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Abstract: Regression analysis frequently encounters two issues: multicollinearity among the explanatory 

variables, and the existence of outliers in the data set. Multicollinearity in the semiparametric regression 

model causes the variance of the ordinary least-squares estimator to become inflated. Furthermore, the 

existence of multicollinearity may lead to wide confidence intervals for the individual parameters and 

even produce estimates with wrong signs. On the other hand, as is often known, the ordinary least-squares 

estimator is extremely sensitive to outliers, and it may be completely corrupted by the existence of even a 

single outlier in the data. Due to such drawbacks of the least-squares method, a robust Liu estimator based 

on the least trimmed squares (LTS) method for the regression parameters is introduced under some linear 

restrictions on the whole parameter space of the linear part in a semiparametric model. Considering that 

the covariance matrix of the error terms is usually unknown in practice, the feasible forms of the proposed 

estimators are substituted, and their asymptotic distributional properties are derived. Moreover, necessary 

and sufficient conditions for the superiority of the Liu type estimators over their counterparts for choosing 

the biasing Liu parameter d are extracted. The performance of the feasible type of robust Liu estimators 

is compared with the classical ones in constrained semiparametric regression models using extensive 

Monte-Carlo simulation experiments and a real data example. 
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1. Introduction  

The semiparametric regression model (SRM) is an appropriate tool to model a data set when the type 

of relationship between the dependent variable and some of the explanatory variables is linear parametric, 

but the link function of the dependent variable with other explanatory variables is not clear [1–3]. Consider 

the set of observations denoted as (𝑦1, 𝒙1
 ⊤, 𝑡1) .....(𝑦𝑛, 𝒙𝑛

 ⊤, 𝑡𝑛) , which conform to the semiparametric 

regression model defined by 

𝑦𝑖 = 𝒙𝑖
⊤𝜷+ 𝑓(𝑡𝑖) + 𝜀𝑖,      𝑖 = 1,2, . . . , 𝑛, (1.1) 

where 𝑦𝑖 is the value of the response variable for ith observation, 𝒙𝑖
⊤ = (𝑥𝑖1, . . . , 𝑥𝑖𝑝) represents a vector 

of explanatory variables, 𝜷 = (𝛽1, . . . , 𝛽𝑝)
⊤ denotes a vector of the unknown parameters, and the 𝑡𝑖′𝑠 are 

the observed points that match the boundaries of the domain 𝐷 ⊂ ℝ [4–6]. It is generally assumed that the 

unknown function 𝑓(. ) is a smooth function, while the 𝜀𝑖′𝑠 represent random errors that are considered to 

be independent of both (𝑥𝑖, 𝑡𝑖). 
Since the semiparametric regression models combine both parametric and nonparametric 

components, the response variable depends on the explanatory variables in a linear form but has a 

nonlinear relationship with other explanatory variables, which are more flexible than standard linear 

regression models according to (1.1) [7–9]. There are different ways to estimate 𝛽 and 𝑓(. ). Some of the 

most important methods were introduced by [10,11]. 

The presence of nearly linear dependency among the columns of the design matrix 𝑿 = (𝒙1, . . . , 𝒙𝑛)
⊤ 

is known as multicollinearity, and it is an issue that might arise in regression analysis. In this case, the 

matrix 𝑺 = 𝑿⊤𝑿 contains one or more small eigenvalues, causing the regression coefficient estimations 

to be large in absolute value. The condition number is an effective measure for detecting the presence of 

multicollinearity. The matrix S is ill-conditioned under multicollinearity because its condition number 

tends to an extremely large value. Multicollinearity makes the ordinary least-squares estimator (OLSE) 

perform badly. Also, multicollinearity in data may cause confidence intervals to be too large for either the 

individual parameters or their linear mixes, which may lead to inaccurate predictions. Applying shrinkage 

estimators is widely used as an effective solution to address the issues arising from multicollinearity [12–

15]. In this study, the shrinkage estimator, suggested by Liu [16], is applied to solve the problem of 

multicollinearity. Liu [16] combined the Stein type estimator with the conventional ordinary ridge 

regression estimator to derive the Liu estimator, as described in [17,18]. Other alternative approaches to 

addressing the issue of multicollinearity can be found in [19–21].  

Besides the multicollinearity problem, another typical issue that arises in regression analysis is the 

presence of outliers, which are observations that do not follow the pattern of the main bulk of the data. 

Outliers can cause problems like inflated sums of squares, estimate bias, p-value confusion, and more. To 

combat these problems, robust regression methods are used. The ordinary least-squares estimator is known 

to be extremely affected by outliers, so the least trimmed squares approach is used to estimate both 

components of SRM in this research.  

The breakdown point of an estimator is the fundamental measurement that is used to evaluate its 

robustness. This breakdown point concept refers to the percentage of outlying observations (up to 50 

percent) that can contaminate the estimation promiscuously. In computational geometry, the investigation 

of effective algorithms for robust estimation methods has been an important field of study. Several 

researchers have examined the robust least median of squares (LMS) method, which is the hyperplane that 
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minimizes the squared residual median [22]. Although the LMS estimator has been the subject of most 

publications on robust estimation in the field of linear models, Rousseeuw and Leroy [23] noted that LMS 

is not the optimal option due to its statistical features. They asserted that selecting the least trimmed 

squares is the better alternative option because both LTS and LMS have the same breakdown point, 

approximately 50%, but the objective function of LTS is smoother than LMS. Also, since LTS converges 

more quickly and is distributed asymptotically normally [22], it has superior statistical efficiency. For 

these reasons, LTS is a better choice as a starting point for two-step robust estimators such as the MM-

estimator [24]. 

The main focus of this paper is to study a feasible generalized robust Liu estimator in a restricted 

semiparametric regression model. The organization of this article is as follows: Section 2 contains the 

classical estimator of a restricted semiparametric regression model based on the kernel method. After 

reviewing the concepts of Liu and least trimmed squares approaches in a semiparametric regression model, 

a new feasible robust Liu estimator in a restricted semiparametric regression model is suggested, and then 

its asymptotic bias and distributional covariance are derived in Section 3.Based on the obtained results, 

the feasible generalized robust Liu estimator is compared with the classical one in terms of the mean 

squared error. In Section 4, the efficiencies of the proposed estimators are assessed through Monte Carlo 

simulation experiments as well as with a real-world data example. Finally, some important findings are 

concluded in Section 5. 

2. Feasible type of the classical estimators in RSRM 

The estimators conform to certain restrictions in classical estimators. Let us examine the 

semiparametric regression model 

𝒚 = 𝑿𝜷 + 𝑓(𝒕) + 𝜺, (2.1) 

where 𝒚 = (𝑦1, . . . , 𝑦𝑛)
⊤, 𝑿 = (𝒙1, . . . , 𝒙𝑛)

⊤, 𝑓(𝒕) = (𝑓(𝑡1), . . . , 𝑓(𝑡𝑛))
⊤, 𝜺 = (𝜀1, . . . , 𝜀𝑛)

⊤. 
Generally, we assume that 𝜺 is a vector of disturbances that follows a distribution with 𝐸(𝜺) = 𝟎 and 

𝐸(𝜺⊤𝜺) = 𝜎2𝑽, where 𝜎2 is an unknown parameter and 𝑽 is a symmetric and positive definite matrix. To 

estimate the linear part of model (2.1), we first remove the non-parametric effect by detrending. Given the 

assumption that β is known, a natural non-parametric estimator of f (.) is 

𝑓(t) = k(t)(y − Xβ), 

in which k(.) is a kernel function. Following [25], by substituting 𝑓(t) for 𝑓(𝒕) in Eq (2.1), the model may 

be reduced to 

�̃� = �̃�𝜷 + 𝜺. (2.2) 

where �̃� = (𝑰𝒏 −𝑲)𝒚 , �̃� = (𝑰𝒏 −𝑲)𝑿 , and 𝑲  is the smoother matrix with (𝑖, 𝑗) -th component 

𝐾𝜔(𝑡𝑖, 𝑡𝑗) in which 𝐾𝜔(∙) is a kernel function of order 𝑚 with bandwidth parameter 𝜔. We can simply use 

the following transformations to change model (2.2) into a standard regression model by multiplying 

𝑽−1/𝟐 on the both sides as follows: 

�̆� = �̆�𝜷+�̆�, 𝐸(�̆�) = 𝟎, 𝐸(�̆��̆�⊤) = 𝜎2𝑰𝒏, 

where �̆� = 𝑽−1/𝟐�̃� , �̆� = 𝑽−1/𝟐�̃� , and �̆� = 𝑽−1/𝟐𝜺.  Now, the estimation of 𝜷  is performed using the 

generalized least-squares estimator (GLSE), which is known to be the best linear unbiased estimator 
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�̂�𝐺𝐿𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜷(�̆� − �̆�𝜷)
⊤
(�̆� − �̆�𝜷) 

= (�̆�⊤�̆�)
−𝟏
�̆�⊤ �̆� 

= 𝑪−𝟏�̃�⊤ 𝑽−𝟏�̃�, 

(2.3) 

where 𝑪 = �̃�⊤ 𝑽−1�̃�. 

In applications, the matrix V is not known. Therefore, �̂�𝐺𝐿𝑆 in Eq (2.3) is not applicable because it is 

a function of covariance matrix (V) which is not known. To solve this issue, we have to utilize a two-stage 

process and implement a feasible generalized least-squares estimator (FGLSE) by replacing the unknown 

parameter V with a suitable estimator [26], 𝑺 =
1

𝑛−𝑝
(�̃� − �̃��̂�𝐿𝑆)(�̃� − �̃��̂�𝐿𝑆)

⊤
 , which is a consistent 

estimator, as follows: 

�̂�𝐹𝐺𝐿𝑆 = 𝑪𝐹
−1�̃�⊤ 𝑺−1�̃�, (2.4) 

where 𝑪𝐹 = �̃�
⊤ 𝑺−𝟏�̃�, and �̂�𝐿𝑆 is the ordinary least-squares estimator (�̃�⊤ �̃�)−𝟏�̃�⊤ �̃�. As demonstrated 

in Zellner [26], �̂�𝐹𝐺𝐿𝑆 = �̂�𝐺𝐿𝑆 + 𝑂𝑝(𝑛
−1) , and consequently √𝑛(�̂�𝐹𝐺𝐿𝑆 − 𝛽)  and √𝑛(�̂�𝐹𝐺𝐿𝑆 − 𝛽)  have 

the same normal asymptotical distribution, and so Var(�̂�𝐹𝐺𝐿𝑆) = 𝑪𝐹
−𝟏 + 𝑜(𝑛−1), where 𝑂𝑝(𝑛

−1) indicates 

an amount which is of order 𝑛−1  in probability and 𝑜(𝑛−1)  indicates a quantity of a higher order of 

smallness than 𝑛−1. 

Interestingly, another method to handle the strong and extremely strong multicollinearity problems 

is to obtain the estimators under particular constraints on the unknown parameters, which may be exact or 

stochastic (see [27–29] for more details). By applying some constraints on the parameter space of the 

linear part, Durbin [30], Theil and Goldberger [31], and Theil [32] proposed the ordinary mixed estimator 

(OME) for the vector of the regression coefficient. Assume that we had prior knowledge regarding 𝛽 in 

the sense of non-stochastic exact constraints [33–35], as follows: 

𝑹𝜷 = 𝒓 

where R is a known matrix 𝑞 ×  p of prior information of rank 𝑞 <  𝑝 and r is a known 𝑞 ×  1 vector. 

This restriction should come from an outside source (it might be determined, for example, by an outside 

source of information or an expert). Thus, when the regression parameters are restricted by a space of 

linear constraints non-stochastically represented by independent prior information, we provide the 

instruments necessary to compute the risk of estimators. Next, the performances of the new constrained 

estimators and the classical estimators may be compared under certain conditions. We show that the 

innovative constrained estimators outperform the classical ones in terms of least-risk functions, assuming 

linear restrictions. In these circumstances, certain non-sample information (a previous constraint on the 

parameters) may exist; they are often presented to the model as constraints. Compared to typical estimators, 

the restricted estimation performs better, and so, in this work, the restricted semiparametric regression 

model (RSRM) is fitted to the data set. The feasible generalized least-squares restricted estimator 

(FGLSRE) is derived by imposing a linear restriction as follows: 

�̂�𝐹𝐺𝐿𝑆𝑅 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜷(�̃� − �̃�𝜷)
⊤
𝑺−1(�̃� − �̃�𝜷) 

s.t. 𝑹𝜷 = 𝒓 

= �̂�𝐹𝐺𝐿𝑆 − 𝑪𝐹
−𝟏𝑹⊤(𝑹𝑪𝐹

−𝟏𝑹⊤)
−1
(𝑹�̂�𝐹𝐺𝐿𝑆 − 𝒓). 

(2.5) 

As it is known, the covariance matrix estimation of �̂�𝐹𝐺𝐿𝑆 is equal to 𝜎2𝑪𝐹
−𝟏. So, the FGLSE and its 
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covariance matrix are significantly influenced by the features of matrix 𝑪𝐹. The FGLS estimators gain 

susceptibility to various errors when 𝑪𝐹 is ill-conditioned. Also, some of the estimations of the regression 

coefficients, for instance, might have incorrect signs or be statistically insignificant; this could lead to 

unstable estimators, which are characterized by large confidence intervals for the specific parameters. 

Making valid statistical inferences becomes challenging in the presence of these errors, and so a biased 

estimation technique is introduced and utilized for RSRM under the multicollinearity problem. 

3. Feasible robust Liu estimator in RSRM 

Multicollinearity leads to 𝑿⊤𝑿 being ill-conditioned with a large condition number. When the signal 

to noise ratio 𝜷⊤𝜷/𝜎2 is small and the condition number of 𝑿⊤𝑿 is large, the least-squares estimator is 

most severely affected by multicollinearity. In this situation, the high level of data noise is enlarged by 

(𝑿⊤𝑿)−1, making the least-squares estimator highly unstable. To solve this drawback, Hoerl and Kennard 

[36] proposed the ridge estimator �̂�𝑘 = (𝑿
⊤𝑿 + 𝑘𝑰)−1𝑿⊤𝒚 in the standard linear regression model 𝒚 =

𝑿𝜷 + 𝜺 with 𝐸(𝜺) = 𝟎 and 𝐸(𝜺⊤𝜺) = 𝜎2𝑰, and it has become the most often used method for combating 

the multicollinearity problem that causes the least squares estimator to fail. Indeed, the ridge method solves 

the multicollinearity problem by adding a small non-stochastic constant k to the diagonal elements of 𝑿⊤𝑿 

to decrease its condition number. In practical use, the biasing parameter k in ridge approach is typically 

rather modest. It is obvious that the condition number of 𝑿⊤𝑿 + 𝑘𝑰 is a decreasing function of k. Thus, 

high values of k are needed to achieve small-scale control over the condition number of 𝑿⊤𝑿 + 𝑘𝑰 . 
Because of this, the small k selected in practice may not be sufficiently big to solve the severe 

multicollinearity problem of 𝑿⊤𝑿. So, the resultant ridge estimation may still be unstable since 𝑿⊤𝑿 + 𝑘𝑰 
has remained ill-conditioned. Furthermore, despite its practical effectiveness, the ridge estimator is a 

complicated function of k. Although the Stein-type estimator �̂�𝑐 = 𝑐(𝑿
⊤𝑿)−1𝑿⊤𝒚 is a linear function of 

c, the shrinkage of each element of �̂�𝑐 is the same. To address these issues, Liu [12] proposed a new biased 

estimator �̂�𝑑 = (𝑿
⊤𝑿 + 𝑰)−1(𝑿⊤𝒚 + 𝑑�̂�   by combining the advantages of the ridge and Stein-type 

estimators, which effectively solved the problem of ill-conditioning in standard regression model, where 

0 < d < 1 is a biasing parameter and �̂� = (𝑿⊤𝑿)−1𝑿⊤𝒚. It is obvious that when d = 1, �̂�𝑑 =�̂�. 

According to [12] the mean squared error (MSE) of the Liu estimator is obtained by 

MSE(�̂�𝑑) = 𝜎
2∑

(𝜆𝑗+𝑑)
2

𝜆𝑗(𝜆𝑗+1)
2

𝑝
𝑗=1 + (𝑑 − 1)2∑

𝛼𝑗
2

(𝜆𝑗+1)
2

𝑝
𝑗=1 , (3.1) 

where 𝛼𝑗
2 corresponds to the jth element of 𝜶 = 𝜞⊤𝜷 and 𝜞 is an orthogonal matrix such that 𝑪𝐹 = 𝜞𝜦𝜞

⊤, 

in which 𝜦 = 𝑑𝑖𝑎𝑔(𝜆1, . . . , 𝜆𝑝)  contains the eigenvalues of matrix 𝑪𝐹 .  Consequently, the biasing 

parameter d is chosen by minimizing 𝑀𝑆𝐸(�̂�𝑑) as follows: 

�̂� = 1 − �̂�𝐹𝐺𝐿𝑆
2

(

 
∑

1

𝜆𝑗(𝜆𝑗+1)

𝑝
𝑗=1

∑
�̂�𝑗𝐹𝐺𝐿𝑆
2

(𝜆𝑗+1)
2

𝑝
𝑗=1

)

 , (3.2) 

where �̂�𝐹𝐺𝐿𝑆
2   and �̂�𝑗𝐹𝐺𝐿𝑆

2   are the unbiased estimators of 𝜎2  and 𝛼𝑗  based on FGLSE, respectively, i.e., 

�̂�𝐹𝐺𝐿𝑆
2 =

1

𝑛−𝑝
(𝒚 − �̃��̂�𝐹𝐺𝐿𝑆)

⊤
𝑺−1(𝒚 − �̃��̂�𝐹𝐺𝐿𝑆) and �̂�𝐹𝐺𝐿𝑆 = 𝜞

⊤�̂�𝐹𝐺𝐿𝑆.  

The feasible generalized least-squares Liu estimator (FGLSLE) can be extended by [37–39] as 
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follows: 

�̂�𝐹𝐺𝐿𝑆𝐿(𝑑) = (�̃�
⊤ 𝑺−1�̃� + 𝑰)−1(�̃�⊤ 𝑺−1�̃� + 𝑑𝑰)�̂�𝐹𝐺𝐿𝑆 

= (𝑪𝐹 + 𝑰)
−1(𝑪 + 𝑑𝑰)�̂�𝐹𝐺𝐿𝑆 

= 𝑭𝑑�̂�𝐹𝐺𝐿𝑆,  0 ≤ 𝑑 ≤ 1, 

(3.3) 

where 𝑭𝑑 = (𝑪𝐹 + 𝑰)
−1(𝑪𝐹 + 𝑑𝑰).  

Based on the fact that 𝑭𝑑 and 𝑪𝐹
−𝟏 are commutative, the feasible generalized least-squares restricted 

Liu estimator (FGLSRLE) can be obtained for RSRM as follows [40–42]: 

�̂�𝐹𝐺𝐿𝑆𝑅𝐿(𝑑) =  𝑎𝑟𝑔𝑚𝑖𝑛𝜷(�̃� − �̃�𝜷)
⊤
𝑺−1(�̃� − �̃�𝜷) + (𝑑�̂�𝐹𝐺𝐿𝑆 −  𝜷)

⊤
(𝑑�̂�𝐹𝐺𝐿𝑆 −  𝜷) 

s.t. 𝑹𝜷 = 𝒓 

= 𝑭𝑑�̂�𝐹𝐺𝐿𝑆 − 𝑭𝑑𝑪𝐹
−𝟏𝑹⊤(𝑹𝑪𝐹

−1𝑹⊤)−1(𝑹�̂�𝐹𝐺𝐿𝑆 − 𝒓). 

(3.4) 

Lemma 3.1. If β satisfies the linear restriction Rβ = r, then the properties (bias, covariance, and mean 

squared error) of the suggested estimator can be calculated directly as follows: 

Bias(�̂�𝐹𝐺𝐿𝑆𝑅𝐿(𝑑)) = −(𝑰 − 𝑭𝑑)𝜷 + 𝑜 (𝑛
−
1

2), (3.5) 

Cov(�̂�𝐹𝐺𝐿𝑆𝑅𝐿(𝑑)) = 𝜎
2𝑭𝑑𝑯𝑭𝑑

⊤ + 𝑜(𝑛−1), (3.6) 

MSE(�̂�𝐹𝐺𝐿𝑆𝑅𝐿(𝑑)) = 𝜎
2𝑡𝑟(𝑭𝑑𝑯𝑭𝑑

⊤) + 𝜷⊤(𝑭𝑑 − 𝑰)
⊤(𝑭𝑑 − 𝑰)𝜷 + 𝑜(𝑛

−1), (3.7) 

where 𝑯 = 𝑪𝐹
−𝟏 (𝑰 − 𝑹⊤(𝑹𝑪𝐹

−𝟏𝑹⊤)
−1
𝑹𝑪𝐹

−𝟏). 

Theorem 3.1. The MSE of FGLSRLE under the linear restriction Rβ = r can be given by 

𝑀𝑆𝐸(�̂�𝐹𝐺𝐿𝑆𝑅𝐿(𝑑)) = 𝜎
2∑

(𝜆𝑗+𝑑)
2

(𝜆𝑗+1)
2𝑚𝑗𝑗

𝑝
𝑗=1 + (𝑑 − 1)2∑

𝛼𝑗
2

(𝜆𝑗+1)
2

𝑝
𝑗=1 + 𝑜(𝑛−1),  (3.8) 

where 𝑚𝑗𝑗 is the jth diagonal element of the matrix 𝑴 = 𝜞⊤𝑯𝜞. 

Proof. Using (𝑪𝑭 + 𝑰)
−1 = 𝜞(𝜦 + 𝑰)−1𝜞⊤ and (𝑪𝐹 + 𝑑𝑰) = 𝜞(𝜦 + 𝑑𝑰)𝜞

⊤, we can write 

𝑡𝑟(𝑭𝑑𝑯𝑭𝑑
⊤) = 𝑡𝑟((𝑪𝐹 + 𝑰)

−1(𝑪𝐹 + 𝑑𝑰)𝑯(𝑪𝐹 + 𝑑𝑰)(𝑪𝐹 + 𝑰)
−1) 

= 𝑡𝑟(𝜞(𝜦 + 𝑰)−1𝜞⊤𝜞(𝜦 + 𝑑𝑰)𝜞⊤𝑯𝜞(𝜦 + 𝑑𝑰)𝜞⊤𝜞(𝜦 + 𝑰)−1𝜞⊤) 
= 𝑡𝑟((𝜦 + 𝑰)−2(𝜦 + 𝑑𝑰)2𝜞⊤𝑯𝜞) 

= ∑
(𝜆𝑗+𝑑)

2

(𝜆𝑗+1)
2𝑚𝑗𝑗

𝑝
𝑗=1 . 

Also, from (𝑪𝐹 + 𝑰)
−2 = 𝜞(𝜦 + 𝑰)−2𝜞⊤, we have 

𝜷⊤(𝑭𝑑 − 𝑰)
⊤(𝑭𝑑 − 𝑰)𝜷 = 𝜶

⊤𝜞⊤((𝑪𝐹 + 𝑰)
−1(𝑪𝐹 + 𝑑𝑰) − 𝑰)

⊤((𝑪𝐹 + 𝑰)
−1(𝑪𝐹 + 𝑑𝑰) − 𝑰)𝜞𝜶 

= 𝜶⊤𝜞⊤((𝑪𝐹 + 𝑑𝑰) − (𝑪𝐹 + 𝑰))(𝑪𝐹 + 𝑰)
−2((𝑪𝐹 + 𝑑𝑰) − (𝑪𝐹 + 𝑰))𝜞𝜶 

= (𝑑 − 1)2𝜶⊤𝜞⊤𝜞(𝜦 + 𝑰)−2𝜞⊤𝜞𝜶 

=(𝑑 − 1)2∑
𝛼𝑗
2

(𝜆𝑗+1)
2

𝑝
𝑗=1 . 

So, the proof is completed.                                                                                                             ◼ 

As an important result of Theorem 3.1, the optimal value of the biasing parameter d can be obtained 

by differentiating the MSE function of GLSRLE as a function of d (same as 𝑔(d)) with respect to d. and 

solve it by setting the derivative equal to zero to extract the optimal value of d. Via direct calculation, we 

have 
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𝑔′(𝑑) =
𝜕MSE(�̂�𝑑)

𝜕𝑑
= 2𝜎2 ∑

(𝜆𝑗+𝑑)

(𝜆𝑗+1)
2

𝑝
𝑗=1 𝑚𝑗𝑗 + 2(𝑑 − 1)∑

𝛼𝑗
2

(𝜆𝑗+1)
2 = 0

𝑝
𝑗=1 . 

So, it can be written 

(𝜎2∑
𝑚𝑗𝑗

(𝜆𝑗 + 1)
2

𝑝

𝑗=1

+∑
𝛼𝑗
2

(𝜆𝑗 + 1)
2

𝑝

𝑗=1

)𝑑 =∑
𝛼𝑗
2

(𝜆𝑗 + 1)
2

𝑝

𝑗=1

− 𝜎2∑
𝜆𝑗𝑚𝑗𝑗

(𝜆𝑗 + 1)
2

𝑝

𝑗=1

 

⇒ 𝑑 =

∑
𝛼𝑗
2

(𝜆𝑗 + 1)
2

𝑝
𝑗=1 − 𝜎2 ∑

𝜆𝑗𝑚𝑗𝑗

(𝜆𝑗 + 1)
2

𝑝
𝑗=1

𝜎2 ∑
𝑚𝑗𝑗

(𝜆𝑗 + 1)
2

𝑝
𝑗=1 + ∑

𝛼𝑗
2

(𝜆𝑗 + 1)
2

𝑝
𝑗=1

 

=

∑
𝛼𝑗
2

(𝜆𝑗 + 1)
2

𝑝
𝑗=1 ± 𝜎2∑

𝑚𝑗𝑗

(𝜆𝑗 + 1)
2

𝑝
𝑗=1 − 𝜎2 ∑

𝜆𝑗𝑚𝑗𝑗

(𝜆𝑗 + 1)
2

𝑝
𝑗=1

𝜎2 ∑
𝑚𝑗𝑗

(𝜆𝑗 + 1)
2

𝑝
𝑗=1 + ∑

𝛼𝑗
2

(𝜆𝑗 + 1)
2

𝑝
𝑗=1

 

= 1 − 𝜎2
∑

𝑚𝑗𝑗

(𝜆𝑗+1)

𝑝
𝑗=1

∑
𝛼𝑗
2+𝜎2𝑚𝑗𝑗

(𝜆𝑗+1)
2

𝑝
𝑗=1

. 

According to the fact that 𝑔′′(𝑑)  is positive for all values of d, we can conclude the obtained 

extremum value of d minimizes the MSE function of GLSRLE. Now, for practical aspects, the following 

estimator can be used for the optimal d in applications: 

�̂� = 1 − �̂�𝐹𝐺𝐿𝑆𝑅
2

(

 
∑

𝑚𝑗𝑗

(𝜆𝑗+1)

𝑝
𝑗=1

∑
�̂�𝑗𝐹𝐺𝐿𝑆𝑅
2 +�̂�𝐹𝐺𝐿𝑆𝑅

2 𝑚𝑗𝑗

(𝜆𝑗+1)
2

𝑝
𝑗=1

)

 , (3.9) 

where �̂�𝐹𝐺𝐿𝑆𝑅
2  and �̂�𝑗𝐹𝐺𝐿𝑆𝑅

2  are the unbiased estimators of 𝜎2 and 𝛼𝑗 based on GLSRE, respectively, i.e., 

�̂�𝐹𝐺𝐿𝑆𝑅
2 =

1

𝑛−(𝑝+𝑞)
(𝒚 − �̃��̂�𝐹𝐺𝐿𝑆𝑅)

⊤
𝑺−1(𝒚 − �̃��̂�𝐹𝐺𝐿𝑆𝑅) and �̂�𝐹𝐺𝐿𝑆𝑅 = 𝜞

⊤�̂�𝐹𝐺𝐿𝑆𝑅, in which 

�̂�𝐹𝐺𝐿𝑆𝑅 = �̂�𝐹𝐺𝐿𝑆 − 𝑪𝐹
−𝟏𝑹⊤(𝑹𝑪𝐹

−𝟏𝑹⊤)
−1
(𝑹�̂�𝐹𝐺𝐿𝑆 − 𝒓). (3.10) 

As was mentioned earlier, outlier observations have the potential to significantly corrupt the least-

squares estimators and all of the estimators based on it due to their significant impact on the objective 

function. The robust regression approach is a broad term that encompasses various estimating approaches. 

Least trimmed squares is a robust regression method introduced by [43]. LTS seeks to tackle this issue by 

minimizing the sum of the lowest h squared residuals following the removal of a specific percentage of 

extreme values. In this case, h serves as a threshold, and the proportion of the outlying data is represented 

by the ratio α = (n − h)/n. 

Typically, the value of h can be taken as h = [[n(1 − α)]], where [[x]] stands for the ceiling of x. Some 

other authors suggest to take ℎ = [𝑛 2⁄ ] + [(𝑝 + 1) 2⁄ ] , ℎ = [𝑛(1 − 𝛼)] + [𝛼(𝑝 + 1)] , or ℎ = [𝑛(1 −

𝛼)] + 1 (see [44]). The LTS estimator is computed by solving the (
𝑛
ℎ
) total least-squares fits combinations 
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of the index set {1, . . . , n}. Thus, for large values of sample size, finding the global minimum in the 

objective function of the LTS method takes time and space. To accelerate the process of finding the 

solution (LTS fit), we use an analogue of the FAST-LTS algorithm extended by [24]. 

Let 𝑧𝑖  represent the indicator variable that signifies whether or not observation 𝑖  is regarded as a 

normal observation. The optimization problem of a feasible robust estimator based on the LTS approach 

in RSRM can be developed as follows: 

𝑚𝑖𝑛𝜷.𝒛𝜓(𝜷. 𝒛) = (�̃� − �̃�𝜷)
⊤
𝑺−

1
2𝒁𝑺−

1
2(�̃� − �̃�𝜷) 

𝑠. 𝑡.   𝑹𝜷 = 𝒓 , 

𝒆⊤𝒛 = ℎ, 

𝑧𝑖 ∈ {0.1}.  𝑖 = 1.… . 𝑛. 

(3.11) 

where Z is the diagonal matrix with diagonal elements 𝒛 = (𝑧1. … . , 𝑧𝑛)
⊤ , 𝑒 = (1.… .1)𝑛×1

⊤  , and ℎ  is a 

positive integer. The resultant estimator is the feasible generalized least trimmed squares restricted 

estimator (FGLTSRE), which is provided by 

�̂�𝐹𝐺𝐿𝑇𝑆𝑅(𝒛) =  �̂�𝐹𝐺𝐿𝑇𝑆(𝒛) − 𝑪𝐹(𝒛)
−1𝑹⊤(𝑹𝑪𝐹(𝒛)

−1𝑹⊤)−1(𝑹�̂�𝐹𝐺𝐿𝑇𝑆(𝒛) − 𝒓),  (3.12) 

where 𝑪𝐹(𝒛) =  �̃�
⊤𝑺−1/2𝒁𝑺−1/2�̃� and  �̂�𝐹𝐺𝐿𝑇𝑆(𝒛) = 𝑪𝐹(𝑧)

−1�̃�⊤𝑺−1/2𝒁𝑺−1/2�̃�. 

Now, we aim to implement the robust estimators obtained previously via the Liu idea to extract the 

novel feasible robust Liu estimator that is resistant to the existence of multicollinearity and outliers in the 

data set. The feasible generalized least trimmed squares restricted Liu estimator (FGLTSRLE) for RSRM 

using a two stages estimator for d and β can be extended as follows: 

�̂�𝐹𝐺𝐿𝑇𝑆𝑅
2 =

1

𝑛 − (𝑝 + 𝑞)
(𝒚 − �̃��̂�𝐹𝐺𝐿𝑇𝑆𝑅(𝒛))

⊤

𝑺−
1
2𝒁𝑺−

1
2 (𝒚 − �̃��̂�𝐹𝐺𝐿𝑇𝑆𝑅(𝒛)) 

�̂�𝐿𝑇𝑆 = 1 − �̂�𝐹𝐺𝐿𝑇𝑆𝑅
2

(

  
 

∑
𝑚𝑗𝑗(𝒛)

(𝜆𝑗(𝒛) + 1)
𝑝
𝑗=1

∑
�̂�𝑗𝐹𝐺𝐿𝑇𝑆𝑅
2 (𝒛) + �̂�𝐹𝐺𝐿𝑇𝑆𝑅

2 𝑚𝑗𝑗(𝒛)

(𝜆𝑗(𝒛) + 1)
2

𝑝
𝑗=1

)

  
 

 

�̂�𝐹𝐺𝐿𝑇𝑆𝑅𝐿(�̂�𝐿𝑇𝑆. 𝒛) = 

𝑭�̂�𝐿𝑇𝑆(𝒛) �̂�𝐹𝐺𝐿𝑇𝑆(𝒛) − 𝑭�̂�𝐿𝑇𝑆(𝒛)𝑪𝐹(𝒛)
−1𝑹⊤(𝑹𝑪𝐹(𝒛)

−1𝑹⊤)−1(𝑹�̂�𝐹𝐺𝐿𝑇𝑆(𝒛) − 𝒓) 
(3.13) 

where 𝜆𝑗(𝒛) is the jth eigenvalue of matrix 𝑪𝐹(𝒛) = 𝜞(𝒛)𝜦(𝒛)𝜞(𝒛)
⊤, 𝑚𝑗𝑗(𝒛) is the jth diagonal element 

of the matrix 𝑴(𝒛) = 𝜞(𝒛)⊤𝑯(𝒛)𝜞(𝒛)  in which 𝑯(𝒛) = 𝑪(𝒛)−𝟏(𝑰 − 𝑹⊤(𝑪(𝒛)−𝟏𝑹⊤)−1𝑹𝑪(𝒛)−1) , 

�̂�𝑗𝐹𝐺𝐿𝑇𝑆𝑅
2 (𝒛) is the jth element of �̂�𝐹𝐺𝐿𝑇𝑆𝑅(𝒛) = 𝜞

⊤�̂�𝐹𝐺𝐿𝑇𝑆𝑅(𝒛), and 𝑭�̂�𝐿𝑇𝑆(𝒛) = (𝑪𝐹(𝒛) + 𝑰)
−1(𝑪𝐹(𝒛) +

�̂�𝐿𝑇𝑆𝑰). 

Theorem 3.2. The estimation of the MSE of the suggested estimator (5.2) under the linear restriction Rβ 

= r can be given by 

MŜE(�̂�𝐹𝐺𝐿𝑇𝑆𝑅𝐿(�̂�𝐿𝑇𝑆. 𝒛)) = �̂�𝐹𝐺𝐿𝑇𝑆𝑅
2 ∑

(𝜆𝑗(𝒛)+�̂�𝐿𝑇𝑆)
2

(𝜆𝑗(𝒛)+1)
2 𝑚𝑗𝑗

𝑝
𝑗=1 (𝒛) + (�̂�𝐿𝑇𝑆 −

1)
2
∑

�̂�𝑗𝐹𝐺𝐿𝑇𝑆𝑅
2 (𝒛)

(𝜆𝑗(𝒛)+1)
2

𝑝
𝑗=1 + 𝑜(𝑛−1). 

(3.14) 

Proof. The proof directly follows by mimicking the proof of Theorem 3.1.                                              ◼ 
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Lemma 3.2. The covariance matrix of estimator �̂�𝐹𝐺𝐿𝑇𝑆𝑅𝐿(𝑑. 𝒛) is smaller compared to the covariance of 

estimator �̂�𝐹𝐺𝐿𝑇𝑆𝑅(𝒛) if and only if  

0 < 𝜏 < min
𝜇𝑖𝑖<0

|
1

𝜇𝑖𝑖
|,  (3.15) 

where 𝜏 =
1

1+𝑑
 and the 𝜇𝑖𝑖 's are the eigenvalues of matrix 𝑯(𝒛)−1𝑵(𝒛), in which 𝑵(𝒛) = 𝑪𝐹(𝒛)𝑯(𝒛) +

𝑯(𝒛)𝑪𝐹(𝒛). 
Proof. The covariance matrix of the mentioned estimators can be written as  

Cov (�̂�𝐹𝐺𝐿𝑇𝑆𝑅𝐿(𝑑. 𝒛)) = 𝜎
2𝑭𝑑(𝒛)𝑯(𝒛)𝑭𝑑(𝒛)

⊤ + 𝑜(𝑛−1), 

Cov (�̂�𝐹𝐺𝐿𝑇𝑆𝑅(𝒛)) = Cov (�̂�𝐹𝐺𝐿𝑇𝑆𝑅𝐿(𝑑 = 1. 𝒛)) = 𝜎
2𝑯(𝒛) + 𝑜(𝑛−1). 

So, the difference ∆∗= Cov (�̂�𝐹𝐺𝐿𝑇𝑆𝑅(𝒛)) − Cov (�̂�𝐹𝐺𝐿𝑇𝑆𝑅𝐿(𝑑. 𝒛)) can be expressed as follows: 

∆∗= Cov (�̂�𝐹𝐺𝐿𝑇𝑆𝑅(𝒛)) − Cov (�̂�𝐹𝐺𝐿𝑇𝑆𝑅𝐿(𝑑. 𝒛)) 

= 𝜎2(𝑯(𝒛) − 𝑭𝑑(𝒛)𝑯(𝒛)𝑭𝑑(𝒛)
⊤) 

= 𝜎2𝑭𝑑(𝒛) (𝑭𝑑(𝒛)
−1𝑯(𝒛)((𝑭𝑑(𝒛)

⊤)−𝟏 −𝑯(𝒛))𝑭𝑑(𝒛)
⊤ 

= 𝜎2(𝑪𝐹(𝒛) + 𝑰)
−1((𝑪𝐹(𝒛) + 𝑰)𝑯(𝒛)(𝑪𝐹(𝒛) + 𝑰) − (𝑪𝐹(𝒛) + 𝑑𝑰)𝑯(𝒛)(𝑪𝐹(𝒛) + 𝑑𝑰))(𝑪𝐹(𝒛) + 𝑰)

−1 

= 𝜎2(1 − 𝑑2)(𝑪𝐹(𝒛) + 𝑰)
−1 (𝑯(𝒛) +

1

1 + 𝑑
(𝑪𝐹(𝒛)𝑯(𝒛) + 𝑯(𝒛)𝑪𝐹(𝒛))) (𝑪𝐹(𝒛) + 𝑰)

−1 

= 𝜎2(1 − 𝑑2)𝑼(𝒛)(𝑯(𝒛) + 𝜏𝑵(𝒛))𝑼(𝒛), 

where 𝑼(𝒛) = (𝑪𝐹(𝒛) + 𝑰)
−1 , 𝜏 =

1

1+𝑑
 , and 𝑵(𝒛) = 𝑪𝐹(𝒛)𝑯(𝒛) + 𝑯(𝒛)𝑪𝐹(𝒛)  is a symmetric matrix. 

Since 𝑯(𝒛) = 𝑳(𝒛)⊤𝑳(𝒛), in which  

𝑳(𝒛) = (𝑪𝐹(𝒛)
−1 − 𝑪𝐹(𝒛)

−1𝑹⊤(𝑹𝑪𝐹
−𝟏𝑹⊤)

−1
𝑹𝑪𝐹(𝒛)

−1)
1/2

, 

and Rank(𝑳(𝒛)) = 𝑝 − 𝑞 < 𝑛, then 𝑯(𝒛) is a positive definite matrix. Therefore, a nonsingular matrix Q 

exists such that 𝑸⊤𝑯(𝒛)𝑸 = 𝑰 and 𝑸⊤𝑵(𝒛)𝑸 = 𝑷(𝒛), where 𝑷(𝒛) is a diagonal matrix and its diagonal 

elements are the roots of the polynomial equation |𝑯(𝒛)−1𝑵(𝒛) − 𝜇𝑰| = 0 (see Graybill [45], pp. 408; 

and Harville [46] pp. 563), and so we have 

∆∗= 𝜎2(1 − 𝑑2)𝑼(𝒛)(𝑸⊤)−1(𝑸⊤𝑯(𝒛)𝑸 + 𝜏𝑸⊤𝑵(𝒛)𝑸)𝑸−1𝑼(𝒛) 
= 𝜎2(1 − 𝑑2)𝑼(𝒛)(𝑸⊤)−1(𝑰 + 𝜏𝑷(𝒛))𝑸−1𝑼(𝒛), 

where 𝑰 + 𝜏𝑷(𝒛) = diag(1 + 𝜏𝜇11, … ,1 + 𝜏𝜇𝑝𝑝) . And, since 𝑵(𝒛) = 𝑪𝐹(𝒛)𝑯(𝒛) + 𝑯(𝒛)𝑪𝐹(𝒛) ≠ 𝟎 , 

then at least one of diagonal elements of 𝑷(𝒛) is nonzero. Assume 𝜇𝑖𝑖 < 0 for at least one i. Then, the 

positive definiteness of 𝑰 + 𝜏𝑷(𝒛) is ensured by 

0 < 𝜏 < min
𝜇𝑖𝑖<0

|
1

𝜇𝑖𝑖
|. 

As a result, for every i = 1.....p, 1 + 𝜏𝜇𝑖𝑖 > 0, and 𝑰 + 𝜏𝑷(𝒛) is a positive definite matrix. Therefore, 

∆∗ is turned into a positive definite matrix. It is now clear that, if and only if (3.15) fulfills the criteria, 

�̂�𝐹𝐺𝐿𝑇𝑆𝑅𝐿(𝑑. 𝒛) has a smaller variance than �̂�𝐹𝐺𝐿𝑇𝑆𝑅(𝒛).                                                                            ◼ 

Next the necessary and sufficient condition is provided under which the FGLTSRLE in RSRM is 

preferable to the FGLTSRE in the sense of the mean squared error matrix (MSEM). The following lemma 

is required for the demonstration of the forthcoming theorem. 

Lemma 3.3. (Farebrother [47]) Let 𝐴 be an 𝑝×𝑝 positive definite matrix, 𝑏 be an (𝑝×1) nonzero vector, 

and 𝛿 a positive scalar value. Then, 𝛿𝐴−𝑏𝑏⊤ is non-negative if and only if 𝐛⊤𝐀−1𝐛 ≤ δ. 
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Theorem 3.3. Let us be given the estimator �̂�𝐹𝐺𝐿𝑇𝑆𝑅𝐿(𝑑. 𝒛) under the linear regression model with true 

restrictions Rβ = r. �̂�𝐹𝐺𝐿𝑇𝑆𝑅𝐿(�̂�𝐿𝑇𝑆. 𝒛) is MSEM superior to �̂�𝐹𝐺𝐿𝑇𝑆𝑅(𝒛) if and only if  

1−𝑑

1+𝑑
𝜷⊤𝑮(𝒛)−𝟏𝜷 ≤ 𝜎2, (3.16) 

where 𝑮(𝒛) = 𝑯(𝒛) + 𝜏𝑵(𝒛). 
Proof. We prove the necessary and sufficient conditions for the MSEM difference ∆=

MSEM(�̂�𝐹𝐺𝐿𝑇𝑆𝑅(𝒛)) − MSEM(�̂�𝐹𝐺𝐿𝑇𝑆𝑅𝐿(𝑑. 𝒛)), where  

MSEM(�̂�𝐹𝐺𝐿𝑇𝑆𝑅𝐿(𝑑. 𝒛)) = Cov (�̂�𝐹𝐺𝐿𝑇𝑆𝑅𝐿(𝑑. 𝒛)) + Bias (�̂�𝐹𝐺𝐿𝑇𝑆𝑅𝐿(𝑑. 𝒛)) (Bias (�̂�𝐹𝐺𝐿𝑇𝑆𝑅𝐿(𝑑. 𝒛)))
⊤

 

= 𝜎2𝑭𝑑(𝒛)𝑯(𝒛)𝑭𝑑(𝒛)
⊤ + (𝑰 − 𝑭𝑑)𝜷𝜷

⊤(𝑰 − 𝑭𝑑)
⊤ + 𝑜(𝑛−1), 

MSEM(�̂�𝐹𝐺𝐿𝑇𝑆𝑅(𝒛))= MSEM(�̂�𝐹𝐺𝐿𝑇𝑆𝑅𝐿(𝑑 = 1. 𝒛)) = 𝜎
2𝑯(𝒛) + 𝑜(𝑛−1). 

According to the proof of Lemma 3.2., the difference ∆ can be expressed as follows: 

∆= 𝜎2𝑭𝑑(𝒛) (𝑭𝑑(𝒛)
−1𝑯(𝒛)((𝑭𝑑(𝒛)

⊤)−𝟏 −𝑯(𝒛))𝑭𝑑(𝒛)
⊤

− (1 − 𝑑)2(𝑪𝐹(𝒛) + 𝑰)
−1𝜷𝜷⊤(𝑪𝐹(𝒛) + 𝑰)

−1 

  = 𝑼(𝒛){𝜎2(1 − 𝑑2)(𝑯(𝒛) + 𝜏𝑵(𝒛)) − (1 − 𝑑)2𝜷𝜷⊤}𝑼(𝒛) 

  = (1 − 𝑑)2𝑼(𝒛) {𝜎2
1 + 𝑑

1 − 𝑑
(𝑯(𝒛) + 𝜏𝑵(𝒛)) − 𝜷𝜷⊤}𝑼(𝒛) 

= (1 − 𝑑)2𝑼(𝒛) (𝜎2
1+𝑑

1−𝑑
𝑮(𝒛) − 𝜷𝜷⊤)𝑼(𝒛), 

where 𝑮(𝒛) = 𝑯(𝒛) + 𝜏𝑵(𝒛). Now, by using Lemma 3.3 and supposing that condition (3.15) is met, it is 

concluded that ∆ is positive definite if and only if 

                                              
1−𝑑

1+𝑑
𝜷⊤𝑮(𝒛)−𝟏𝜷 ≤ 𝜎2, 0 < 𝑑 < 1.                                                               ◼ 

Theorem 3.4. Let us be given the estimator �̂�𝐹𝐺𝐿𝑆𝑅𝐿(𝑑)  under the linear regression model with true 

restrictions Rβ = r. �̂�𝐹𝐺𝐿𝑆𝑅𝐿(𝑑) is MSEM superior to �̂�𝐹𝐺𝐿𝑆𝑅 if and only if  

 
1−𝑑

1+𝑑
𝜷⊤𝑮−𝟏𝜷 ≤ 𝜎2, (3.17) 

where 𝑮 = 𝑯+ 𝜏𝑵 and 𝑵 = 𝑪𝐹𝑯+𝑯𝑪𝐹. 

Proof. The desired result is simply obtained, similar to the proof of Theorem 3.4.                                    ◼ 

4.  Illustrative experiments 

To demonstrate the advantages of the improved techniques that have been proposed for the restricted 

semiparametric regression model in the presence of the multicollinearity and outlier problems 

simultaneously, we examine the theoretical findings using some numerical experiments in this section. We 

evaluate the performance of the proposed techniques in both a real-world data set and Monte Carlo 

simulation schemes. 

4.1. The Monte Carlo simulation studies 

We conduct a numerical analysis to evaluate the precision of our robust estimators for RSRM when 

dealing with contaminated data sets with outliers and multicollinearity. In each replication, the regressors 

are randomly generated using the following structure: Indeed, in order to reach the various levels of 
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multicollinearity, we used the approach proposed by [48,49], in which the explanatory variables were 

constructed using a device with 150 observations and 103 iterations, based on the model described below: 
𝑥𝑖𝑗 = (1 − 𝛾

2)1/2𝑧𝑖𝑗 + 𝛾𝑧𝑖𝑝 ,           𝑖 = 1,… , 𝑛  and 𝑗 = 1,… , 𝑝, 

where  𝑧𝑖𝑗  are independent standard normal pseudo-random variables, and 𝛾  is chosen such that the 

correlation between any two explanatory variables is equal to 𝛾2 . These variables are subsequently 

normalized to ensure that 𝑿⊤𝑿  and 𝑿⊤𝒚 are in correlation forms. Four distinct sets of correlation values 

are investigated, specifically for 𝛾 =  0.25, 0.50, 0.75, and 0.95 . For the dependent variable, n 

observations are then calculated by 

𝑦𝑖 = ∑ 𝑥𝑖𝑗𝛽𝑗 + 𝑓(𝑡𝑖) + 𝜀𝑖  ,        𝑖 = 1,… , 𝑛
5
𝑗=1 ,  (4.1) 

where  
𝜷 = (−1, 4, 2,−5,−3)⊤, 

𝑓(𝑡) = 𝑒𝑥𝑝{sin(𝑡) cos(𝑡) + √𝑡}, 𝑡 ∈ [0, 3], 

𝜺(𝑛×1) = (𝜺1
⊤, 𝜺2

⊤)⊤, 

in which 
𝜺1 (ℎ×1)
⊤ ~𝑁ℎ(𝟎, 𝜎

2𝑽), 𝜎2 = 1.64, [𝑣𝑖𝑗] = 𝑒𝑥𝑝{−9|𝑖 − 𝑗|}, ℎ = [0.25𝑛], [0.33𝑛], [0.50𝑛] 

and 
𝜺2  ((𝑛−ℎ)×1)
⊤ ~𝑖.𝑖.𝑑.𝜒1

2(15), 

where 𝜒𝑚
2 (𝛿) represents the m-degree of freedom non-central Chi-squared distribution with non-centrality 

parameter δ. The primary motivation behind selecting such structure for producing the error terms is to 

corrupt the data set and assess the resistance of the suggested techniques. In fact, we designated the last 

n−h error terms as independent non-central Chi-squared distributed random variables and the first h error 

terms as dependent normal random variables. The non-centrality parameter leads to that the outliers lie on 

one side of the real regression model and bias the non-robust estimations. For the restriction, we consider 

the following stochastic linear restrictions: 

1 5 3 1 1

2 1 0 2 3
.

1 2 1 3 2

4 1 2 2 0

R , r Rβ

− − − 
 

− − − = =
 −
 

− 

 

For estimating the nonparametric part of model (4.1), f (.), the weight proposed by [50] with the 

Gaussian kernel is used as follows: 

𝑊𝜔(𝑡𝑗) =
1

𝑛𝜔
𝐾 (

𝑡𝑖−𝑡𝑗

𝜔
) =

1

𝑛𝜔

1

√2𝜋
𝑒𝑥𝑝 {

(𝑡𝑖−𝑡𝑗)
2

2𝜔2
}. 

Also, the cross-validation (C.V.) approach is applied for obtaining the optimum value of bandwidth 

𝜔, which minimizes the C.V. criterion. 

The non-parametric component of model (4.1) is presented in Figure 1. This wavy function is 

challenging to predict and offers a useful example for testing the proposed estimation techniques. All 

calculations were performed with R 4.3.1, the statistical software program. Tables 1–14 present a summary 

of the results. After iterating the process for all simulations, the minimum, maximum, mean, median, and 

standard deviation values of MSEs for the linear and non-linear estimators were reported in Tables 1 & 2, 

respectively, where 
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in which (m)

)(
ˆ

iβ and (m)

(i)f̂ are the ith estimators of the linear and non-linear parts (i=1,...,4) obtained in the mth 

iteration for all of the four proposed approaches, and 
2 2

2 1
v

q

ii
v

=
=  for 𝒗 = (𝑣1, . . . , 𝑣𝑝)

⊤. Also, PCDO 

is the percentage of the contaminated data with outliers (PCDO= 100 ×
𝑛−ℎ

𝑛
%). 

  

Figure 1. The nonlinear function of the simulated model. 

Figure 2 shows the estimations of the non-linear part of model (4.1) using the proposed methods. In 

this figure, the nonparametric function is estimated by the kernel method after estimation of the linear part 

of model (4.1) by FGLSRE, FGLTSRE, FGLSRLE, and FGLTSRLE, respectively. To save space, the 

results have been only reported for n = 150 with PCDO=25%, 33%, and 50%, and 𝛾 = 0.95. From Figure 

2, it is evident that the non-robust methods are completely corrupted by the outliers, especially for large 

values of PCDO. 
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Table 1. Mean squared error estimations of the proposed estimators for the linear part of the simulated data sets with n=150.  

 𝛾  0.25 0.50 0.75 0.95  0.25 0.50 0.75 0.95  0.25 0.50 0.75 0.95 

  PCDO =25%     PCDO =33%    PCDO  =50%   

 min 1.03e+00  1.4501 1.9507 8.4008  1.5712 4.9800 4.4346 10.09635  2.7600 5.8985 8.4886 14.5415 

 max 3.0344 3.7254 7.1833 38.9501  4.1060 5.6992  6.3436 23.1795  4.8609 12.5527  11.9615 39.6976 

FGLSRE mean 1.2606 2.2249 4.3570 16.5846  1.9013 3.9258  5.4962 19.9989  3.2705 9.3250  10.5542 26.3929 

 median 1.1228  1.9902  4.1577 15.6974  1.8818 3.1400  5.2324  18.9837  3.1247 8.8504  10.2531  25.1407 

 S.D. 1.3633 2.9277 2.5325 8.5307  2.2494 2.4276  3.7169 9.9713  6.9775 6.4574  5.7781 12.4557 

 min 7.00e-02 1.1141 1.1376 5.8009  0.0937 1.6500  2.3008 9.45506  0.0750 1.0046  2.7407 12.9800 

 max 2.0108 3.1206 5.8441 17.4920  1.4185 4.0889  4.9014 18.2030  3.8996 4.8417  6.2896 28.6880 

FGLTSRE  mean 0.1579 1.9061 3.1640 13.6686  0.6468 3.1952 3.2871 12.0766  0.2389 2.2825  3.4733 15.1121 

 median 0.0644 1.8409 3.0672 12.2794  0.4776 3.0808 3.1337 11.8957  0.1002 2.1237  3.2014 14.8865 

 S.D. 0.6358 2.9805 2.2827 7.0157  1.1846 3.0649  3.4142 8.6359  1.3573 4.4232  3.6887 8.9685 

 min 4.10e-01 0.0491 0.0858 2.5456  1.0680 2.0301  2.7207 4.1117  2.5720 3.1352  3.2247 13.3250 

 max 1.8972 2.8717 3.1734 7.6356  2.9482 4.8827  5.5675 12.1979  4.9784 7.1075  7.2553 24.1935 

FGLSRLE  mean 0.2437 0.6099 1.3926 3.8501  1.7648 2.9027  3.5436 6.2565  3.1045 4.3330 7.7663 17.4571 

 median 0.1147 0.6019 0.1821 3.9388  0.6456 2.7531  3.2622 6.1038  3.0753 4.2515 7.2732 17.1550 

 S.D. 0.3457 1.3459 2.5714 4.7190  2.4499 1.4511  2.7632 3.1329  6.8705 5.4671  3.7902 7.3125 

 min 4.33e-03 0.0045 0.0037 0.0604  0.0345 0.0141  0.0109 0.6054  0.0017 0.1570  0.0048 1.1370 

 max 1.9089 2.2738 1.1269 4.6501  0.9583 1.2217  1.3226 6.8717  1.6645 0.8509  0.8867 12.1068 

FGLTSRLE  mean 0.1461 0.0992 0.1808 0.8070  0.9593 0.2282 0.3750 1.3672  0.2407 0.2941 0.4949 6.0419 

 median 0.0581 0.0434 0.0745 0.3423  0.3887 0.0830 0.1660 0.9254  0.1183 0.3212 0.2139 5.8904 

 S.D. 0.2205 1.1919 2.3091 3.1927  1.3874 1.2861  2.4600 2.9477  1.3493 1.9637  2.7041 3.9317 
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Table 2. Mean squared error estimations of the proposed estimators for the non-linear part of the simulated data sets with n=150. 

 

 

 

 

 

 

 

 𝛾  0.25 0.50 0.75 0.95  0.25 0.50 0.75 0.95  0.25 0.50 0.75 0.95 

  PCDO  =25%     PCDO  =33%     PCDO  =50%   

 min 0.0374 0.3994 3.0404 5.0481  0.0449 0.8437 3.0321 6.0326  0.9591 1.0215 5.5270 10.11928 

 max 6.2170 4.8515 5.4275 10.3723  2.7879 5.8039  4.4065 13.1375  9.6363 9.6595  7.6221 28.3078 

FGLSRE mean 0.6183 1.4321 3.4064 7.3234  0.3497 1.7602  3.5049 11.3692  1.6280 2.5842  5.5436 18.4228 

 median 0.3508  1.2565  3.2481 7.2132  0.2345 1.3185  3.2925  11.2302  1.3582 2.3344  6.3158  16.2578 

 S.D. 0.7293 1.9897 3.4365 3.3594  0.3291 2.6560  2.5909 4.4043  3.9471 5.6909  3.6291 9.4677 

 min 0.0287 0.4223 2.0463 4.0252  0.0343 0.6355  2.0375 3.0287  0.0215 0.6205  3.5196 7.0279 

 max 4.0802 4.8972 4.5401 9.8426  2.5455 3.7042  2.6508 8.7396  6.3417 5.3711  5.4789 23.3797 

FGLTSRE  mean 0.4200 1.2698 2.2545 5.2060  0.2251 1.6775 2.3414 6.2519  0.5627 1.5171  3.4784 12.3705 

 median 0.2451 1.1965 2.1852 4.9608  0.1736 1.2286 2.2140 6.1749  0.2998 1.2809  4.2729 11.2342 

 S.D. 0.4864 2.7594 3.2296 3.1450  0.1909 2.4193  2.3521 4.2299  0.7026 1.6265  2.5539 7.3965 

 min 0.0281 0.0475 0.2469 1.0435  0.03421 0.5787  2.0245 2.9891  0.9282 0.9250  5.1206 8.0220 

 max 5.9483 3.0696 3.9557 3.4799  2.5126 6.0783  2.5968 6.2644  9.0662 7.4303  6.9023 21.3871 

FGLSRLE  mean 0.5849 0.4537  0.9337 1.3566  0.3184 1.5949  2.5431 4.4030  1.6164 2.2959 5.1532 14.4144 

 median 0.3256 0.2654  0.7635 1.1312  0.2174 1.3489  2.3237 4.2665  1.3497 2.0034 5.9194 14.2567 

 S.D. 0.6946 0.5153 2.4658 2.3829  0.3070 2.6909  1.9268 4.4213  3.7313 2.7059  1.6403 6.4495 

 min 0.0244 0.0450 0.0470 0.0259  0.0325 0.0369  0.0385 0.0340  0.0207 0.0253  0.0270 1.1271 

 max 3.8884 3.0961 0.7341 1.0003  2.3036 3.9890  0.9417 1.6739  6.7319 1.9403  1.0525 5.0367 

FGLTSRLE  mean 0.3968 0.2801 0.2675 0.7239  0.2173 0.4027 0.3713 0.5898  0.5475 0.5839 0.5652 3.3780 

 median 0.2340 0.1993 0.1929 0.5678  0.1742 0.2428 0.2340 0.3023  0.3232 0.3432 0.3836 3.2335 

 S.D. 0.4563 0.2756 2.2493 2.1681  0.1671 1.4512  1.3876 3.2692  0.6847 0.6430  1.5663 4.3896 
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Table 3. Evaluation of the parameters for the proposed methods with 𝛾 = 0.25 and PCDO = 25%. 

Coefficients Method 

FGLSRE FGLTSRE FGLSRLE FGLTSRLE 

�̂�1 -1.0025 -1.0022 -1.0021 -1.0019 

�̂�2 3.9439 3.9519 3.9547 3.9586 

�̂�3 1.8317 1.8558 1.8640 1.8757 

�̂�4 -4.8547 -4.8754 -4.8825 -4.8926 

�̂�5 -2.9235 -2.9344 -2.9382 -2.9435 

�̂� 1.0000 1.0000 0.0002 0.4316 

𝑒⊤𝑧 150.00 116.00 150.00 116.00 

Table 4. Evaluation of the parameters for the proposed methods with 𝛾 = 0.50 and PCDO = 25%. 

Coefficients Method 

FGLSRE FGLTSRE FGLSRLE FGLTSRLE 

�̂�1 -1.1020 -1.0916 -1.0014 -1.0014 

�̂�2 3.9059  3.9052 3.9693 3.9700 

�̂�3 1.8176 1.8957 1.9079 1.9101 

�̂�4 -4.8057 -4.8599 -4.9204 -4.9224 

�̂�5 -2.8398 -2.8526 -2.9581 -2.9591 

�̂� 1.000 1.000 0.0078 0.6775 

𝑒⊤𝑧 150 131 150 131 

Table 5. Evaluation of the parameters for the proposed methods with 𝛾 = 0.70 and PCDO = 25%. 

Coefficients Method 

FGLSRE FGLTSRE FGLSRLE FGLTSRLE 

�̂�1 -1.7530 -1.4123 -1.1520 -1.0019 

�̂�2  3.1342  3.5500 3.8571 3.9585 

�̂�3 1.1027 1.3500 1.2712 1.8755 

�̂�4 -4.2296 -4.6705 -4.7888 -4.8925 

�̂�5 -2.1103 -2.5318 -2.7415 -2.9434 

�̂� 1.000 1.000 0.0054 0.6639 

𝑒⊤𝑧 150 128 150 128 

Table 6. Evaluation of the parameters for the proposed methods with 𝛾 = 0.95 and PCDO = 25%. 

Coefficients Method 

FGLSRE FGLTSRE FGLSRLE FGLTSRLE 

�̂�1 -2.5080 -2.0052 -1.0036 -1.0035 

�̂�2  2.8241  3.0851 3.9207 3.9228 

�̂�3 0.4724 1.1554 1.7622 1.7684 

�̂�4 -3.7103 -4.1024 -4.7946 -4.8000 

�̂�5 -2.0002 -2.0134 -2.8919 -2.8947 

�̂� 1.000 1.000 0.6488 0.2912 

 𝑒⊤𝑧 150 122 122 108.392 
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Table 7. Evaluation of the parameters for the proposed methods with 𝛾 = 0.25 and PCDO = 33%. 

Coefficients Method 

FGLSRE FGLTSRE FGLSRLE FGLTSRLE 

�̂�1 -1.0035 -1.0034 -1.0079 -1.0059 

�̂�2 3.9222 3.9244 3.8259 3.8707 

�̂�3 1.7667 1.7732 1.4776 1.6122 

�̂�4 -4.7985 -4.8042 -4.5488 -4.6651 

�̂�5 -2.8939 -2.8969 -2.7625 -2.8237 

�̂� 1.0000 1.0000 0.0067 0.6464 

𝑒⊤𝑧 150 129 150 129 

Table 8. Evaluation of the parameters for the proposed methods with 𝛾 = 0.50 and PCDO = 33%. 

Coefficients Method 

FGLSRE FGLTSRE FGLSRLE FGLTSRLE 

�̂�1 -1.1029 -1.1025 -1.1023 -1.0021 

�̂�2  3.9065 3.9150 3.9199 3.9533 

�̂�3 1.8096 1.8109 1.8298 1.8599 

�̂�4 -4.6355 -4.7574 -4.7703 -4.8790 

�̂�5 -2.5134 -2.7250 -2.8017 -2.9363 

�̂� 1.0000 1.0000 0.0002 0.4261 

𝑒⊤𝑧 150 130 150 130 

Table 9. Evaluation of the parameters for the proposed methods with 𝛾 = 0.75 and PCDO = 33%. 

Coefficients Method 

FGLSRE FGLTSRE FGLSRLE FGLTSRLE 

�̂�1 -1.9438 -1.4133 -1.6228 -1.0026 

�̂�2 2.9157 3.6282 3.5385 3.9429 

�̂�3 1.0472 1.3847 1.3156 1.8287 

�̂�4 -3.7816 -4.7140 -4.6407 -4.8521 

�̂�5 -2.0051 -2.6021 -2.5162 -2.9221 

�̂� 1.000 1.000 0.0001 0.4026 

𝑒⊤𝑧 150 130 150 130 

Table 10. Evaluation of the parameters for the proposed methods with 𝛾 = 0.95 and PCDO = 33%. 

Coefficients Method 

FGLSRE FGLTSRE FGLSRLE FGLTSRLE 

�̂�1 -2.8086 -2.0067 -1.7142 -1.0038 

�̂�2  2.2198 3.0528 3.5466 3.9168 

�̂�3 0.4293 1.2685 1.1197 1.7505 

�̂�4 -3.5071 -4.0187 -4.3579 -4.7845 

�̂�5 -1.7406 -2.1003 -2.5726 -2.8866 

�̂� 1.000 1.000 0.0008 0.3654 

𝑒⊤𝑧 150 118 150 118 
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Table 11. Evaluation of the parameters for the proposed methods with 𝛾 = 0.25 and PCDO = 50%. 

Coefficients Method 

FGLSRE FGLTSRE FGLSRLE FGLTSRLE 

�̂�1 -1.8514 -1.0015 -1.8709 -1.0010 

�̂�2 3.9029 3.9678 3.8807 3.9790 

�̂�3 1.6097 1.9034 1.7422 1.9371 

�̂�4 -4.1220 -4.9166 -4.2501 -4.9457 

�̂�5 -2.4590 -2.9561 -2.4737 -2.9714 

�̂� 1.000 1.000 0.0013 0.0217 

𝑒⊤𝑧 150 127 150 127 

Table 12. Evaluation of the parameters for the proposed methods with 𝛾 = 0.50 and PCDO = 50%. 

Coefficients Method 

FGLSRE FGLTSRE FGLSRLE FGLTSRLE 

�̂�1 -1.9411 -1.3117 -1.6436 -1.0011 

�̂�2 3.1654 3.4623 3.2789 3.9763 

�̂�3 0.8961 1.5868 1.0367 1.9289 

�̂�4 -3.7103 -4.7022 -4.0454 -4.9386 

�̂�5 -2.0528 -2.3485 -2.1512 -2.9677 

�̂� 1.000 1.000 0.0250 0.0203 

𝑒⊤𝑧 150 123 150 123 

Table 13. Evaluation of the parameters for the proposed methods with 𝛾 = 0.75 and PCDO = 50%. 

Coefficients Method 

FGLSRE FGLTSRE FGLSRLE FGLTSRLE 

�̂�1 -1.0021 -1.0023 -1.0011 -1.0012 

�̂�2 3.9535 3.9485 3.9767 3.9726 

�̂�3 1.8606 1.8456 1.9300 1.9178 

�̂�4 -4.8796 -4.8667 -4.9395 -4.9290 

�̂�5 -2.9366 -2.9298 -2.9682 -2.9626 

�̂� 1.000 1.000 0.0018 0.0168 

𝑒⊤𝑧 150 125 150 125 

Table 14. Evaluation of the parameters for the proposed methods with 𝛾 = 0.95 and PCDO = 50%. 

Coefficients Method 

FGLSRE FGLTSRE FGLSRLE FGLTSRLE 

�̂�1 -3.1056 -2.1161 -2.6811 -1.0016 

�̂�2 3.0766 3.1668 3.0995 3.9690 

�̂�3 0.3197 1.1703 1.0297 1.9072 

�̂�4 -2.6802 -3.6548 -3.1793 -4.9165 

�̂�5 -1.1117 -2.0683 -1.9681 -2.9567 

�̂� 1.000 1.000 0.0003 0.0205 

𝑒⊤𝑧 150 127 150 127 
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Figure 2. Estimation of the nonparametric function under study by kernel method for n = 

150, γ = 0.95, PCDO = 25% (low), PCDO=33% (moderate), and PCDO=50% (high). 

4.2. Real-world data analysis 

We analyze the hedonic pricing of housing features in order to motivate the challenge of linearly 

restricted estimations in the semiparametric regression model. Lot size has a big impact on housing 

costs. Ho [51] fit this data set using semiparametric least squares. The information is based on 92 

detached houses that were sold in the Ottawa region in 1987. Here is how the variables are defined: 

The sale price (SP) is the dependent variable, while the lot size (lot area = LT), square footage of 

housing (SFH), average neighborhood income (ANI), distance to the highway (DHW), garage 

availability (GAR), and fireplace (FP) are the independent variables. At first, the pure parametric 

model is fit as follows: 

(𝑆𝑃)𝑖 = 𝛽0 + 𝛽1(𝐿𝑇)𝑖 + 𝛽2(𝑆𝐹𝐻)𝑖 + 𝛽3(𝐹𝑃)𝑖 + 𝛽4(𝐷𝐻𝑊)𝑖 + 𝛽5(𝐺𝐴𝑅)𝑖 + 𝛽6(𝐴𝑁𝐼)𝑖 + 𝜀𝑖  . 

We use the added-variable charts to intuitively determine the parametric and nonparametric 

components of the model (see Sheather [52] for more details). Added-variable plots allow us to 
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examine each predictor's influence graphically after adjusting for the effects of the other explanatory 

variables. Based on the analysis of the added-variable plot (Figure 3), we identify ANI as a 

nonparametric component. Therefore, the SRM is specified accordingly: 

(𝑆𝑃)𝑖 = 𝛽0 + 𝛽1(𝐿𝑇)𝑖 + 𝛽2(𝑆𝐹𝐻)𝑖 + 𝛽3(𝐹𝑃)𝑖 + 𝛽4(𝐷𝐻𝑊)𝑖 + 𝛽5(𝐺𝐴𝑅)𝑖 + 𝑓(𝐴𝑁𝐼)𝑖 + 𝜀𝑖 .  (4.2) 

The “mctest” package in R is used to detect multicollinearity in the design matrix, producing the 

following results. The Farrar-Glauber test and other pertinent tests for multicollinearity are provided. 

Overall Multicollinearity Diagnostics 

                                          MC Results       detection 

Determinant |X'X|:           0.005618               1 

Farrar Chi-Square:             50.8378               1 

Red Indicator:                       0.2065              0 

Sum of Lambda Inverse:  700.2104              1 

Theil's Method:                    -0.7320             0 

Condition Number:           200.4021             1 

1 --> COLLINEARITY is detected by the test  

0 --> COLLINEARITY is not detected by the test 

The correlation graphs are displayed in Figure 4 for the real data set. It is evident from the output 

above and Figure 4 that the independent variables in the real data set under investigation exhibit 

substantial multicollinearity. So, to address the multicollinearity issue, the suggested estimating 

techniques must be used. 

The restriction 𝑹𝜷 = 𝒓  may be identified as follows based on a basic investigation of the 

semiparametric regression model (4.2) using a robust Liu estimator: 

1 0 1 1 1 0

1 0 1 2 0 , 0

0 1 0 2 8 0

R r

− − −   
   

= − =   
   − −   

 

Now, the linear hypothesis 𝑹𝜷 = 𝒓 is examined in the framework of the restricted semiparametric 

regression model (4.2). The test statistic is computed as follows under 𝑹𝜷 = 𝒓: 

𝜒𝑟𝑎𝑛𝑘(𝑅)
2 = (𝑹�̂�𝐹𝐺𝐿𝑆 − 𝒓)

⊤
(𝑹�̂��̂� 𝑹

⊤)
−1
(𝑹�̂�𝐹𝐺𝐿𝑆 − 𝒓) = 0.4781, 

where �̂��̂� = �̂�
2(�̃�⊤𝑺−1�̃�)

−1
, in which �̂�2 =

1

𝑛−𝑝
(𝒚 − �̃��̂�𝐹𝐺𝐿𝑆)

⊤
𝑺−1(𝒚 − �̃��̂�𝐹𝐺𝐿𝑆). Consequently, 

the restricted estimators are obtained. Table 15 shows a brief evaluation of the proposed estimators. 

In this table, the values of MŜE and R2 are calculated, in which R2 = 1 −
RSS

SYY
 is the coefficient of 

determination of the model, where RSS = ∑ (𝑦𝑖 − �̂�𝑖)
2𝑛

𝑖=1  is the residual sum of squares and �̂�𝑖 =

𝑥𝑖�̂� + 𝑓(𝑡𝑖). Compared to the other procedures, FGLTSRLE seems to be accurately effective based 

on the results that were obtained.     



31600 

AIMS Mathematics Volume 9, Issue 11, 31581–31606. 

 

Figure 3. Added-variable plots of individual explanatory variables vs. dependent variable, 

linear fit (blue solid line), and kernel fit (red dashed line). 

Table 15. Evaluation of parameters for proposed estimators for the real data set method. 

Coefficients FGLSRE FGLTSRE FGLSRLE FGLTSRLE 

LT 0.7018 1.0509 0.8514 1.1235 

SFH 46.7515 33.5686 38.9154 26.3747 

FP 3.9311 2.5740 3.5210 1.9568 

DHW −1.6147 −0.7616 −0.9952 −0.4125 

GAR 6.2476 4.3865 5.2015 2.9958 

e⊤z 92.0000 86.0000 92.0000 86.0000 

�̂� 1.0000 1.0000 0.1542 0.6741 

MŜE 926.80 456.41 809.59 335.17 

R2                                         0.2346 0.6156 0.3354 0.7325 
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Figure 4. Visualization of the correlation plots for the explanatory variables of the real data set. 

 

Figure 5. Estimations for the nonparametric part of model (4.2). 
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Following the proposed estimations of the linear component of the model (4.2), the estimations 

on the non-parametric function by kernel smoothing is shown in Figure 5. For estimation of the 

nonparametric effect, at first we estimated the parametric effects by one of the proposed methods, and 

then the kernel approach was applied to fit 𝑆𝑃𝑖 − 𝑥𝑖
⊤�̂� on 𝐴𝑁𝐼𝑖  , 𝑖 = 1,… , 𝑛 for all proposed linear 

estimators, where 𝑥𝑖
⊤ = (𝐿𝑇𝑖 , 𝑆𝐹𝐻𝑖  , 𝐹𝑃𝑖  , 𝐷𝐻𝑊𝑖 , 𝐺𝐴𝑅𝑖). Table 15 and Figure 5 demonstrate how the 

Liu type of robust and non-robust estimators outperform non-Liu forms in both parametric and 

nonparametric estimations due to the presence of multicollinearity in the design matrix. Furthermore, 

robust estimators outperform non-robust estimators in model prediction since the data set contains 

some outlier observations. 

5. Conclusions 

In this research, Liu and non-Liu types of the feasible generalized restricted robust estimator are 

suggested in a semiparametric regression model when some additional linear constraints held on the 

linear parameter space and the variance matrix of the error terms were unknown. We introduced robust 

Liu estimators in the presence of multicollinearity among column vectors of the design matrix of a 

semiparametric regression model and outliers in the data set. We also introduced some new estimators 

of d by minimizing the mean squared error of the proposed estimators. After extracting the MSEM 

superiority condition of a feasible generalized least trimmed squares restricted Liu estimator over a 

non-Liu type based on some theorems, comprehensive Monte-Carlo simulation experiments and a real 

data analysis were conducted to evaluate the effectiveness of the suggested estimators. The numerical 

experiments illustrated that the suggested methods can be effectively implemented to predict the 

dependent variable of restricted SRMs without being affected by the corruptive impact of 

multicollinearity or outlier issues. As a good topic for future research, it is proposed to derive the 

asymptotic distribution of the proposed estimator by the interested authors (see [53,54] for more 

details). 
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