Regression analysis frequently encounters two issues: multicollinearity among the explanatory variables, and the existence of outliers in the data set. Multicollinearity in the semiparametric regression model causes the variance of the ordinary least-squares estimator to become inflated. Furthermore, the existence of multicollinearity may lead to wide confidence intervals for the individual parameters and even produce estimates with wrong signs. On the other hand, as is often known, the ordinary least-squares estimator is extremely sensitive to outliers, and it may be completely corrupted by the existence of even a single outlier in the data. Due to such drawbacks of the least-squares method, a robust Liu estimator based on the least trimmed squares (LTS) method for the regression parameters is introduced under some linear restrictions on the whole parameter space of the linear part in a semiparametric model. Considering that the covariance matrix of the error terms is usually unknown in practice, the feasible forms of the proposed estimators are substituted, and their asymptotic distributional properties are derived. Moreover, necessary and sufficient conditions for the superiority of the Liu type estimators over their counterparts for choosing the biasing Liu parameter d are extracted. The performance of the feasible type of robust Liu estimators is compared with the classical ones in constrained semiparametric regression models using extensive Monte-Carlo simulation experiments and a real data example.
Citation: W. B. Altukhaes, M. Roozbeh, N. A. Mohamed. Feasible robust Liu estimator to combat outliers and multicollinearity effects in restricted semiparametric regression model[J]. AIMS Mathematics, 2024, 9(11): 31581-31606. doi: 10.3934/math.20241519
[1] | Zhenshu Wen, Lijuan Shi . Exact explicit nonlinear wave solutions to a modified cKdV equation. AIMS Mathematics, 2020, 5(5): 4917-4930. doi: 10.3934/math.2020314 |
[2] | Abdulghani R. Alharbi . Traveling-wave and numerical solutions to a Novikov-Veselov system via the modified mathematical methods. AIMS Mathematics, 2023, 8(1): 1230-1250. doi: 10.3934/math.2023062 |
[3] | Naher Mohammed A. Alsafri, Hamad Zogan . Probing the diversity of kink solitons in nonlinear generalised Zakharov-Kuznetsov-Benjamin-Bona-Mahony dynamical model. AIMS Mathematics, 2024, 9(12): 34886-34905. doi: 10.3934/math.20241661 |
[4] | M. Ali Akbar, Norhashidah Hj. Mohd. Ali, M. Tarikul Islam . Multiple closed form solutions to some fractional order nonlinear evolution equations in physics and plasma physics. AIMS Mathematics, 2019, 4(3): 397-411. doi: 10.3934/math.2019.3.397 |
[5] | Maysaa Al-Qurashi, Saima Rashid, Fahd Jarad, Madeeha Tahir, Abdullah M. Alsharif . New computations for the two-mode version of the fractional Zakharov-Kuznetsov model in plasma fluid by means of the Shehu decomposition method. AIMS Mathematics, 2022, 7(2): 2044-2060. doi: 10.3934/math.2022117 |
[6] | Yunmei Zhao, Yinghui He, Huizhang Yang . The two variable (φ/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations. AIMS Mathematics, 2020, 5(5): 4121-4135. doi: 10.3934/math.2020264 |
[7] | Naveed Iqbal, Muhammad Bilal Riaz, Meshari Alesemi, Taher S. Hassan, Ali M. Mahnashi, Ahmad Shafee . Reliable analysis for obtaining exact soliton solutions of (2+1)-dimensional Chaffee-Infante equation. AIMS Mathematics, 2024, 9(6): 16666-16686. doi: 10.3934/math.2024808 |
[8] | Hammad Alotaibi . Solitary waves of the generalized Zakharov equations via integration algorithms. AIMS Mathematics, 2024, 9(5): 12650-12677. doi: 10.3934/math.2024619 |
[9] | M. A. El-Shorbagy, Sonia Akram, Mati ur Rahman, Hossam A. Nabwey . Analysis of bifurcation, chaotic structures, lump and M−W-shape soliton solutions to (2+1) complex modified Korteweg-de-Vries system. AIMS Mathematics, 2024, 9(6): 16116-16145. doi: 10.3934/math.2024780 |
[10] | M. Hafiz Uddin, M. Ali Akbar, Md. Ashrafuzzaman Khan, Md. Abdul Haque . New exact solitary wave solutions to the space-time fractional differential equations with conformable derivative. AIMS Mathematics, 2019, 4(2): 199-214. doi: 10.3934/math.2019.2.199 |
Regression analysis frequently encounters two issues: multicollinearity among the explanatory variables, and the existence of outliers in the data set. Multicollinearity in the semiparametric regression model causes the variance of the ordinary least-squares estimator to become inflated. Furthermore, the existence of multicollinearity may lead to wide confidence intervals for the individual parameters and even produce estimates with wrong signs. On the other hand, as is often known, the ordinary least-squares estimator is extremely sensitive to outliers, and it may be completely corrupted by the existence of even a single outlier in the data. Due to such drawbacks of the least-squares method, a robust Liu estimator based on the least trimmed squares (LTS) method for the regression parameters is introduced under some linear restrictions on the whole parameter space of the linear part in a semiparametric model. Considering that the covariance matrix of the error terms is usually unknown in practice, the feasible forms of the proposed estimators are substituted, and their asymptotic distributional properties are derived. Moreover, necessary and sufficient conditions for the superiority of the Liu type estimators over their counterparts for choosing the biasing Liu parameter d are extracted. The performance of the feasible type of robust Liu estimators is compared with the classical ones in constrained semiparametric regression models using extensive Monte-Carlo simulation experiments and a real data example.
The convexity of function is a classical concept, since it plays a fundamental role in mathematical programming theory, game theory, mathematical economics, variational science, optimal control theory and other fields, a new branch of mathematics, convex analysis, appeared in the 1960s. However, it has been noticed that the functions encountered in a large number of theoretical and practical problems in economics are not classical convex functions, therefore, in the past decades, the generalization of function convexity has attracted the attention of many scholars and aroused great interest, such as h-convex functions [1,2,3,4,5], log-convex functions [6,7,8,9,10], log-h-convex functions [11], and especially for coordinated convex [12]. Since 2001, various extensions and generalizations of integral inequalities for coordinated convex functions have been established in [12,13,14,15,16,17].
On the other hand, calculation error has always been a troublesome problem in numerical analysis. In many problems, it is often to speculate the accuracy of calculation results or use high-precision operation as far as possible to ensure the accuracy of the results, because the accumulation of calculation errors may make the calculation results meaningless, interval analysis as a new important tool to solve uncertainty problems has attracted much attention and also has yielded fruitful results, we refer the reader to the papers [18,19]. It is worth notion that in recent decades, many authors have combined integral inequalities with interval-valued functions(IVFs) and obtained many excellent conclusions. In [20], Costa gave Opial-type inequalities for IVFs. In [21,22], Chalco-Cano investigated Ostrowski type inequalities for IVFs by using generalized Hukuhara derivative. In [23], Román-Flores derived the Minkowski type inequalities and Beckenbach's type inequalities for IVFs. Very recently, Zhao [5,24] established the Hermite-Hadamard type inequalities for interval-valued coordinated functions.
Motivated by these results, in the present paper, we introduce the concept of coordinated log-h-convex for IVFs, and then present some new Jensen type inequalities and Hermite-Hadamard type inequalities for interval-valued coordinated functions. Also, we give some examples to illustrate our main results.
Let RI the collection of all closed and bounded intervals of R. We useR+IandR+ to represent the set of all positive intervals and the family of all positive real numbers respectively. The collection of all Riemann integrable real-valued functions on [a,b], IVFs on [a,b] and IVFs on △=[a,b]×[c,d] are denoted by R([a,b]), IR([a,b]) and ID(△). For more conceptions on IVFs, see [4,25]. Moreover, we have
Theorem 1. [4] Let f:[a,b]→RI such that f=[f_,¯f]. Then f∈IR([a,b]) iff f_, ¯f∈R([a,b]) and
(IR)∫baf(x)dx=[(R)∫baf_(x)dx,(R)∫ba¯f(x)dx]. |
Theorem 2. [25] Let F:△→RI. If F∈ID(△), then
(ID)∬△F(x,y)dxdy=(IR)∫badx(IR)∫dcF(x,y)dy. |
Definition 1. [26] Let h:[0,1]→R+. We say that f:[a,b]→R+I is interval log-h-convex function or that f∈SX(log-h,[a,b],R+I), if for all x,y∈[a,b] and ϑ∈[0,1], we have
f(ϑx+(1−ϑ)y)⊇[f(x)]h(ϑ)[f(y)]h(1−ϑ). |
h is called supermultiplicative if
h(ϑτ)≥h(ϑ)h(τ) | (2.1) |
for all ϑ,τ∈[0,1]. If "≥" in (2.1) is replaced with "≤", then h is called submultiplicative.
Theorem 3. [26] Let F:[a,b]→R+I,h(12)≠0. If F∈SX(log-h,[a,b],R+I) and F∈IR([a,b]), then
F(a+b2)12h(12)⊇exp[1b−a∫balnF(x)dx]⊇[F(a)F(b)]∫10h(ϑ)dϑ. | (2.2) |
Theorem 4. [27] Let F:[a,b]→R+I,h(12)≠0. If F∈SX(log-h,[a,b],R+I) and F∈IR([a,b]), then
[F(a+b2)]14h2(12)⊇[F(3a+b4)F(a+3b4)]14h(12)⊇(∫baF(x)dx)1b−a⊇[F(a)F(b)F2(a+b2)]12∫10h(ϑ)dϑ⊇[F(a)F(b)][12+h(12)]∫10h(ϑ)dϑ. | (2.3) |
In this section, we define the coordinated log-h-convex for IVFs and prove some new Jensen type inequalities and Hermite-Hadamard type inequalities by using this new definition.
Definition 2. Let h:[0,1]→R+. Then F:△→R+I is called a coordinated log-h-convex IVFs on △ if the partial mappings
Fy:[a,b]→R+I,Fy(x)=F(x,y),Fx:[c,d]→R+I,Fx(y)=F(x,y) |
are log-h-convex for all y∈[c,d] and x∈[a,b]. Then the set of all coordinated log-h-convex IVFs on △ is denoted by SX(log-ch,△,R+I).
Definition 3. Let h:[0,1]→R+. Then F:△→R+ is called a coordinated log-h-convex function in △ if for any (x1,y1),(x2,y2)∈△ and ϑ∈[0,1] we have
F(ϑx1+(1−ϑ)x2,ϑy1+(1−ϑ)y2)≤[F(x1,y1)]h(ϑ)[F(x2,y2)]h(1−ϑ). | (3.1) |
The set of all log-h-convex functions in △ is denoted by SX(log-h,△,R+). If inequality (3.1) is reversed, then F is said to be a coordinated log-h-concave function, the set of all log-h-concave functions in △ is denoted by SV(log-h,△,R+).
Definition 4. Let h:[0,1]→R+. Then F:△→R+I is called a coordinated log-h-convex IVF in △ if for any (x1,y1),(x2,y2)∈△ and ϑ∈[0,1] we have
F(ϑx1+(1−ϑ)x2,ϑy1+(1−ϑ)y2)⊇[F(x1,y1)]h(ϑ)[F(x2,y2)]h(1−ϑ). |
The set of all log-h-convex IVFs in △ is denoted by SX(log-h,△,R+I).
Theorem 5. Let F:△→R+I such that F=[F_,¯F]. If F∈SX(log-h,△,R+I) iff F_∈SX(log-h,△,R+) and ¯F∈SV(log-h,△,R+).
Proof. The proof is completed by combining the Definitions 3 and 4 above and the Theorem 3.7 of [4].
Theorem 6. If F∈SX(log-h,△,R+I), then F∈SX(log-ch,△,R+I).
Proof. Assume that F∈SX(log-h,△,R+I). Let Fx:[c,d]→R+I,Fx(y)=F(x,y). Then for all ϑ∈[0,1] and y1,y2∈[c,d], we have
Fx(ϑy1+(1−ϑ)y2)=F(x,ϑy1+(1−ϑ)y2)⊇F(ϑx+(1−ϑ)x,ϑy1+(1−ϑ)y2)⊇[F(x,y1)]h(ϑ)[F(x,y2)]h(1−ϑ)=[Fx(y1)]h(ϑ)[Fx(y2)]h(1−ϑ). |
Hence Fx(y)=F(x,y) is log-h-convex on [c,d]. The fact that Fy(x)=F(x,y) is log-h-convex on [a,b] goes likewise.
Remark 1. The converse of Theorem 6 is not generally true. Let h(ϑ)=ϑ and ϑ∈[0,1], △1=[π4,π2]×[π4,π2], and F:△1→R+I be defined:
F(x,y)=[e−sinx−siny,64xy]. |
Obviously, we have that F∈SX(log-ch,△1,R+I) and F∉SX(log-h,△1,R+I). Indeed, if (π4,π2),(π2,π4)∈△1, we have
F(ϑπ4+(1−ϑ)π2,ϑπ2+(1−ϑ)π4)=[e−sinϑπ4−sin(1−ϑ)π2,8π2ϑ(1−ϑ)],(F(π4,π2))h(ϑ)(F(π2,π4))h(1−ϑ)=[e(1−√22)ϑ−1,2ϑ+1π]. |
If ϑ=0, then
[0,1e]⊉[1e,2π]. |
Thus, F∉SX(log-h,△1,R+I).
In the following, Jensen type inequalities for coordinated log-h-convex functions in △ is considered.
Theorem 7. Let pi∈R+,xi∈[a,b],yi∈[c,d],(i=1,2,...,n),F:△→R+. If h is a nonnegative supermultiplicative function and F∈SX(log-h,△,R+), then
F(1Pnn∑i=1pixi,1Pnn∑i=1piyi)≤n∏i=1[F(xi,yi)]h(piPn), | (3.2) |
where Pn=n∑i=1pi. If h is a nonnegative submultiplicative function and F∈SV(log-h,△,R+), then (3.2) is reversed.
Proof. If n=2, then from Definition 3, we have
F(p1P2x1+p2P2x2,p1P2y1+p2P2y2)≤[F(x1,y1)]h(p1P2)[F(x2,y2)]h(p2P2). |
Suppose (3.2) holds for n=k, then
F(1Pkk∑i=1pixi,1Pkk∑i=1piyi)≤k∏i=1[F(xi,yi)]h(piPk). |
Now, let us prove that (3.2) is valid when n=k+1,
F(1Pk+1k+1∑i=1pixi,1Pk+1k+1∑i=1piyi)=F(1Pk+1k−1∑i=1pixi+pk+pk+1Pk+1(pkxkpk+pk+1+pk+1xk+1pk+pk+1),1Pk+1k−1∑i=1piyi+pk+pk+1Pk+1(pkykpk+pk+1+pk+1yk+1pk+pk+1))≤[F(pkxkpk+pk+1+pk+1xk+1pk+pk+1,pkykpk+pk+1+pk+1yk+1pk+pk+1)]h(pk+pk+1Pk+1)k−1∏i=1[F(xi,yi)]h(piPk+1)≤([F(xk,yk)]h(pkpk+pk+1)[F(xk+1,yk+1)]h(pk+1pk+pk+1))h(pk+pk+1Pk+1)k−1∏i=1[F(xi,yi)]h(piPk+1)≤[F(xk,yk)]h(pkPk+1)[F(xk+1,yk+1)]h(pk+1Pk+1)k−1∏i=1[F(xi,yi)]h(piPk+1)=k+1∏i=1[F(xi,yi)]h(piPk+1). |
This completes the proof.
Remark 2. If h(ϑ)=ϑ, then the inequality (3.2) is the Jensen inequality for log-convex functions.
Now, we prove the Jensen inequality for log-h-convex IVFs in △.
Theorem 8. Let pi∈R+,xi∈[a,b],yi∈[c,d],i=1,2,...,n,F:△→R+I such that F=[F_,¯F]. If h is a nonnegative supermultiplicative function and F∈SX(log-h,△,R+I), then
F(1Pnn∑i=1pixi,1Pnn∑i=1piyi)⊇n∏i=1[F(xi,yi)]h(piPn), | (3.3) |
where Pn=n∑i=1pi. If F∈SV(log-h,△,R+I), then (3.3) is reversed.
Proof. By Theorem 5 and Theorem 7, we have
F_(1Pnn∑i=1pixi,1Pnn∑i=1piyi)≤n∏i=1[F_(xi,yi)]h(piPn) |
and
¯F(1Pnn∑i=1pixi,1Pnn∑i=1piyi)≥n∏i=1[¯F(xi,yi)]h(piPn). |
Thus,
F(1Pnn∑i=1pixi,1Pnn∑i=1piyi)=[F_(1Pnn∑i=1pixi,1Pnn∑i=1piyi),¯F(1Pnn∑i=1pixi,1Pnn∑i=1piyi)]⊇[n∏i=1[F_(xi,yi)]h(piPn),n∏i=1[¯F(xi,yi)]h(piPn)]=n∏i=1[F(xi,yi)]h(piPn). |
This completes the proof.
Next, we prove the Hermite-Hadamard type inequalities for coordinated log-h-convex IVFs.
Theorem 9. Let F:△→R+I and h:[0,1]→R+ be continuous. If F∈SX(log-ch,△,R+I), then
[F(a+b2,c+d2)]14h2(12)⊇exp[14h(12)(12h(12)(b−a)∫balnF(x,c+d2)dx+12h(12)(d−c)∫dclnF(a+b2,y)dy)]⊇exp[1(b−a)(d−c)∫ba∫dclnF(x,y)dxdy]⊇exp[12∫10h(ϑ)dϑ(1b−a∫balnF(x,c)dx+1−−a∫balnF(x,d)dx+1d−c∫dclnF(a,y)dy+1d−c∫dclnF(b,y)dy)]⊇[F(a,c)F(a,d)F(b,c)F(b,d)](∫10h(ϑ)dϑ)2. | (3.4) |
Proof. Since F∈SX(log-ch,△,R+I), we have
Fx(c+d2)=Fx(ϑc+(1−ϑ)d+(1−ϑ)c+ϑd2)⊇[Fx(ϑc+(1−ϑ)d)]h(12)[Fx((1−ϑ)c+ϑd)]h(12). |
That is,
lnFx(c+d2)⊇h(12)ln[Fx(ϑc+(1−ϑ)d)Fx((1−ϑ)c+ϑd)]. |
Moreover, we have
1h(12)lnFx(c+d2)⊇[∫10lnFx(ϑc+(1−ϑ)d)dϑ+∫10lnFx((1−ϑ)c+ϑd)dϑ]=[∫10lnF_x(ϑc+(1−ϑ)d)dϑ,∫10ln¯Fx(ϑc+(1−ϑ)d)dϑ]+[∫10lnF_x((1−ϑ)c+ϑd)dϑ,∫10ln¯Fx((1−ϑ)c+ϑd)dϑ]=2[1d−c∫dclnF_x(y)dy,1d−c∫dcln¯Fx(y)dy]=2d−c∫dclnFx(y)dy. |
Similarly, we get
1d−c∫dclnFx(y)dy⊇ln[Fx(c)Fx(d)]∫10h(ϑ)dϑ. |
Then
12h(12)lnFx(c+d2)⊇1d−c∫dclnFx(y)dy⊇ln[Fx(c)Fx(d)]∫10h(ϑ)dϑ. |
That is,
12h(12)lnF(x,c+d2)⊇1d−c∫dclnF(x,y)dy⊇ln[F(x,c)F(x,d)]∫10h(ϑ)dϑ. |
Integrating over [a,b], we have
12h(12)(b−a)∫balnF(x,c+d2)dx⊇1(b−a)(d−c)∫ba∫dclnF(x,y)dxdy⊇[1b−a∫balnF(x,c)dx+1b−a∫balnF(x,d)dx]∫10h(ϑ)dϑ. |
Similarly, we have
12h(12)(d−c)∫dclnF(a+b2,y)dy⊇1(b−a)(d−c)∫ba∫dclnF(x,y)dxdy⊇[1d−c∫dclnF(a,y)dy+1d−c∫dclnF(b,y)dy]∫10h(ϑ)dϑ. |
Finally, we obtain
14h2(12)lnF(a+b2,c+d2)=14h(12)[12h(12)(b−a)∫balnF(x,c+d2)dx+12h(12)(d−c)∫dclnF(a+b2,y)dy]⊇1(b−a)(d−c)∫ba∫dclnF(x,y)dxdy⊇12∫10h(ϑ)dϑ[1b−a∫balnF(x,c)dx+1b−a∫balnF(x,d)dx+1d−c∫dclnF(a,y)dy+1d−c∫dclnF(b,y)dy]⊇12(∫10h(ϑ)dϑ)2[lnF(a,c)+lnF(a,d)+lnF(b,c)+lnF(b,d)+lnF(a,c)+lnF(a,d)+lnF(b,c)+lnF(b,d)]⊇(∫10h(ϑ)dϑ)2[lnF(a,c)F(a,d)F(b,c)F(b,d)]. |
This concludes the proof.
Remark 3. If F_=¯F and h(ϑ)=ϑ, then Theorem 9 reduces to Corollary 3.1 of [13].
Example 1. Let [a,b]=[c,d]=[2,3],h(ϑ)=ϑ. We define F:[2,3]×[2,3]→R+I by
F(x,y)=[1xy,e√x+√y]. |
From Definition 2, F(x,y)∈SX(log-ch,△,R+I).
Since
[F(a+b2,c+d2)]14h2(12)=[425,e√10],exp[14h(12)(12h(12)(b−a)∫balnF(x,c+d2)dx+12h(12)(d−c)∫dclnF(a+b2,y)dy)]=[8e135,e√102+2√3−4√23],exp[1(b−a)(d−c)∫ba∫dclnF(x,y)dxdy]=[16e2729,e43(3√3−2√2)],exp[12∫10h(ϑ)dϑ(1b−a∫balnF(x,c)dx+1b−a∫balnF(x,d)dx+1d−c∫dclnF(a,y)dy+1d−c∫dclnF(b,y)dy)]=[2√6e81,e15√3−5√26], |
and
[F(a,c)F(a,d)F(b,c)F(b,d)](∫10h(ϑ)dϑ)2=[16,e√2+√3]. |
It follows that
[425,e√10]⊇[8e135,e√102+2√3−4√23]⊇[16e2729,e43(3√3−2√2)]⊇[2√6e81,e15√3−5√26]⊇[16,e√2+√3] |
and Theorem 9 is verified.
Theorem 10. Let F:△→R+I and h:[0,1]→R+ be continuous. If F∈SX(log-ch,△,R+I), then
[F(a+b2,c+d2)]14h3(12)⊇exp[14h2(12)(b−a)∫baln(F(x,c+d2))dx+14h2(12)(d−c)∫dcln(F(a+b2,y))dy]⊇exp[14h(12)(b−a)∫baln(F(x,3c+d4)F(x,c+3d4))dx+14h(12)(d−c)∫dcln(F(3a+b4,y)F(a+3b4,y))dy]⊇exp[2(b−a)(d−c)∫ba∫dclnF(x,y)dxdy] | (3.5) |
⊇exp[12(b−a)∫baln(F(x,c)F(x,d)F2(x,fracc+d2))dx∫10h(ϑ)dϑ+12(d−c)∫dcln(F(a,y)F(b,y)F2(a+b2,y))dy∫10h(ϑ)dϑ]⊇exp[(12+h(12))1b−a∫baln[F(x,c)F(x,d)]dx∫10h(ϑ)dϑ+(12+h(12))1d−c∫dcln[F(a,y)F(b,y)]dy∫10h(ϑ)dϑ]⊇[F(a,c)F(a,d)F(b,c)F(b,d)F(a+b2,c)F(a+b2,d)×F(a,c+d2)F(b,c+d2)][12+h(12)](∫10h(ϑ)dϑ)2⊇[F(a,c)F(a,d)F(b,c)F(b,d)]2[12+h(12)]2(∫10h(ϑ)dϑ)2. |
Proof. Since F∈SX(log-ch,△,R+I), by using Theorem 6 and (2.3), we have
14h2(12)ln[Fy(a+b2)]⊇14h(12)ln[Fy(3a+b4)Fy(a+3b4)]⊇1b−a∫balnFy(x)dx⊇12ln[Fy(a)Fy(b)F2y(a+b2)]∫10h(ϑ)dϑ⊇[12+h(12)]ln[Fy(a)Fy(b)]∫10h(ϑ)dϑ. |
That is,
14h2(12)ln[F(a+b2,y)]⊇14h(12)ln[F(3a+b4,y)F(a+3b4,y)]⊇1b−a∫balnF(x,y)dx⊇12ln[F(a,y)F(b,y)F2(a+b2,y)]∫10h(ϑ)dϑ⊇[12+h(12)]ln[F(a,y)F(b,y)]∫10h(ϑ)dϑ. |
Moreover, we have
14h2(12)(d−c)∫dcln[F(a+b2,y)]dy⊇14h(12)(d−c)∫dcln[F(3a+b4,y)F(a+3b4,y)]dy⊇1(b−a)(d−c)∫ba∫dclnF(x,y)dxdy⊇12(d−c)∫dcln[F(a,y)F(b,y)F2(a+b2,y)]dy∫10h(ϑ)dϑ⊇[12+h(12)]1d−c∫dcln[F(a,y)F(b,y)]dy∫10h(ϑ)dϑ. |
Similarly, we have
![]() |
We also from (2.2),
12h(12)lnF(a+b2,c+d2)⊇1b−a∫balnF(x,c+d2)dx,12h(12)lnF(a+b2,c+d2)⊇1d−c∫dclnF(a+b2,y)dy. |
Again from (2.3),
1b−a∫balnF(x,c)dx⊇12ln[F(a,c)F(b,c)F2(a+b2,c)]∫10h(ϑ)dϑ⊇[12+h(12)]ln[F(a,c)F(b,c)]∫10h(ϑ)dϑ,1b−a∫balnF(x,d)ds⊇12ln[F(a,d)F(b,d)F2(a+b2,d)]∫10h(ϑ)dϑ⊇[12+h(12)]ln[F(a,d)F(b,d)]∫10h(ϑ)dϑ,1d−c∫dclnF(a,y)dy⊇12ln[F(a,c)F(a,d)F2(a,c+d2)]∫10h(ϑ)dϑ⊇[12+h(12)]ln[F(a,c)F(a,d)]∫10h(ϑ)dϑ,1d−c∫dclnF(b,y)dy⊇12ln[F(b,c)F(b,d)F2(b,c+d2)]∫10h(ϑ)dϑ⊇[12+h(12)]ln[F(b,c)F(b,d)]∫10h(ϑ)dϑ |
and proof is completed.
Example 2. Furthermore, by Example 1, we have
![]() |
and
[F(a,c)F(a,d)F(b,c)F(b,d)]2[12+h(12)]2(∫10h(θ)dθ)2=[136,e2√3+2√2]. |
It follows that
[16625,e2√10]⊇[64e218225,e4(3√3−2√2)+3√103]⊇[256e272171,e4(3√3−2√2)3+3+√112]⊇[256e4531441,e8(3√3−2√2)3]⊇[16√6e210935,e12√3−8√2+3√106]⊇[8e22187,e15√3−5√23]⊇[√690,e3√3+3√2+√102]⊇[136,e2√3+2√2] |
and Theorem 10 is verified.
We introduced the coordinated log-h-convexity for interval-valued functions, some Jensen type inequalities and Hermite-Hadamard type inequalities are proved. Our results generalize some known inequalities and will be useful in developing the theory of interval integral inequalities and interval convex analysis. The next step in the research direction investigated inequalities for fuzzy-interval-valued functions, and some applications in interval nonlinear programming.
The first author was supported in part by the Key Projects of Educational Commission of Hubei Province of China (D20192501), the Natural Science Foundation of Jiangsu Province (BK20180500) and the National Key Research and Development Program of China (2018YFC1508100).
The authors declare no conflict of interest.
[1] |
P. Green, C. Jennison, A. Seheult, Analysis of field experiments by least squares smoothing, J. Roy. Statist. Soc. Ser. B, 47 (1985), 299–315. https://doi.org/10.1111/j.2517-6161.1985.tb01358.x doi: 10.1111/j.2517-6161.1985.tb01358.x
![]() |
[2] |
R.-F. Engle, C.-W.-J. Granger, J. Rice, A. Weiss, Semiparametric estimates of the relation between weather and electricity sales, J. Am. Stat. Assoc., 81 (1986), 310–320. https://doi.org/10.2307/2289218 doi: 10.2307/2289218
![]() |
[3] |
R.-L. Eubank, E.-L. Kambour, J.-T. Kim, K. Klipple, C.-S. Reese, M. Schimek, Estimation in partially linear models, Comput. Stat. Data. Anal., 29 (1998), 27–34. https://doi.org/10.1016/S0167-9473(98)00054-1 doi: 10.1016/S0167-9473(98)00054-1
![]() |
[4] |
P. Speckman, Kernel somoothing in partial linear models, J. R. Stat. Soc. Ser. B, 50 (1988), 413–436. https://doi.org/10.1111/j.2517-6161.1988.tb01738.x doi: 10.1111/j.2517-6161.1988.tb01738.x
![]() |
[5] | R.-L. Eubank, Nonparametric Regression and Spline Smoothing, New York: Marcel Dekker, 1999. https://doi.org/10.1201/9781482273144 |
[6] | D. Ruppert, M.-P. Wand, R.-C. Carroll, Semiparametric Regression; Cambridge: Cambridge University Press, 2003. https://doi.org/10.1017/CBO9780511755453 |
[7] | W. Härdle, M. Müller, S. Sperlich, A. Werwatz, Nonparametric and Semiparmetric Models, Berlin/Heidelberg: Springer, 2004. https://doi.org/10.1007/978-3-642-17146-8 |
[8] | Yatchew, Semiparametric Regression for the Applied Econometrican, Cambridge: Cambridge University Press, 2003. https://doi.org/10.1017/CBO9780511615887 |
[9] |
F. Akdeniz, G. Tabakan, Restricted ridge estimators of the parameters in semiparametric regression model, Commun. Stat. Theory Methods, 38 (2009), 1852–1869. https://doi.org/10.1080/03610920802470109 doi: 10.1080/03610920802470109
![]() |
[10] |
D.-E. Akdeniz, W.-K. Hardle, M. Osipenko, Difference based ridge and Liu type estimators in semiparametric regression models, J. Multivar. Anal., 105 (2012), 164–175. https://doi.org/10.1016/j.jmva.2011.08.018 doi: 10.1016/j.jmva.2011.08.018
![]() |
[11] |
M. Arashi, T. Valizadeh, Performance of Kibria's methods in partial linear ridge regression model, Stat. Pap., 56 (2015), 231–246. https://doi.org/10.1007/s00362-014-0578-6 doi: 10.1007/s00362-014-0578-6
![]() |
[12] |
F. Akdeniz, S. Kaçıranlar, On the almost unbiased generalized Liu estimator and unbiased estimation of the bias and MSE, Commun. Stat. Theory Methods, 24 (1995), 1789–1797. https://doi.org/10.1080/03610929508831585 doi: 10.1080/03610929508831585
![]() |
[13] |
M.-N. Akram, B.-M.-G. Kibria, M. Arashi, A.-F. Lukman, A new improved Liu estimator for the QSAR model with inverse Gaussian response, Commun. Stat. Simul. Comput., 53 (2024), 1873–1888. https://doi.org/10.1080/03610918.2022.2059088 doi: 10.1080/03610918.2022.2059088
![]() |
[14] |
S. Kaçıranlar, N. Ozbay, E. Ozkan, H. Guler, Comparison of Liu and two parameter principal component estimator to combat multicollinearity, Concurr. Comput. Pract. Exp., 34 (2022), e6737. https://doi.org/10.1002/cpe.6737 doi: 10.1002/cpe.6737
![]() |
[15] |
B. Kan, O. Alpu, B. Yazici, Robust ridge and robust Liu estimator for regression based on the LTS estimator, J. Appl. Stat., 40 (2013), 644–655. https://doi.org/10.1080/02664763.2012.750285 doi: 10.1080/02664763.2012.750285
![]() |
[16] |
K.-J. Liu, A new class of biased estimate in linear regression, Commun. Stat. Theory Methods, 22 (1993), 393–402. https://doi.org/10.1080/03610929308831027 doi: 10.1080/03610929308831027
![]() |
[17] |
M. Arashi, A.-F. Lukman, Z.-Y. Algamal, Liu regression after random forest for prediction and modeling in high dimension, J. Chemom., 36 (2022), e3393. https://doi.org/10.1002/cem.3393 doi: 10.1002/cem.3393
![]() |
[18] |
M. Arashi, M. Roozbeh, H.-A. Niroumand, A note on Stein-type shrinkage estimator in partial linear models, Statistics, 46 (2012), 673–685. https://doi.org/10.1080/02331888.2011.553682 doi: 10.1080/02331888.2011.553682
![]() |
[19] |
M. Roozbeh, S. Babaie-Kafaki, M. Manavi, A heuristic algorithm to combat outliers and multicollinearity in regression model analysis, Iran. J. Num. Anal. Opt., 12 (2022), 173–186. https://doi.org/10.22067/IJNAO.2021.68160.1008 doi: 10.22067/IJNAO.2021.68160.1008
![]() |
[20] |
M. Roozbeh, A. Rouhi, N.-A. Mohamed, F. Jahadi, Generalized support vector regression and symmetry functional regression approaches to model the high-dimensional data, Symmetry, 15 (2023), 1262. https://doi.org/10.3390/sym15061262 doi: 10.3390/sym15061262
![]() |
[21] |
M. Roozbeh, S. Babaie-Kafaki, Z. Aminifard, A nonlinear mixed–integer programming approach for variable selection in linear regression model, Commun. Stat. Simul. Comput., 11 (2023), 5434–5445. https://doi.org/10.1080/03610918.2021.1990323 doi: 10.1080/03610918.2021.1990323
![]() |
[22] |
P.-J. Rousseeuw, Least median of squares regression, J. Am. Stat. Assoc., 79 (1984), 871–880. https://doi.org/10.2307/2288718 doi: 10.2307/2288718
![]() |
[23] | P.-J. Rousseeuw, A.-M. Leroy, Robust Regression and Outlier Detection, New York: John Wiley, 1987. https://doi.org/10.1002/0471725382 |
[24] |
P.-J. Rousseeuw, K. van Driessen, Computing LTS regression for large data sets, Data Min. Knowl. Discov., 12 (2006), 29–45. https://doi.org/10.1007/s10618-005-0024-4 doi: 10.1007/s10618-005-0024-4
![]() |
[25] |
M. Amini, M. Roozbeh, Optimal partial ridge estimation in restricted semiparametric regression models, J. Multivar. Anal., 136 (2015), 26–40. https://doi.org/10.1016/j.jmva.2015.01.005 doi: 10.1016/j.jmva.2015.01.005
![]() |
[26] |
A. Zellner, An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias, J. Am. Stat. Assoc., 57 (1962), 348–368. https://doi.org/10.2307/2281644 doi: 10.2307/2281644
![]() |
[27] |
M. Arashi, B.-M.-G. Kibria, T. Valizadeh, On ridge parameter estimators under stochastic subspace hypothesis, J. Stat. Comput. Simul., 87 (2017), 966–983. https://doi.org/10.1080/00949655.2016.1239104 doi: 10.1080/00949655.2016.1239104
![]() |
[28] |
M.-H. Karbalaee, M. Arashi, S.-M.-M. Tabatabaey, Performance analysis of the preliminary test estimator with series of stochastic restrictions, Commun. Stat. Theory Methods, 47 (2018), 1–17. https://doi.org/10.1080/03610926.2017.1300275 doi: 10.1080/03610926.2017.1300275
![]() |
[29] |
M. Roozbeh, G. Hesamian, M.-G. Akbari, Ridge estimation in semi-parametric regression models under the stochastic restriction and correlated elliptically contoured errors, J. Comput. Appl. Math., 378 (2020), 112940. https://doi.org/10.1016/j.cam.2020.112940 doi: 10.1016/j.cam.2020.112940
![]() |
[30] |
J. Durbin, A note on regression when there is extraneous information about one of the coefficients, J. Am. Stat. Assoc., 48 (1990), 799–808. https://doi.org/10.2307/2281073 doi: 10.2307/2281073
![]() |
[31] |
H. Theil, A.-S. Goldberger, On pure and mixed statistical estimation in economics, Int. Econ. Rev., 2 (1961), 65–78. https://doi.org/10.2307/2525589 doi: 10.2307/2525589
![]() |
[32] |
H. Theil, On the use of incomplete prior information in regression analysis, J. Am. Stat. Assoc., 58 (1963), 401–411. https://doi.org/10.2307/2283275 doi: 10.2307/2283275
![]() |
[33] |
R. Fallah, M. Arashi, S.-M.-M. Tabatabaey, On the ridge regression estimator with sub-space restriction, Commun. Stat. Theory Methods, 46 (2017), 11854–11865. https://doi.org/10.1080/03610926.2017.1285928 doi: 10.1080/03610926.2017.1285928
![]() |
[34] |
R. Fallah, M. Arashi, S.-M.-M. Tabatabaey, Shrinkage estimation in restricted elliptical regression model, J. Iran. Stat. Soc., 17 (2018), 49–61. https://doi.org/10.29252/jirss.17.1.49 doi: 10.29252/jirss.17.1.49
![]() |
[35] | H. Toutenburg, Prior Information in Linear Models, New York: John Wiley, 1982. https://doi.org/10.2307/2982032 |
[36] |
A.-E. Hoerl, R.-W. Kennard, Ridge regression: Biased estimation for non-orthogonal problems, Technometrics, 12 (1970), 69–82. https://doi.org/10.2307/1271436 doi: 10.2307/1271436
![]() |
[37] |
M. Roozbeh, N.-A. Hamzah, Feasible robust estimator in restricted semiparametric regression models based on the LTS approach, Commun. Stat. Simul. Comput., 46 (2017), 7332–7350. https://doi.org/10.1080/03610918.2016.1236954 doi: 10.1080/03610918.2016.1236954
![]() |
[38] |
F. Akdeniz, M. Roozbeh, Generalized difference-based weighted mixed almost unbiased ridge estimator in partially linear models, Stat. Pap. 60 (2019), 1717–1739. https://doi.org/10.1007/s00362-017-0893-9 doi: 10.1007/s00362-017-0893-9
![]() |
[39] |
F. Akdeniz, M. Roozbeh, E. Akdeniz, M.-N. Khan, Generalized difference-based weighted mixed almost unbiased liu estimator in semiparametric regression models, Commun. Stat. Theory Methods, 51 (2022), 4395–4416. https://doi.org/10.1080/03610926.2020.1814340 doi: 10.1080/03610926.2020.1814340
![]() |
[40] |
B.-M.-G. Kibria, Some Liu and ridge type estimators and their properties under the ill- conditioned Gaussian linear regression model, J. Stat. Comput. Simul., 82 (2012), 1–17. https://doi.org/10.1080/00949655.2010.519705 doi: 10.1080/00949655.2010.519705
![]() |
[41] |
K. Månsson, B.-M.-G. Kibria, G. Shukur, A restricted Liu estimator for binary regression models and its application to an applied demand system, J. Appl. Stat., 43 (2016), 1119–1127. https://doi.org/10.1080/02664763.2015.1092110 doi: 10.1080/02664763.2015.1092110
![]() |
[42] |
K. Månsson, B.-M.-G. Kibria, Estimating the unrestricted and restricted Liu estimators for the Poisson regression model: Method and application, Comput. Econ., 58 (2021), 311–326. https://doi.org/10.1007/s10614-020-10028-y doi: 10.1007/s10614-020-10028-y
![]() |
[43] | P.-J. Rousseeuw, Multivariate estimation with high breakdown point, Math. Stat. Appl., 8 (1985), 283–297. |
[44] |
Alfons, C. Croux, S. Gelper, Sparse least trimmed squares regression for analyzing high-dimensional large data sets, Ann. Appl. Stat., 7 (2013), 226–248. https://doi.org/10.1214/12-AOAS575 doi: 10.1214/12-AOAS575
![]() |
[45] | F.-A. Graybill, Matrices with Applications in Statistics, Wadsworth: Belmont, 1983. |
[46] | D. Harville, Matrix Algebra from a Statistician's Perspective, New York: Springer Verlag, 1997. https://doi.org/10.1007/b98818 |
[47] |
R. Farebrother, Further results on the mean square error of ridge regression, J. Roy. Stat. Soc. Ser. B, 38 (1976), 248–250. https://doi.org/10.1111/j.2517-6161.1976.tb01588.x doi: 10.1111/j.2517-6161.1976.tb01588.x
![]() |
[48] |
G.-C. McDonald, D.-I. Galarneau, A Monte Carlo evaluation of some ridge-type estimators, J. Am. Stat. Assoc., 70 (1975), 407–416. https://doi.org/10.2307/2285832 doi: 10.2307/2285832
![]() |
[49] |
D.-G. Gibbons, A simulation study of some ridge estimators, J. Am. Stat. Assoc., 76 (1981), 131–139. https://doi.org/10.2307/2287058 doi: 10.2307/2287058
![]() |
[50] |
M.-B. Priestley, M.-T. Chao, Non-Parametric Function Fitting, J. R. Stat. Soc. Ser. B, 34 (1972), 385–392. https://doi.org/10.1111/j.2517-6161.1972.tb00916.x doi: 10.1111/j.2517-6161.1972.tb00916.x
![]() |
[51] | M. Ho, Essays on the Housing Market, PhD thesis, University of Toronto, 1995. |
[52] | S.-J. Sheather, A Modern Approach to Regression with R, New York: Springer, 2009. https://doi.org/10.1007/978-0-387-09608-7 |
[53] |
P. Cizek, Least trimmed squares in nonlinear regression under dependence, J. Stat. Plann. Inference, 136 (2005), 3967–3988. https://doi.org/10.1016/j.jspi.2005.05.004 doi: 10.1016/j.jspi.2005.05.004
![]() |
[54] | J.-A. Visek, The least trimmed squares part Ⅲ: Asymptotic normality, Kybernetika, 42 (2006), 203–224. |
1. | Hajar F. Ismael, Haci Mehmet Baskonus, Hasan Bulut, Wei Gao, Instability modulation and novel optical soliton solutions to the Gerdjikov–Ivanov equation with M-fractional, 2023, 55, 0306-8919, 10.1007/s11082-023-04581-7 | |
2. | Nauman Raza, Abdel-Haleem Abdel-Aty, Traveling wave structures and analysis of bifurcation and chaos theory for Biswas–Milovic Model in conjunction with Kudryshov’s law of refractive index, 2023, 287, 00304026, 171085, 10.1016/j.ijleo.2023.171085 | |
3. | Hakima Khudher Ahmed, Hajar Farhan Ismael, Optical soliton solutions for the nonlinear Schrödinger equation with higher-order dispersion arise in nonlinear optics, 2024, 99, 0031-8949, 105276, 10.1088/1402-4896/ad78c3 | |
4. | Nirman Bhowmike, Zia Ur Rehman, Zarmeena Naz, Muhammad Zahid, Sultan Shoaib, Yasar Amin, Non-linear electromagnetic wave dynamics: Investigating periodic and quasi-periodic behavior in complex engineering systems, 2024, 184, 09600779, 114984, 10.1016/j.chaos.2024.114984 | |
5. | Saumya Ranjan Jena, Itishree Sahu, A novel approach for numerical treatment of traveling wave solution of ion acoustic waves as a fractional nonlinear evolution equation on Shehu transform environment, 2023, 98, 0031-8949, 085231, 10.1088/1402-4896/ace6de | |
6. | Ri Zhang, Muhammad Shakeel, Nasser Bin Turki, Nehad Ali Shah, Sayed M Tag, Novel analytical technique for mathematical model representing communication signals: A new travelling wave solutions, 2023, 51, 22113797, 106576, 10.1016/j.rinp.2023.106576 | |
7. | Exact Solutions of Beta-Fractional Fokas-Lenells Equation via Sine-Cosine Method, 2023, 16, 20710216, 10.14529/mmp230201 |