonstrate the usefulness of the underlying mixture 

model, we used some real dataset. We demonstrated that the Lindley mixture model is suitable and 

effective for data modelling, and that it outperforms the exponential mixture model, using two real 

datasets. 
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